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The theory of the transverse magnetophonon effect in Al„Ga& „As/GaAs single heterostructures

is developed by using the Kubo formula and Fang-Howard trial function. The oscillatory magneto-

conductivity is evaluated by harmonic analysis including Landau-level broadening. The general os-

cillatory structure of the magnetoresistivity is shown to depend on co, and coo, the cyclotron and

optical-phonon frequencies, as Ip- g+", exp( 2n—ry )cos(2m rcoo/e, ) for the case of a Lorentzian-

type density of states, where the damping parameter y is determined by the Landau-level broaden-

ing and given by y =2I /fico, with the Landau-level broadening I . The Landau-level broadening is

evaluated for the electron scattering by optical-phonon, acoustic-phonon, remote-impurity,

background-impurity, and interface-roughness scatterings. It is shown that the dominant contribu-
tion to the broadening arises from the remote-impurity scattering which results in 2m' proportional
to mo/co, and of the order of unity. With use of the expressions of the Landau-level broadening, the
magnetophonon resonance amplitude is calculated as a function of the sheet electron density in

Al„Ga& „As/GaAs heterostructures, which shows a good agreement with the experimental obser-

vations by Brummell et al. , indicating that the damping of the magnetophonon resonance in this

system is dominated by the remote-impurity scattering.

I. INTRODUCTION

In recent years electrical and optical properties of the
two-dimensional electron gas (2D EG} in heterostruc-
tures and metal-oxide-semiconductor (MOS) inversion
layers have received great attention. ' Extremely high
electron mobility has been achieved in modulation-doped
heterostructures and attracted applications of the het-
erostructures to high speed electron devices. Transport
properties at both low and high electric fields have been
studied from experimental and theoretical points of
views. It is evident that the electron transport in hetero-
structures is governed by electron-phonon interaction
and impurity scattering. Various kinds of measurements
including Hall effect and calculations such as Monte Car-
lo simulation have been performed to clarify the trans-
port properties, but still unresolved properties exist.

The magnetophonon resonance (MPR) effect is known
to provide detailed information of electron-phonon in-
teractions in semiconductors. The MPR is caused by
resonant scattering of electrons between Landau levels by
absorbing or emitting longitudinal optical (LO) phonons
and therefore magnetoresistance exhibits periodic oscilla-
tions in reciprocal magnetic fields. From the analysis of
oscillatory magnetoresistance due to MPR we obtain
effective mass or phonon energy. Earlier work of the
MPR in 2D EG systems is reviewed by Nicholas et al. '

and thus we mention only the investigations about
Al„Ga, As/GaAs single heterostructures reported up
to now, because we are concerned with magnetophonon
effects in Al„Ga, „As/GaAs single heterojunctions in
this paper. Measurements of MPR have been performed

first by Tsui et al. ' in heterostructures of
Al„Ga, „As/GaAs, where they obtained magnetopho-
non mass of (0.077%0.004)mo. Engler et al. "carried out
MPR measurements in a modulation-doped single hetero-
structure of Al„Ga, „As/GaAs and obtained magneto-
phonon mass of (0.071+0.0015}mo, which is heavier than
the bulk effective mass of 0.067mo and explained in terms
of the conduction-band nonparabolicity. Such a heavy
magnetophonon mass was also observed by Kido et al. '

who obtained the mass of 0 0745mo E.nglert et. al. have
also reported the temperature dependence of the oscilla-
tion amplitude of MPR which exhibits maximum at 210
K. Brummell et al. ,

' combining cyclotron and MPR
experiments on Al„Ga, „As/GaAs heterojunctions,
found that the magnetophonon resonance results yield
phonon frequencies significantly below the bulk GaAs
LO phonon values, suggesting interaction of the electrons
with phonons associated with the interface. Brummell
et al. have studied MPR in Al„Ga, „As/GaAs hetero-
junctions as a function of temperature, electron concen-
tration, and magnetic field orientation. One of the most
interesting features is that the amplitude decreases rapid-
ly with increasing carrier concentration. They explained
this feature in terms of screening effect, where the screen-
ing reduces the strength of the electron-optic phonon
coupling and the relative importance of transition occur-
ring between higher Landau levels will increase.
Gregoris et al. ' have made measurements of MPR un-
der hydrostatic pressure and found that the magnetopho-
non effective mass and oscillation amplitude increases
with increasing the pressure. Leadley et al. ' observed
hot-electron MPR in Al„Ga, „As/GaAs heterojunc-
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tions between 30 and 100 K, and discussed their tempera-
ture and electric field dependence.

Theoretical studies of the MPR effect in single hetero-
structures have also been made by several authors.
Lassnig and Zawadzki' reported numerical calculations
of MPR conductivity in Al„Ga, „As/GaAs single het-
erostructures, where they used the trial function of Fang-
Howard' and gave magnetoconductivity in integral
form. The present authors' have carried out a similar
analysis by using the wave functions obtained by solving
Schrodinger and Poisson equations self-consistently.
These two studies are based on incorrect assumption of
the density of states, resulting in Landau-level broadening
twice of the correct value. Warmenbol et al. investi-
gated hot-electron MPR in Al„Ga, „As/GaAs hetero-
structures using the momentum balance equation ap-
proach and found that the MPR maxima convert into
minima at high electric fields.

