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Transient oscillations and dynamic Stark effect in semiconductors
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Oscillatory structures in the differential probe transmission spectra of semiconductors are calcu-
lated assuming pump-probe excitation with very short pulses. For the case of resonant interband
excitation the oscillations occur around the central pump frequency. They evolve into the spectral
hole with increasing temporal overlap between pump and probe pulses. Under nonresonant excita-
tion conditions, oscillatory structures around the exciton resonance are computed. These oscilla-
tions occur as precursers of the optical Stark shift.

I. INTRODUCTION

Coherent light-matter interaction has been extensively
studied in the framework of quantum optics and two-
level-atom spectroscopy, ' where the characteristic de-
phasing times are long in comparison to available laser
pulses. In a semiconductor the absorbed light generates
electron-hole excitations which experience a variety of
scattering processes leading to a very rapid relaxation of
the originally coherent coupling between exciting light
and medium polarization. Therefore one has to use very
short optical pulses to study coherent processes in semi-
conductors. Anisotropic state filling in Ge, phase
coherence and orientational relaxation of excitons in
GaAs, as well as coherent coupling effects in pump-
probe spectroscopy ' have been investigated using pi-
cosecond pulses. In the femtosecond time domain, the
optical Stark shift, ' spectral hole burning, ' and oscil-
latory structures in differential transmission spectra'
have been observed.

In this paper we present the theoretical analysis of the
femtosecond experiments reported in Ref. 13, where the
strong pump pulse excites the medium polarization,
which is measured by a weak, spectrally broad probe
pulse. We extend our earlier work' to discuss also
transmission changes around the exciton resonance for
two difFerent excitation conditions and we study the
effects of damping. We concentrate on two characteristic
situations, in which (i) the pump pulse resonantly excites
the interband transitions in the semiconductor and the
probe measures the transmission changes in the vicinity
of the pump frequency, or (ii) in which the pump pulse is
detuned from the exciton resonance but the probe mea-
sures the changes right at the exciton resonance. In any
case, we concentrate on the very early times after the ex-
citation, when different k states can be assumed to react
independently to the exciting light. We compute
transmission spectra which can be compared to the re-
sults of ultrafast pump-probe experiments, where the
changes of the pulse envelopes are so rapid that their
spectral characteristics become important. In our theory
the dipole-coupled k states of the valence and conduction
bands are modeled as inhomogeneously broadened transi-
tions. The k-mixing many-body Coulomb effects are ig-

nored, Coulomb attraction is kept, and the most impor-
tant aspect of the scattering processes among the elemen-

tary excitations is included as decay of the electron or
hole out of the dipole-coupled spectral region. Clearly,
this simple picture has to be revised as soon as the many-
body effects become dominant. '

After deriving an expression for the semiconductor
transmission spectrum (Sec. II), we analyze in Sec. III os-
cillatory structures in the differential transmission with
emphasis on the influence of carrier and polarization re-
laxation processes. In Sec. IV we study transient
transmission changes at the exciton resonance and we
discuss the relation of the transmission oscillations to the
optical Stark shift of the exciton. After summarizing our
results in Sec. V, we analyze in the Appendix the
modifications which are expected for larger temporal
widths of the probe pulse.

II. DIFFERENTIAL TRANSMISSION SPECTRA

As in the femtosecond experiments, ' we investigate
the situation of a semiconductor which is illuminated by
mutually coherent pump and probe pulses traveling in a
small angle relative to each other. For this case we
showed in Ref. 14 that the equation for the slowly vary-
ing amplitude of the probe pulse can be written in the
form

8 18 iQ
Bx ~ c dt ~ 2eoc

Here, x is the propagation direction, Q is the rapid oscil-
lation frequency, and P is the amplitude of that com-
ponent of the induced medium polarization which oscil-
lates in phase with the probe beam. In order to neglect
the pulse deformation due to propagation, we assume
that the total beam-propagation distance L is sufficiently
short, i.e., L &&c ht, where ht is the temporal pulse
width. This condition is well satisfied in the experiments
reported in Ref. 13, allowing us to approximately solve
Eq. (1) as

8~(x, t)=C (O, t)+i J dy P~(y, t) .
2eoc o
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X(r, t') =Xo(& —&')+5X(&,&'), (4)

where Xo(t —t') is the background contribution which
has its origin in the unperturbed material properties and
5X(t, t') represents the perturbation caused by the pump
pulse. This perturbation is not a function of the time
difference because the pump pulse breaks the temporal
translation invariance. In the experiments, ' one mea-

As usual, we define the optical susceptibility 7 as the
linear response of the medium to the weak probe field. In
the spatially homogeneous case we have

P, (x, r)= f dt'X(r, r'}C,(x, t') .

