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Conserved-phase field system: Implications for kinetic undercooling
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A model is proposed to study the dynamics of phase boundaries using a conserved order param-

eter. A relation between the temperature and the curvature, surface tension, and velocity is de-

rived and compared with the analogous system of equations using a nonconserved order parame-

ter. The kinetic-undercooling term is altered, thereby changing the stability properties of an in-

terface.

The statics and dynamics of an interface between two
phases has been studied extensively using a Landau-
Ginzburg approach (see Refs. 1 and 2 and references con-
tained in Ref. 3) in which u is the temperature (scaled so
that u 0 is the usual melting temperature) and p is a
nonconserved order parameter. In their simplest form, the
equations can be written as
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where I is the latent heat of fusion, K is the diffusivity, r is
a relaxation time, and g and a are dimensionless scaled
constants which are related to the correlation length.
Subject to appropriate initial and boundary conditions,
this system has been studied mathematically and an ex-
istence and uniqueness theory has been developed. ' A nu-
merical study, using a convergent scheme, 4 has also been
performed. The existence and uniqueness of solutions, in
conjunction with the numerical results, provide a perspec-
tive for understanding the velocity selection mechanism
for dendritic growth. This approach also integrates the
microscopic and macroscopic aspects of the problem 5 and
can also be used to understand the derivations of various
macroscopic interface models from first principles. 6 Ad-
ditional properties such as anisotropy may be included in
the derivation of the model. 3'5

The issue of the relationship between the temperature
at the interface and other variables, particularly the local
sum of principal curvatures tc and velocity v of the inter-
face, has been of interest to physicists and metallurgists
for many years. 7 9 With respect to the velocity term,
there has not been complete agreement on the power of v

in this relation, and the coefficient is a more difficult ques-
tion still.

In the model [Eqs. (1) and (2)], the value of the tem-
perature at the interface, which is defined to be the set of
points for which p 0, various formal analyses' i 5 have
led to the relation (for a = 1)

The system of equations describing the interface is then

ttt+ 2 pt Khtt (6)
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subject to appropriate initial and boundary conditions. In
particular, the boundary conditions must be chosen so that
the external boundary on the liquid (or +) side satisfies

P+, us u+,
where py is the largest root of (1/2a)(p+ —pf)+2u+

0, and analogously, on the solid (or —) side p —is the
smallest root of (I/2a)(p ——p~ )+2u =0. Under nor-
mal conditions, one expects an initial profile for p which
has a transition-layer behavior such as tanhx/ga '

In the steady-state situation (i.e., all time derivatives set
equal to zero), Eqs. (6) and (7) reduce to

calculation of the coefficient of the kinetic undercooling
term, i.e., —its/g2, which can be related to microscopic
and measurable quantities.

In the model which we introduce below, one of the basic
aims is to recalculate this coefficient for a system with a
conserved order parameter and to examine the differences
particularly with respect to the changes in the stability of
an interface.

We assume the free energy used to derive (2), i.e.,

1
P„fy) d"x —'g (Vy) + (y —1) —2uy, (4)

0 a

where 0 is a region in IR" and (p2 —1)2/Sa is a prototype
double-well potential which may be replaced by any other
potential with similar qualitative properties. We note that
the free energy in (4) may be derived from the microscop-
ics with anisotropic considerations as in Ref. 5. For sim-

plicity, we assume the inaterial is isotropic. A conserved
order parameter p may then be expected to satisfy'0

where M 4 is the entropy difference between phases.
This identity has suitable generalizations in anisotropic
situations. In (3), and various analogs, one then has a
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Then u is determined uniquely by the boundary condition
uo so that the system is described essentially by Eq. (10).
A similar situation had been observed for (1) and (2). In
fact, it is clear that any steady-state solution to (1) and
(2) must be a solution to (9) and (10). However, (9) and
(10) admit other solutions such as (depending on the oth-
er boundary conditions)

&'&'~+, &(~ ~')-g,1

where g is any harmonic function. In one-dimensional
space a solution to (9) and (10) is given by any linear
function for u and any p satisfying

We consider next the dynamical problem and initially
make the restriction to one-dimensional space. In particu-
lar, we are interested in determining the temperature at
the interface of a planar wave moving at constant velocity
and comparing the result with (3). Thus, we consider a
traveling wave solution of the form p(x —vt) on the real
line with p(+ ~) p~, u(+'~) =u ~ such that p~
satisfies the relations after (8). Using the stretched vari-
able p —=x/ga 't2, one may rewrite (7) as

—va"'& 'i -, ~2+ —,
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After integration of this equation from —~ to p, one has
I

2

via "—
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Defining po(p) tanhp/2 we note that it solves

d2yp + —,
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while the derivative solves