It is well known that the formula derived by Barker '

explains the oscillatory structures of the MPR in bulk
semiconductors. Analysis of the MPR effect using this
formula provided important information of the
electron-LO-phonon interaction and Landau-level
broadening. Recently Barker's treatment was extended
to the case of MPR in crossed high electric and high
magnetic fields by the present authors, and the sign re-
versal of the MPR extrema at high electric fields was ex-
plained quantitatively. After Barker's formula came out,
quantitative analyses became possible and a great pro-
gress in the MPR effects resulted. It is, therefore, desired
to derive an expression of magnetoconductivity valid for
2D EG in single heterostructures. When we get such an
expression, we can deal with MPR effects in the same
way as in bulk (three-dimensional) semiconductors.

The purpose of this paper is to derive oscillatory mag-
netoconductivity of 2D EG in single heterostructures

theoretically and to discuss Landau-level broadening. In
Sec. II we present the derivation of an analytical expres-
sion of the magnetoconductivity, where we use Fang-
Howard trial function for the wave function of 2D EG
confined in the Al„Ga, „As/GaAs interface and assume
that the electron —LO-phonon interaction is governed by
Frohlich Hamiltonian. We find that the obtained expres-
sion shows a good agreement with the experimental re-
sults of MPR in single heterostructures. In Sec. III we
calculate Landau-level broadening due to LO phonon,
acoustic deformation, remote-impurity, background-
impurity, and interface-roughness scatterings. We show
that the remote-impurity scattering dominates the
broadening effect in the structures we are interested in.
In Sec. IV we calculate the Landau-level broadening as a
function of carrier concentration and explain the concen-
tration dependence of the MPR oscillation amplitude re-
ported by Brummell et al. '

II. MAGNETOPHONON CONDUCTIVITY OF 2D EG
IN SINGLE HETERO JUNCTIONS

A. Analytical expression
of the transverse magnetoconductivity

In this section, an analytical expression of the trans-
verse magnetophonon conductivity of 2D EG in single
heterojunctions is developed by solving the Kubo formu-
la to include Landau-level broadening. We calculate
the magnetoconductivity for three different types of the
density of states of each Landau level, Lorentzian, Gauss-
ian, and elliptic types of the density of states.

The transverse magnetoconductivity o„ is given by
the Kubo formula

cr„„=ezPf dEQ (I q ) No(1+No)[f(E) f(E+Aruo)]-
q

X g 5(E+Acoo E„)5(E—E„.—) (
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where m' is the effective mass of an electron and KpE'p

and K„ep are the static and high-frequency dielectric con-
stant, respectively. When the electric quantization
(confinement of the electrons) is taken in the z direction
and the Landau magnetic quantization in the (x,y) plane,
the eigenfunctions of an electron

~

v) and the eigenvalues
E„are given by
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and

where @=1/k~ T, ke is Boltzmann constant, T is the lat-
tice temperature, No is the Bose-Einstein distribution
function of LO phonons with energy Scop and wave vector
q, f(E) is the Fermi-Dirac distribution function of elec-
trons, e is the magnitude of electronic charge, A is Planck
constant divided by 2n, and I = (A/e8 )'~ is the cyclotron
radius. The interaction potential

~
C(q)

~

is given by the
Frohlich interaction potential

(2.3)

and a is the dimensionless coupling constant given by
1 /2

e m* 1 1a=
47TE'pal 2fKOp K~ Kp

E„=EN (N +—,
' )fuu, +E——o, (2.5)

where Pz(x) are simple harmonic-oscillatorlike solutions
(N=0, 1,2, . . .), X = —I k» are the center coordinates of
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cyclotron motion, and Ep is the lowest subband energy of
2D EG. The wave function of the z direction is taken to
be the Fang-Howard variational form'

' 1/2

g (z)= ze
b

2
(2.6}
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and Nd, 1 and N, are the depletion charge density and the
sheet electron density, respectively.

In the case of the two-dimensional system, magneto-
phonon conductivity given by Eq. (2.1) diverges under
resonance condition through the delta function which
reflects the singularities of the density of the states. ' In
real systems, however, the singularities of the density of
states are damped due to electron scattering, inhomo-
geneities of the system, etc. and the broadening of the
electronic states removes the divergence of the magneto-
conductivity. Barker ' introduced the Lorentzian type of
broadening to remove the divergence. In this paper we
take into account three different types of broadening, re-
placing the delta functions 5(E}in Eq. (2.1) with the suit-
able damped representations 5r(E) characterized by the
Landau-level broadening width I . They are Lorentzian,
Gaussian, and elliptic.

At higher temperatures such as k&T &&I, the Fermi
distributions vary only slowly as a function of the energy
relative to the spectral functions of the Landau levels. In
that case, we obtain

e 2

a„„= oo g [f(EN ) f(EN'+ficoo—))
N, N'

x (5r(E +co E))—

Xdq, =b /3

(2.12)

and the average of squared momentum transfer in (x,y)
plane is given by (Qz) =2m*coo/fi. Using these average
values, we approximate the term g/(g+rl ) appearing in
Eq. (2.8} by (1+X/3) ', where P is (fi b /2m')/(ficoo).
Performing the integrations with respect to g and rl in
Eq. (2.8), we obtain

e
&xx = ~0 1+ 3 n.b g [f—(E& ) f(Ez.+ficoo—)l

X (5 (E +co -E)), —

(2.13)

where b is dimensionless variational parameter defined as
lb /W2.

