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Structural stability of rhenium as a function of lattice compression: Theory
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Total-energy, linearized augmented Slater-type orbital calculations have been done for rhenium
as a function of lattice volume in response to recent experiments addressing the issue of whether the
hcp phase of Re becomes unstable, with respect to the bcc phase, at high pressures. The calcula-
tions indicate that the hcp, in fact, becomes more stable, relative to the bce, under compression.

Rhenium is a transition element sitting just to the right
of tungsten in the 5d row. Having roughly half-filled d
bands, it has a high cohesive energy and melting tempera-
ture, is of high density, and is one of the least compressi-
ble of all metals. Re crystallizes in the hcp structure and
retains this structure up to its melting temperature. Nev-
ertheless there are questions, as with transition metals in
general, as to the competition of the other close-packed
phases, the bcc and fcc at high temperatures and/or at
high pressures. Recently, Vohra, Duclos, and Ruoff stud-
ied! Re at pressures up to 2.16 Mbar, yielding a volume
fraction V/V, of 0.734. They detected no change in
structure and observed that the hcp ¢ /a ratio stayed con-
stant within experimental error. From their observa-
tions, they concluded that Re would be a suitable gasket
material for ultrahigh-pressure experiments. From some
suggestions in the literature, they had been concerned
with whether Re would tend to the bcc structure under
compression and they voiced regret that no first-
principles calculations had been carried out concerning
the crystal-phase stability of Re under pressure. This
Brief Report endeavors to fill that void.

There are some hints in the literature about the com-
petition between the bcc and the other close-packed
phases for a metal such as Re. Of particular concern to
Vohra et al., was the work?? of Kaufman and Bernstein
who, considering the phase diagrams of Re alloyed with
elements such as Nb and Ta, concluded that the bcc form
of Re, though unstable, would be denser than the hcp.
This suggests the possibility that the bcc phase becomes
more competitive when Re is compressed. There are oth-
er, less relevant matters raised in the literature. For ex-
ample, Alexander and McTague applied* Landau theory
to the problem of what possible ordered structures a
liquid might condense into at temperatures below the
melting point and concluded that the bcc would be
favored over the other close-packed phases. (More re-
cently, applying a more general parametrization of the
theory, Bak obtained’ that icosahedral “quasicrystalline”
ordering would be even more stable.) There is, of course,
also the question of what happens at elevated tempera-
tures where a number of elemental metals transform from
fcc or hep to bee. This has traditionally been associat-
ed®” with phonon contributions to the crystal entropy (it
has been also noted® that electron-excitation contribu-
tions to the entropy are also of experimental significance).
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Even if Vohra et al. failed to observe the bcc phase for
Re under pressure, it is still of interest as to whether the
bee structure becomes less unstable upon compression.
The calculations of the present paper indicate the reverse.

The self-consistent, scalar relativistic, linearized aug-
mented Slater-type orbital (LASTO) method® has been
applied to obtain total energies for bcc and hcp Re at
varying volumes with a fixed c /a ratio (equal to the ob-
served value of 1.6145) for the hcp lattice. Local density
muffin-tin potentials were used. A set of 64 special k
points in the hcp Brillouin zone (and 70 in the bcc) was
employed and this more than suffices for the relative ac-
curacy needed in the total crystal energy obtained at
some lattice volume and structure as compared to that at
another. The LASTO computational method has been
described elsewhere’~!? and will not be repeated here,
but there are some features of such calculations that are
important to the case at hand. These are associated with
the crystal potential and with the atomic core when mak-
ing as much as aa 30% change in the lattice volume.
Like other augmented basis set methods, nonoverlapping
atomic spheres of radius 7, are employed, inside of which
Schrodinger’s equation or its relativistic counterpart is
integrated to obtain wave functions that are then
matched to an analytic basis set in the interstitial region.
This basis set may be plane waves, Gaussians, or, as is the
case at hand, Slater-type orbitals. One problem with
such a scheme is that of the core electrons, which in the
present calculations are dealt with self-consistently (and
fully relativistically). The treatment of how the core-
electron tails extend outside of an atomic sphere is some-
what arbitrary. The best and correct treatment would be
to take those ‘“‘semicore” electrons, having significant
tailing, and treat them as band states in a full band-
structure calculation. This involves a significant increase
in computational effort and has not been done here. For
the closed-packed structures considered here, 1-3 % of
the semicore 5p density lies outside the spheres (depend-
ing on the r; used) and the resulting wave-function tails
are adequately treated using an atomiclike approximation
in which the potential outside the spheres is set equal to
the muffin-tin potential. So as to minimize any variation
in the core-electron contributions to the errors in the to-
tal energies, results will be reported for calculations with
a fixed sphere radius 7, at varying volume and structure.
This, of course, implies that a varying fraction of the
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crystal volume is in the interstitial region. For such a
case it would be better to employ full rather than muffin-
tin potentials (with their constant potential in the intersti-
tial region). Use of the latter is not expected to qualita-
tively affect the energy differences to be reported here, al-
though the actual numbers would differ between the two
treatments.