, to+ 2 (1 —30$)yo-0 .
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Using (17) and integrating (14) again between —~ and p, one has

Assuming an expansion of p of the form p pp+ (a 't2&~ one may write the term in brackets in (14) as (with e—=ga 't )
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The contribution to the right-hand side from —oo is zero.
This follows from the fact that the boundary conditions at—Oo imply

—ey)+2ua-0 (at —~) . (20)

Using (20) and noting that the derivatives of p vanish at—~, one may rewrite (18) in the form

'a'
a
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The homogeneous equation Ly 0 has a solution po by
(16). Thus, a necessary condition for the solvability of
(21) is (pp, F) =—f poF 0. To leading order, then, one

—,
' [(yp+ey)) —(yp+ey))']+2ua 0 (at —~) . (19)

By definition one has pp( —~) —1, so that

—(a' ( 'r)v (sech p/2)ln(e +1)dp . (22)

Equation (22) may be compared with the analogous re-
sult from the nonconserved order parameter, i.e., Eqs. (1)
and (2). In particular, a similar treatment of (2) results
in"

4u —(a 't
g 'r)v (sech pl2)dp .

The main difference between (22) and (23), then, is the
exponent of the parameter a which strongly influences the
size of the dynamical undercooling term. Within the scal-
ing exhibited in (6) and (7), this term is much less
significant since a't g 'r« a 't

g '~. Note that the
scaling of (5) in the form

(23)

.q, -g'a~(aV/by) (24)

would result in a dynamical undercooling term which is of

I

has the interfacial temperature relation
1OO Pp
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cp—=
&

(sech p/2)ln(e'+ l)dp . (25)

With (()p(p) —= tanhp/2 as the leading order solution, it is
clear formally that (6) approaches the heat equation in

both the liquid and solid as g and a approach zero. The
latent heat condition across the interface is also satisfied
in an appropriate weak sense. These issues are discussed
in the context of nonconservative phase-field equations in
Ref. 6.

The particular manner in which g, r, and a approach
zero determines the precise sharp interface model which is
the limit of the conservative phase-field model. Most
significantly, if ga'l2 is kept constant, then the surface
tension and curvature term remains constant as the inter-
facial thickness vanishes. If ga 'l and g 'a 'l r both van-
ish in the limit, then the classical Stefan limit is attained
with the temperature at the interface maintenance at zero.
These limits are displayed in Fig. 1.

An alternative limit is obtained by simply taking
K ~ in (6). The system of equations then reduces to
the single equation

e -&'& C'&4 + 1
(26)

20

since (6) now implies that hu 0. Hence, (26) is the lim-
iting case in which heat diffuses infinitely rapidly, so that
temperature becomes an irrelevant (or decoupled) vari-
able. It is clear that, If ((t 0,

y
= + 1,0 or tI)p(x;xp) -tanh[(x —xp)/2(a ' '], (27)

are all solutions to (26) for any value of xp. Furthermore,
one can obtain solutions essentially by "superposing"

the same order as the nonconserved system. The
coefficient however would be larger by a factor of about 5.

The size of the coefficient has important implications
for the stability of the interface. We defer this discussion
until the full interfacial relation and the limiting cases
have been obtained.

If the curvature of a moving interface is considered,
then a similar analysis leads to the relation on the inter-
face I,

Mu ——ga 'l tc —cpa 'l2$ 'iv+ higher order,

Conserved phase field equations:
UI +—@I ——Khu

2

rQ, = $ g )$ &4+& (4& —4 )+zu(

Stefan limit:

a, $ —0 $a" —0
( 'a'~-0

UI = KDU

Lv„= K( v'us —v UL) n
on I

u= 0

Modified Stefan limit:
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FIG. 1. The sharp interface limits of the conserved phase
field equations in various scaling limits, with t 0(1).

(()p(x;xp), (()p(x,x)), etc. , if lx( —xpl »(a'l. Since u
vanishes in (26), one expects that there will be very little
preference between distinct solutions. A recent numerical
study of the one-dimensional equation shows metastable
states with rapid transitions from one state into another. "

We consider now the question of linear stability of a
planar interface and make a preliminary comparison of
the conserved [(6) and (7)] and nonconserved [(1) and
(2)] systems. This comparison is based on proximity to
the modified Stefan limit (with kinetic undercooling) and
a recent analysis'2 of the stability of a moving planar
front. It was observed that the kinetic undercooling term
has a stabilizing eff'ect in that a wave mode which is un-
stable will grow with a smaller exponent. Since both Eqs.
(1) and (2) and Eqs. (6) and (7) are close to this model
within the appropriate scaling regime, a comparison of the
coefficients of the velocity term leads to the expectation
that Eqs. (6) and (7) are less stable than Eqs. (1) and (2)
in terms of the growth rate.
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