Since we introduced broadening in the delta function,
the divergence at the resonance condition is removed,
and instead the right-hand side of Eq. (2.13) exhibits max-
ima at the resonance conditions P =N' —N and 5 ~0, or
P=N' N —1 and—5 ~1, where we defined P as the
maxiinum integer contained in coo and 5 as the departure
from resonance, that is 5 =coo P. Retaining —these
terms alone and carrying out harmonic analysis, we ob-
tain the oscillatory term of transverse magnetoresistivity
hp

Ap
=~pposc ~

pp
(2.14)

3hp= 1+—x
3

N, ( 1+N, )

2
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In the case of bulk materials and at extremely strong
magnetic fields, the electronic wave functions have small
absolute values of momentum components parallel to the
applied magnetic field and the major contribution to the
transverse magnetoconductivity comes from processes in-
volving small momentum transfer along the magnetic
field. Therefore we can neglect the q, dependence in the
interaction potential given by Eq. (2.2), and the term
g/(/+i' ) is approximated by unity as done by Barker. '

However, in the case of single heterojunctions, electrons
are confined in the region of the order 1/b [b is the varia-
tional parameter given by Eq. (2.7)] and "the inomentum
transfer along the magnetic field (z direction)" is not al-

ways small. The average of squared momentum transfer
along the z direction is estimated as

&q,')= fq,'1&4oIe *
Iko) I'dq, f 1&@Ie'* 4o) I'

(2.11}

N„=minIN, N'I, N =maxIN, N'I, Lg(g) are the associ-
ated Laguerre polynomials and

(5r(E) ) =f 5r(E' E)5r(E')dE'—
X Pe b

&0

1——e,
Kp

(2.15)

is the effective spectral density function. In Eq. (2.8) we
have used dimensionless quantities defined as g=l (q„
+q )/2=1 Q /2, i)=/q, v'2, E„=E„/fico„ I =I /fico„
and Qp ——cop/co„where Ace, =keB/m* is the cyclotron
energy of an electron.

where

+ oo
1

p „=2g cos(2nrcoo) f (5r(x))cos(2irrx)dx
r=l —1

and

(2.16)
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e=a o
' g [f(E„) f—(E„+R~o)) .

N

(2.17) 0.3

The term e is almost independent of the magnetic field
and remains in the range between 0 and 1. In these equa-
tions, po ——m'/N, e ro and ro are the transverse magne-
toresistivity and the relaxation time at vanishing magnet-
ic field, respectively, and x =E/irtcoo. In deriving magne-
toresistivity from magnetoconductivity we used the fol-
lowing relation, which is valid in the strong quantized re-
gime:

0.2

0.1

Pxx = 0xx (2.18)

0.0
Next we calculate the magnetophonon resistivity from

Eq. (2.14) using three types of the density of states,
Lorentzian, Gaussian, and elliptic types.

1. Lorentzian density ofstates

When we assume the damped function 5r(E) to be
Lorentzian

FIG. 1. The effective spectral density function of the elliptic
form (solid curve) is compared with the function of Gaussian
form (dash-dotted line). The width of the elliptic function is

unity, and the width of the Gaussian function is
8=2' 3m /2

5r(E) =5r(E)= (2.19)=~ E'+r' '

the effective spectral density function & 5r(E) & is reduced
to Lorentzian form with the broadening width of 2I, and
given by

+ 00

=2 hp g exp[ (irry) tc—os(2nroio),
PO r=1

(2.24)

where we extended the limits of integration in Eq. (2.16)
to infinity.

&5',(E) &
=—

it E +(2I )
(2.20) 3. Elliptic density ofstates

Po
=2 bp g exp( 2 ryder)cos(—2 r pro)co, (2.21)

where y=2rlfico, is the damping parameter. We have
to note here that the damping parameter is twice of that
defined by Barker. ' The difference of factor 2 arises
from different approximation of the spectral density.

2. Gaussian density of states

When the damped function 5r(E) is given by Gaussian
form

Using these relations and extending the upper and lower
limits of integration in Eq. (2.16) to infinity, ' we get the
oscillatory part of the transverse resistivity as

When we assume the damped function 5„(E) to be el-

liptic

5r(E) =5)(E):— 1—1

=~r
'2 ' 1/2

E
2r (2.25)

the effective spectral density function is expressed by the
following formula:

&5',(E)&=r-'&5', (x)& (x=E/r) . (2.26)

The function &5i(x)& is approximately reduced to
Gaussian form with the broadening width
8=2'~ 3' ~ /2 (see Fig. 1), which is given by

& 5i (x) & =5e(x) =5~~2(x) . (2.27}

Therefore we get the oscillatory part of the transverse
magnetoresistivity as

5r«) =5r(E) —= , „,exp-= (2~r')'" 2r' (2.22)
+ oo

=2 ' g exp[ (irry) ]cos(2irrco—o} .
r=1

(2.28}

& 5r(E) & = — expv'~2r
—=5~2r(E), (2.23)

and the oscillatory part of the transverse magnetoresis-
tivity as

we get the effective spectral density function as Gaussian
form with the broadening width i/2I B. Comparison of the analytical expressions

with the numerical calculations

Numerical calculations of magnetoresistance using the
Kubo formula have been carried out by Lassnig and
Zawadzki' and Mori and Hamaguchi. ' Lassnig and
Zawadzki evaluated magnetoresistance by using Fang-
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Howard trial function, where the evaluation of the Kubo
formula is di8'erent from the present treatment men-
tioned above. Mori and Hamaguchi evaluated magne-
toresistance by using eigen functions and eigen values
which were obtained by solving Schrodinger and Poisson
equations self-consistently. If the damping parameter is
properly taken into account, the latter treatment is more
accurate. It is very interesting to compare the analytical
expressions obtained above with the numerical calcula-
tions. %'e show that the present expressions are in
reasonable agreement with the numerical calculations.