Like most augmented basis set band calculations, the
present calculations are also linearized, that is the sphere
integrations are done at some specific orbital energy pa-
rameter £, (which may be different for differing orbital
angular momentum /). Mattheiss and Hamann have very
nicely shown, in their investigation13 of Cr, Mo, and W,
that an incorrect choice of the energy parameter can lead
to collapse of the valence states into the core thereby
causing a spuriously large binding value for the calculat-
ed crystal energy. This collapse is the result of not main-
taining the orthogonality between the semicore and
valence states. (For core states completely contained
within the spheres, the orthogonality is guaranteed.) The
5p levels of 5d transition metals, such as Re, are the trou-
blesome cores even if they lie some 30 eV below the con-
duction bands and as Mattheiss and Hamann have shown
for W, the calculated total crystal energy has a plateau as
a function of €, and one must assure oneself the €, is
chosen so as to lie in the top of the plateau. We have ob-
served that this choice depends on the atomic sphere ra-
dius r, and depends slightly, if at all, on lattice volume.
Calculations will be reported here for two widely different
sphere sizes with the higher-lying €, required for the
smaller sphere.

Total energies are plotted as a function of V' /¥, where
V, is the observed Re crystal volume, in the top panel of
Fig. 1. The zeros of the plot are taken to be the total en-
ergies (at the two different sphere radii) of hcp Re with
V/Vy=1. If plotted on some absolute energy scale, the
total energies for both bcc and hep Re at V/V=1 as ob-
tained with the larger sphere radius would lie below those
for the smaller radius. Those with the larger radius have
a smaller fraction of the crystal in the poorly described
muffin-tin region and, in the process of providing a better
description of the crystal potential, the calculations with
the larger r; happen to also provide the better total ener-
gies. The arrow indicates the volume to which Vohra
et al. compressed Re. The two sphere radii were chosen
so that there were touching spheres in the bcc structure
for V/V, of 1.0 and of 0.712, respectively. Calculations
employing the larger sphere could not be taken to smaller
volumes than those plotted without having the spheres
overlap.'* (Calculations were done at intermediate values
of the radii yielding results consistent with what is shown
here.)

The result of most immediate concern, in light of the
recent experiments, is summarized in the bottom panel of
the figure where the difference between the hcp and bec
total energies is plotted. There is a clear indication that
the hcp phase becomes increasingly stable, relative to the
bcc, as the lattice is compressed. If one employs the larg-
est possible spheres (i.e., the x point for V/¥V;=1) in the
calculations, the energy separation has increased by a fac-
tor of 2 over the range of volume compression shown
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here while the predictions employing a common r, indi-
cate an increase which is somewhat less.

Perhaps the most striking feature of the upper panel is
the fact that the calculated minima in the total energies
do not occur at the observed lattice volume ¥V, but in-
stead at somewhat smaller volumes. This is a charac-
teristic of band-theory predictions employing muffin-tin
potentials. The r,=2.256 a.u. calculations have the ener-
gy minimum at V/¥V;~0.93 while those for r,=2.526
a.u. have it at ~0.96. The latter calculations, with a
larger fraction of the crystal volume in the atomic
spheres, have a better representation of the crystal poten-
tial and, as a result, do a markedly better job in predict-
ing the lattice volume.

Bulk moduli have also been calculated and, again, the
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FIG. 1. Total energies calculated for bcc and hcp Re as a
function of reduced volume V /¥, (where V), is the experimen-
tally observed lattice volume) as calculated for two fixed atomic
sphere radii, r,=2.256 and 2.526 a.u. The zeros of the top
panel are the energies for hcp Re (for the two sphere radii) as
calculated for V/Vy=1. The bottom panel shows the calculat-
ed energy differences between the bcc and hep phases at com-
mon V/V,. The vertical arrows show the volumes to which
Vohra et al. (Ref. 1) experimentally compressed Re.
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calculations employing the more nearly volume-filling
spheres do better. A value of 5.3+0.1 Mbar is obtained
employing the total energies associated with the smaller
r, while a value of 3.91£0.2 Mbar is obtained with
r,=2.526 a.u. The larger spread in the latter value is as-
sociated with the fact that much smaller energy
differences were involved in the estimate. These comput-
ed quantities are to be compared with quoted experimen-
tal values which range between 3.72 and 3.79 Mbar. The
large-sphere result of 3.9 Mbar is in reasonable accord
with this and is closer to experiment than the result'> of
Andersen et al. which is 4.4 Mbar. Their calculations in-
volve the atomic-sphere approximation (ASA) where the
interstitial region is done away with by taking overlap-
ping atomic spheres whose volumes equal the crystal
lattice’s atomic volume (hence some of the crystal is dealt
with twice, where spheres overlap, and some of it not at
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all, where there are no spheres). The ASA predictions
may be inferior but tremendous computational economies
attend the implementation of the method.

The main point of the present communication is com-
parison with the recent experiments and here theory is in
accord with experiment: the bcc phase is not expected to
prevail over the hcp. If some phase transition does occur
upon still further compression, the calculations indicate
that it will not be to the bcc phase. Re is a strongly
bonded transition metal with close to half-filled d bands
and it would appear that any ideas concerning a bcc
compressed state for such a metal simply do not apply.
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