First we compare the wave function obtained by the
self-consistent calculation (solid curve) with the Fang-
Howard trial function (dash-dotted curve) in Fig. 2(a) for
N, = IX10" cm and in Fig. 3(a) for N, =5)&1 0"

5
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FIG. 2. (a) Comparison of the squared Fang-Howard trial
function (dash-dotted curve) with the squared wave function of
the lowest subband calculated by self-consistent method (solid
curve), for N, =1X10" cm ', T=220 K, and NA ——1X10'
cm which gives Nd, »

——4.5X 10' crn . The wave function
calculated by the self-consistent method is shown along with the
potential (conduction-band edge). (b) Plot of the oscillatory
part of the transverse magnetophonon resisitivity normalized by
the resistivity at vanishing magnetic field hp/po calculated by
Eq. (2.21} for N, = 1 X 10" cm ', T=220 K, and

p1 4.5 X 10' crn . The Landau-level width I is assumed
to be 5 meV and independent of the magnetic field and the re-
laxation time at vanishing magnetic field is assumed to be given

by A/~0 ——1.87 meV. (c) Plot of the transverse magnetophonon
resistivity normalized by the resistivity at vanishing magnetic
field p!po, which is numerically calculated using the results of
self-consistent calculation and the method reported in Ref. 19,
for N, = 1 X 10" cm, T=220 K, N A

——1 X 10' crn, I =5
meV, and A/v. o ——1.87 meV.
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FIG. 3. Same as Fig. 2, but for N, =5X10" crn and

Nd, pl
——4.6X 1010 cm-2 (NA ——1X 1014 cm-3).
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cm, where the wave functions of the lowest subband
are shown and the lattice temperature T is 220 K. We
find in Fig. 2(a) and Fig. 3(a) that both wave functions,
self-consistent solutions, and Fang-Howard functions, are
in good agreement with each other. Oscillatory parts of
transverse magnetoresistivities calculated from Eq. (2.21)
(for Lorentzian form) are shown as a function of magnet-
ic field in Fig. 2(b) for N, = 1)&10"cm and in Fig. 3(b)
for N, =5X10" cm at T=220 K. We assume in Fig.
2(b) and Fig. 3(b) that the Landau level is Lorentzian
form with broadening 5 meU which is independent of
magnetic field. Numerical calculations of the magne-
toresistivity using the self-consistent wave functions were
carried out in the same manner reported elsewhere, '

where the density of states is assumed to be of Lorentzian
form with constant broadening (5 meV) and only the
wave functions of the lowest subband shown in Fig. 2(a)
and Fig. 3(a) are used. The obtained results are shown in
Fig. 2(c) for N, =IX10" cm 2 and in Fig. 3(c} for

N, =5 X 10" cm at T=220 K. We find in these figures
that the oscillatory structures of the magnetoresistance
are in good agreement. It should be noted here that the
numerical curves contain nonoscillatory background
component of the magnetoresistivity.

III. LANDAU-LEVEL BROADENING

In this section we examine the Landau-level broaden-
ing due to remote-impurity, background-impurity, LO
phonon, acoustic deformation, and interface-roughness
scatterings. The presence of two or more scattering pro-
cesses of similar strength considerably complicates the
evaluation of the irreducible self-energy and is not con-
sidered here. We consider screening effect only for the
remote-impurity, background-impurity, and interface-
roughness scat terings.

&(Q)= 1+F(Q) (3.5)

and

2

Q, = fD(E) — dE,
2KpEp BE

(3.6)

F(Q)= f f i(0(z&) I I ko(z2}l e ' ' dzidz2

(3.7)

where D (E) is the density of states given by

D(E)= ——
2 QImGN(E+i0) .

1 1

n.1
(3.8)

e m F
(3.9}

At lower temperatures such as k&T &&I, the Fermi dis-
tributions vary rapidly as a function of the energy relative
to the spectral functions of the Landau levels. Therefore
the dielectric response of 2D EG under a strong magnetic
field must be obtained within a self-consistent procedure
in which the Landau-level broadening due to collisional
damping from the impurities both determines and is
determined by the static dielectric function of the sys-
tem. 2s 2s However, at higher temperatures (ksT ~~I )

which is the range of interest for the MPR effect, the
screening parameter is determined by the thermal energy
k~T and is not affected by the minute structure of the
density of states, therefore we can evaluate the Landau-
level broadening due to impurity scattering and the static
dielectric function, independently. In that case, under
magnetic field, the screening parameter of the Thomas-
Fermi model is also given by the zero magnetic form,
which is written as

A. Evaluation of the Landau level broadening

1. Remote-impurity scattering

When the spatial distribution of impurities are given by
N;(z; ), where N; (z; ) is the concentration of ionized im-

purities per unit volume, the self-energy of the Green's
function GN(E}=[E EN —XN(E)] '—is given by

d2
&N(E)=g f 2N;(Q) lU«) l'

l JNN(&) l'GN(E»
(2n )

(3.1)

where

where TF (M Im "ks )——N, is the Fermi temperature.
Neglecting the self-energy shift, we obtain the

Landau-level broadening I N+p(EN+f2o20} which deter-
mines the magnetophonon amplitudes '

~N+P( N+~~0) g N+PN'~anil'N(EN+~~0 EN'}
N'

(3.10)

and

SNM 2' v JNM 3 11
(2n. )

N;(Q)= f dz, N, (z; )
l Fg(z; )

l

l
F(2(z;)

l

=f l
g'0(z)

l

e ' dz,

(3.2)

(3.3)

Retaining the dominant term of Eq. (3.10) which involves
N'=N+P and considering the magnetophonon reso-
nance condition (5 ~0), we get the Landau-level
broadening due to the impurity scattering and the density
of states of Lorentzian form as

lv(Q)l =
2~0eoe( Q) Q

' (3.4)

and e(Q) is the static dielectric function which is assumed
to be given by Thomas-Fermi model, ' that is and

d2
I = N; v J

(2m)
(3.12)
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1 1D(E)=
(E E—N )'+ I'

N

(3.13)

Here we calculate the Landau-level broadening due to
the remote-impurity scattering using Eq. (3.12), and in
the next subsection we calculate the Landau-level
broadening due to the background-impurity scattering
using Eq. (3.12).

The spatial distribution N, (z, ) of the ionized remote
impurity is assumed to be given by

N, (z, )= . N;, (L;+—L, ) &z; & L, —
0 otherwise,

(3.14)

where L, is the spacer layer thickness, L; is the ionized
layer thickness, and we define that the heterointerface is
located at z =0; the GaAs layer is the positive region of z
axis (z & 0) and the Al„Ga, ,As layer is the negative re-
gion of z axis (z &0). We obtain the Nth-Landau-level
broadening due to remote-impurity scattering I R&s N as

N„(z„)= . 0&z
0 otherwise, (3.16)

and we define N„(Q) as

fN. ("} IFg(z. } I'dz.
A A

L

f dza
I F&(z

LA 0
(3.17)

In general, the Landau-level broadening width due to
background-impurity scattering is smaller by an order of
magnitude than the Landau-level broadening width due
to remote-impurity scattering. Therefore we may evalu-
ate N„(Q) by interpolating between small Q and large Q
limits, and we get the relation

2. Background-impurity scattering

The spatial distribution of the ionized background-
impurity is assumed to be

2
—2L, +g

477 2Koeo 0 e' (Q) (1+v g/b )6

1/2
x

I JN iv(g) I

'

and

N (Q)=[1+PI (I„)+P I„'(X„)]

L& dzA +
Io(&g }=2f b f I

go(z) I

' I.—.„ I
dz

0 LA . 0

(3.18)

(3.19)

(3.15)

where N;, =N, L; and L, =v'2L, /l. In Eq. (3.15) we use
the fact that the major contribution to the Landau-level
broadening comes from small momentum transfer in the
(x,y ) plane, small Q value, and that the term
1 —exp( —2L;Q ) is approximated by 2L;Q.

1„(X„)=,f " '"
I
g(z) I',

b2 0 L„ (3.20)

where P=Q/b and X„=bL„.
From Eq. (3.12) and Eq. (3.18) we obtain the Nth

Landau-level broadening due to background-impurity
scattering rays N as

1 e
4m 2~0@0 e'(Q) 1+pro(X~ )+p I„'(Xg )

(3.21)

3. LO phonon scattering X I J~M(&)
I

'
1(Co I

e"'I Co) I

'
I
C(q)

We consider a damping mechanism of the electron-
LO-phonon interaction itself. A full treatment of LO
phonon scattering must include the polaron mass shift,
but for our purpose it suffices to absorb this correction
into the cyclotron frequency and consider only the pola-
ron decay rate.

In the case of single heterojunction, the self-energy of
Gz(E) is given by

XN(E) =g C~ ~ [NoG~ (E+ficoo)

(3.23}

where we assumed that the electron —LO-phonon interac-
tion is not altered by the interface. Neglecting the self-
energy shift, and calculating imaginary part of the self-
energy, we obtain the expression of the I ~+P(EN+irioio)
as

I ~+i (E~+&~o)=&Cx+p, w
N'

X [Noiror (Elv +2ftoio —EN )

and

+(1+No)G~(E %ohio)], (3.22)— +(1+No)ir8r„(E+ —Ex )] .

(3.24}
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The terms responsible in Eq. (3.24) involve the LO pho-
non emission part and the absorption part. Retaining
these terms alone and setting (g+ r( )

' equal to
( I+7/3) '/g, using the argument of Sec. II, we evaluate
I N+P(EN+fico()} as

+P CN+, N PNo~N+ +CN+ P, N( 1+No )~N2 —1 2 —1

(3.25)

The term CN I in Eq. (3.25) depends only on the
difference between N and M, explicitly

5. Interface r-oughness scattering

When we consider the interface-roughness scattering,
the self-energy of GN(E) is given by

XN(E)=g I m N, tt exp( ——,'Q A )
d Q EAe 2 2

(2ir)i 2&pape(Q)

(3.30)

where 6 is the mean-square deviation of the height of the
roughness and A is the lateral spatial decay rate of the
roughness. Using the argument of Sec. III A 1, we ob-
tain the ¹h-Landau-level broadening due to interface-
roughness scattering I &Rs N with the density of states of
Lorentzian form as

X4naft(flop) ~ (2m') '~ (N~M) . (3.26)

Therefore we get the Landau-level broadening due to LO
phonon scattering I pps with density of states of
Lorentzian form as

2

IRS,N eff 2(t & &(Q)I

—,
' I dg exp

+~ g 1 A

o ei(Q) 2

'2

rOPS
3 X1+—

277r 3

' 1/2

(3.31)

efico,

E'p

1
b(1+2No)

Kp

1/2

(3.27)
B. Temperature, magnetic Seld, and sheet electron

concentration dependence of the Landau-level broadening

From this equation we can see that the level broadening
due to LO phonon scattering is proportional to a'
where a is the dimensionless coupling constant given by
Eq. (2.3).

4. Acoustic-phonon scattering

The self-energy of GN(E) is given by

In this section, we calculate the Landau-level broaden-
ing due to the electron scatterings mentioned above as a
function of the temperature, magnetic field, and sheet
electron concentration. In heterojunctions the electrons
confined in the interface region are supplied from the

4.0

N=0
D2k~ T

~N(E) = gg I JN, N'(0)
I I

& Co I

e' z'
I ko & I

'
2dsI q

X [GN (E i+(is)(+IG (EN—flS(g )],
(3.28)

3.0
O
(D

2.0
N=9

~APS

2 1/2
3 mbD

k~ 2 8 c (3.29}

with the density of states as Lorentzian form.

where D is the deformation potential, SI is the velocity of
sound, and d is the crystal density. In Eq. (3.28} we
have used the approximation Nq + —,

'+
—,
' =kz T/~q

=k((T/f(s(q, where N» is the Bose-Einstein distribution
for acoustic phonons with energy Ace and wave vector q.
Using the elastic scattering approximation, and using the
argument of Sec. III A 1, we get the Landau-level
broadening due to acoustic-phonon scattering I Aps as

1.0

0.0
50 100 150 200

TEMPERATURE (K)
FIG. 4. Temperature dependence of the Nth-Landau-level

broadening due to remote-impurity scattering I «s N, with the
Landau quantum number N =0-9 as a parameter for

N, = 3 &(10" cm, N4 p~
—5 &( ].0' cm, L, = 100 A, and

8=7.38 T (corresponds to the MPR peak for P=3). The
broadening I «s N is larger for larger values of N and the tern-

perature dependence of I «s ~ is almost independent of N.
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TABLE I. The parameters used for the calculations.

Effective mass
for self-consistent calculation
for cyclotron energy

0.067
0.07

36.6 meV
12.9
10.9

LO phonon energy
Static dielectric constant
High-frequency dielectric constant

5.37 g/cm'
5.24X 105 cm/s
7 eV

d
$(
D

Density of GaAs
Speed of sound
Deformation potential

The mean-square deviation of the height
of the roughness

The lateral spatial decay rate of the
roughness 15 A

donors in the A1& Ga, As layer. Taking into account
the background impurities in GaAs (assumed to be accep-
tors) the impurity densities are determined by the charge
neutrality condition, which is given by

4.0
(a)

IS

3.0
C3

2.0
C)

CQ

LLJ
1.0—

N;, =N„Lq+N,

=NdepI+Ns ~

PS

(3.32)

where N„N, I.;, X; is=the impurity (donor) density in-

tentionally doped in Al„Ga, „As layer, L; is the thick-
ness of the ionized layer, N„ is the background impurity
(acceptor) density, I.„ is the depletion length in GaAs,
and N, is the sheet electron density at the interface.

First, we consider the Landau quantum number N
dependence of the Landau-level broadening due to the
remote-impurity scattering, I R,s N. In Fig. 4 we show
the temperature dependence of I z» z as the parameter
of the Landau quantum number N =0-9 for depletion
charge density Nd, I

——5)&10' cm, sheet electron den-
sity N, =3&(10" cm, spacer layer thickness L, =100
A, and magnetic field 8=7.38 T (which corresponds to
the third resonance condition, that is P=3), other param-
eters used in the calculation is summarized in Table I.
We find in Fig. 4 that I R» z decrease monotonously with
increasing N, and that the temperature dependence of
I R,s ~ is almost independent of N. We may show that
the magnetic field and sheet electron density dependence
of I R» z are almost independent of X. Therefore we
define I z» as given by I R»p and in the following we
consider only I ~». From the same argument, we define
I B» and I &Rs as given by I g» p and I gRs p respectively.

Secondly, we calculate the temperature dependence of
the level broadening I „,s, I a,s, I ops, I Aps, and I &Rs.
We show the temperature dependence of I R», I ~ps,
I Aps and I,Rs in Fig. 5(a) and the temperature depen-
dence of I s,s in Fig. 5(b) together with I,as for compar-
ison, for 8=7.38 T, Nd, p&

——5X10' crn, N, =3&10"
cm, and L, = 100 A. In Fig. 5 we can see that I R» and
I ops are larger than I Aps I rRs and I sos Since the
screening effect becomes weak with increasing the tem-

APS
~w w ~ww ~mw ~mmmm w~

RS
50 100 150 200

TEMPERATURE (K)

0.08

0.06
C3

0.04
C)
CL
CD

RS

0,02

IS

0.00
50 100 200

TEMPERATURE (K)

FIG. 5. (a} Temperature dependence of the Landau-level
broadening due to remote-impurity scattering I R&s, optical-
phonon scattering I ops acoustic-phonon scattering I Aps and
interface-roughness scattering I «s, and (b) temperature depen-
dence of the Landau-level broadening due to background-
impurity scattering I 8&s together with I &Rs for comparison, for

0 cm Nd I =5+ 10 cm, I,=100 A and
8=7.38 T (corresponds to the MPR peak for P= 3).
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perature, we find in Fig. 5 that the level broadening due
to impurity scattering and due to interface-roughness
scattering become large with increasing the temperature.
The level broadening due to LO phonon scattering I &ps
depends on the temperature as (1+2No)'~ (No & 1 for
LO phonon energy 36.6 meV and the temperature range
of interest for the MPR effect), and therefore the temper-
ature dePendence of I ops is weaker than that of I R,s.
The level broadening due to acoustic deformation scatter-
ing depends on temperature as T', which reflects the
distribution of acoustic phonon Nq is mach larger than
unity and N are in proportion to the temperature.

Thirdly, we calculate the magnetic field dependence of
the level broadening I Rrs I srs I ops I Aps and I IRs.
We show the magentic field dePendence of I Rgs I ops,
I ~ps and I',Rs in Fig. 6(a) and the magnetic field depen-
dence of I ms together with I &Rs for comparison, for
T 180 K Ndep] 5 )& 10' cm, N, =3 )( 10"cm, and

4.0

6.0

5.0
(a)

L, =100 A. The level broadening I R&s due to the
remote-impurity scattering shows weaker dependence of
the magnetic field than I &ps due to the LO phonon
scattering where the latter is proportional to B '

Finally, we calculate the sheet electron density depen-
dence of the level broadening I „,s, I Ms, I &ps, I Aps, and
I &Rs. The sheet electron density can be changed by
changing the donor density in Al Ga& „As layer with a
fixed spacer layer thickness, or by changing the spacer
layer thickness with a fixed donor density in Al„oa, „As
layer. We consider here the former case only, and in the
next section we consider the latter case. The calculated
sheet electron density dePendence of I Rgs I Ops I Aps,
and I'&zs are shown in Fig. 7(a) and the calculated sheet
electron density dependence of I Ms are shown in Fig.
7(b) together with I &Rs for comparison, for T=180 K,
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FIG. 6. (a) Magnetic field dependence of the Landau-level

broadening I R&s, I ops, I Aps, and I &Rs, and (b) I z&s (l &Rs is also
shown for comparison), for N, =3&(10"cm, Nd, ~i

——5&10'
cm 2, L, =100 A and T=180 K.
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SHEET ELECTRON DENSITY (cm )
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FIG. 7. (a) Sheet electron density dependence of the
Landau-level broadening I R&s, I &ps, I Aps, and I &Rs, and (b)
sheet electron density dependence of the Landau-level broaden-
ing I »s (I,Rs is also shown for comparison), for Nd, ~i

= 5 X 1o'
cm, L, =100A, 8=7.38 T (P =3), and T=180 K.
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8=7.38 T, Nd, ~
——5X 10' cm, and a fixed spacer layer

thickness L, =100 A. We find in Fig. 7(a) that the level

broadening due to remote-impurity scattering, I &&s, has a
minimum at around N, =3)&10" cm . The remote-
impurity scattering is governed by two effects; an increase
in N;, results in an increase in broadening, whereas an in-
crease in N, results in a decrease in broadening due to the
screening effect. The reason why I R&z has a minimum is
explained in terms of competition of the two effects. In
the region of the sheet electron density N, less than the
depletion charge density Nd, ~, , the screening effect dom-
inates and thus the increase in N, results in a decrease of
I „,s. On the other hand in the region of suSciently
higher N„such as N, &&Nd, », the term of N;, dominates
and thus the increase in the sheet electron density N, is
proportional to the increase in the sheet donor density
N,„resulting in an increase of I R&s. It is evident from
these considerations that the value of N, which gives a
minimum of I R&s depends on the value of Nd, ». We find
in Fig. 7(a) that the broadening due to LO phonon
scattering I ops increases with increasing the sheet elec-
tron density N, . This feature may be explained in terms
that the spatial extent of the wave function perpendicular
to the heterointerface decreases and the variational pa-
rameter b increases with increasing N„where we neglect-
ed the screening effect for LO phonon scattering. When
the screening effect of the LO phonon scattering is taken
into account, the broadening I pps decreases slightly with
increasing N, .

IV. SHEET ELECTRON DENSITY DEPENDENCE
OF THE MAGNETOPHONON AMPLITUDE

ing parameter of the Landau-level broadening in the ex-
ponent depends on the electron density or the remote-
impurities, leading to exponential decrease in the amph-
tude with respect to the electron density. As shown in
the preceding section, the Landau-level broadening is
dominated by remote-impurity scattering and its electron
density dependence exhibits a complicated behavior due
to competition of the screening effect and number of
scattering centers and/or the distribution of the remote
impurities [L,, in Eq. (3.15)].

We estimate the magnetophonon amplitude using the
results of Sec. II and Sec. III. The sheet electron density
of the samples used by Brummell et al. ' is changed by
changing the spacer layer thickness and by keeping dop-
ing density constant (1.3 X 10' cm ). The specification
of their samples is reported by Foxon et al. and the
sheet electron density versus the spacer layer thickness is
retraced in Fig. 8 along with the sample structure. We
have to note that the sheet electron density is determined
by the thickness of the spacer layers. As stated above the
Landau-level broadening due to remote-impurity scatter-
ing is determined by three factors, screening effect, sheet
impurity density N;„and spacer layer thickness L, . An
increase in ¹,and a decrease in L, result in an increase
in the broadening I z,s. This is the case observed by
Brummell et aI. ' Using the result of Fig. 8 we calculat-
ed the Landau-level broadening due to the remote-
impurity scattering I &&s, which is shown in Fig. 9. We

12
10 I

Recently Brummell et a/. ' have reported very in-
teresting results of the MPR effects in Al„Gai „As/
GaAs heterostructures. They studied the amplitude of
the MPR oscillations as a function of the sheet electron
density in the range N, =3)& 10' cm to 5&(10" cm
using a number of different samples, and found that the
amplitude decreases rapidly with increasing the sheet
electron density. They attributed the decrease to the
screening effect as follows. At 180 K the system is close
to degenerate statistics at approximately 3X10" cm
and the condition k&T=fuo, =EF (8 =0) is fulfill—ed.
Under this condition screening effect plays a more impor-
tant role, leading to a reduction in the strength of the
electron-optical phonon coupling, and the magnetopho-
non amplitude decreases. We have to note here that the
amplitude of the MPR oscillations is determined by the
following two factors, the electron-optical phonon cou-
pling constant in the preexponent Ap [Eq. (2.15) and Eq.
(2.21)] and the damping parameter y (or the Landau-level
broadening 1) in the exponent [Eq. (2.21)]. Their ex-
planation is based on the decrease in Ap due to the
screening effect. However, such a rapid decrease with
respect to the sheet electron density cannot be explained
in terms of the electron density dependence of the
electron-phonon coupling constant contained in the
preexponent. Instead it may be expected that the damp-
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I—
hJ

(I) to
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GaAs 4pm
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I s I

undoped
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undoped
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I s

0 200 400 600 800

SPACER-LAYER TH'ICKNESS (A)

FIG. 8. The sheet electron density as a function of the spacer
layer thickness, which is reproduced using the result reported
by Foxon et al. (Ref. 30) at temperature 77 K. The samples are
used for the MPR experiments by Brummell et al. (Ref. 14).
The Al„Ga, „As/GaAs heterostructures used by them are
shown in the inset.
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FIG. 9. The Landau-level broadening due to remote-
impurity scattering I R&s as a function of sheet electron density,
where the broadening is estimated by taking account of the rela-
tion between the spacer layer thickness and the sheet electron
density reported by Foxon et al. (Ref. 30) (Fig. 8).

SHEET ELECTRON DENSITY (cm )

FIG. 10. The sheet electron density dependence of oscillation
amplitude at T=180 K and P=3, for Nd, ~t

——1&10' cm
(dash-dotted curve) and Nd p] 5X 10' cm (solid curve),
where the mobility at vanishing magnetic field is assumed to be
10000 cm /Vs and independent of sheet electron density. The
solid circles are the experimental data reported by Brummell
et al. (Ref. 14).

can see in Fig. 9 that I z&s increases with increasing N, .
This feature can be explained as the following. Although
the screening effect results in a decrease of the broaden-
ing as the electron density increases, the Landau-level
broadening is dominated by the two factors arising from

N;, and L, in Eq. (3.15), leading to an increase in the
broadening. The increase in N, of the samples is
achieved by decreasing the spacer layer thickness, which
results in an increase in the broadening as shown in Fig.
9. It is straightforward to calculate the amplitude of the
MPR oscillations as a function of the sheet electron den-
sity when we use the result shown in Fig. 9 and the calcu-
lated result is plotted in Fig. 10, where we compared the
present result with the experimental date reported by
Brummell et al. ' In the calculation, we assumed that
the mobility at vanishing magnetic field does not depend
on N, because the phonon limited mobility is almost in-

dependent of N, . ' We find in Fig. 10 that the calculated
amplitude Dpi'po shows a good agreement with the exper-
imental observation of Brummell et al. ' It is therefore
concluded that the electron density dependence of the
magnetophonon oscillations is determined by the
remote-impurity scattering. It is very interesting to point
out that the damping parameter of the magnetophonon
resonance in bulk materials is also determined by the im-
purity scattering as shown by many workers.

We would like to summarize the present work. The
magnetophonon resonance in Al Cia& „As/CxaAs single
heterostructures is described by an expression similar to
the formula derived by Barker. Our expression is derived
by using Fang-Howard trial function and Harmonic
analysis. The Landau-level broadening is calculated for
the cases of electron scattering by remote-impurity,
background-impurity, optical-phonon, acoustic-phonon,
and interface-roughness scattering. In the samples we are
interested in the broadening is dominated by the remote-

impurity scattering. The broadening due to optica1-
phonon and acoustic-phonon scattering is proportional to
square root of the magnetic field, resulting in the magnet-
ic field dependence of the damping parameter y as in-
versely proportional to the square root of the magnetic
field. The Landau-level broadening due to other scatter-
ings is almost independent of the magnetic field. There-
fore the oscillatory structure of the magnetophonon reso-
nance in the samples is well analyzed by assuming a con-
stant Landau-level broadening or a damping parameter y
inversely proportional to the magnetic field and the mag-
nitude of the broadening is determined by the remote im-
purities.
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APPENDIX

We present the approximated expression of 6 which
defined by Eq. (2.17) for two cases: (i) degenerate statis-
tics case (p &0, where p is the chemical potential) and at
temperatures k&T& fico+4 and (ii) nondegenerate statis-
tics case [exp(Pp, ) ((I].

In the first case (i), 6 is given by the following expres-
sion:
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1
(~+p ), 0 &p & ficou

2 p
O'Tf2cop

where ~=2k~ T. We see in Eq. (Al) that e is indepen-
dent of the magnetic field.

In the second case (ii), we obtain the following relation:

e=

) 1 (P (Scop+7

1, p & ficop+ v

p+ T—Scop/2
'Scop —7 (P(7

2v

( r + 'Jicop p—)1—
4TAcop

(A 1) co, sinh( —,'PA'co&)
8=exp[ p(p ——,
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