The response function 7 may be separated into two parts,

sures the diff'erential transmission 5T(co), which can be
expressed as

~ lp. p..—I &,(L ~ lp. p.~5T(co)=

where

6~(L,co)= f dt e ' @ (L, t)

is the Fourier transform of the probe field after traveling
through the sample and QL is the central frequency of
the pump pulse. Assuming that the linear susceptibility
is only weakly structured in the frequency region of in-
terest, we obtain, from Eqs. (3) and (5),

5T(co)= — Im 8&(Oco)f dao'6' (Oco') f dt e' ""f dt'e 5X(t +t', t) +0(
~

5X
~

).

A~(O, co')6'(O, co)=
~

Aq(O, a))
~

e (7)

Inserting (7) into Eq. (6) yields

5T(u)) cc —Im f dt e 5X(t+tp, t )
0

Here and in the following we take the peak of the pump
pulse as origin of time, t =0, and denote by t~ the delay
of the probe pulse. Negative values of t~ indicate that the
probe reaches the sample before the peak of the pump,
i.e., during the rising part of the pump pulse. We study
the effects of a finite temporal width of the probe pulse in
the Appendix of this paper, where we show that for most
situations of experimental relevance it is acceptable to
neglect the probe width justifying the use of Eq. (8) in-
stead of (6). For mathematical convenience, we use an
exponential shape for the pump pulse in the form

Equation (6) can be simplified if the temporal width of the
probe pulse is negligibly small in comparison to that of
the pump pulse. For such a temporally short probe pulse
with a correspondingly broad spectral distribution, one
can write the approximate relation

III. RELAXATION EFFECTS

n, =ip[E—(t)p —E'(i)p'] —I n, ,
8

at nh ip—[E'( t }p
*———E( &)p ]—I nq, (lob)

The semiconductor is modeled as discussed in Ref. 14,
but additionally we include also damping of the polariza-
tion and populations. As mentioned in the Introduction,
we analyze the two situations where (i) the excitation
occurs well into the band and the probe detects the spec-
tral region of the pump pulse, or (ii) where the central
pump frequency is well below the exciton and the probe-
transmission changes occur around the exciton reso-
nance. To discuss the spectral regime of the exciton reso-
nance, the contributions of the band states may be
neglected in a very simple approximation and the system
may be described by a single transition. On the other
hand, when the interband transitions are discussed, we
have to deal with a continuum of k states and, conse-
quently, we have to sum over all individual contributions.

In case (i) each k state is described' by the following
coupled set of differential equations:

crit(—
In the time regime such pulses have a discontinuity in
their derivative, but in the frequency regime they are
smoothly varying functions simulating physical pulses
rather well. Moreover, in our expressions for the
differential transmission spectra, we always have to in-
tegrate over the pulse amplitudes. Due to these integra-
tions the discontinuity in the pulse slope does not
inAuence the results considerably.

—p*= —[ie(k)+y]p —ipE(t)(1 n, nh —) . —
at

(10c)

Here, n, (nz ) is the number of electrons (holes) at state k,
p' is the polarization of the state k, and p is the dipole
matrix element. The only explicit k dependence is in the
transition energy e(k). The field E has been treated in
the rotating-wave approximation,
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Because the probe field is broad banded, the central fre-
quency is taken to be the laser frequency for sake of con-
venience.

To motivate our treatment of the decay processes, we
assume that the k space can be divided into two parts: a
resonant part containing the k states which interact
directly with the laser field and the remaining non-
resonant part. Equations (10a)—(10c) are only used to de-
scribe the resonant states. For these states the decay rate
I' simulates the intraband scattering out of the resonantly
coupled part into the nonresonant part. The validity of
Eqs. (10a)—(10c) for band-to-band transitions is restricted
to short times, i.e., to the fast transient regime where
electron and hole populations are still small. At later
times Coulomb effects like band-edge reduction and
phase-space filling become increasingly important, even-

tually changing the dynamics of the system.
In case (ii) we can still use Eqs. (10a)—(10c) where k

now labels the exciton state, ' and I is the decay rate of
the exciton due to radiative or nonradiative recombina-
tion. This decay is usually considerably slower than the
intraband relaxation of the carriers.

Using an iterative integration procedure, we solve Eqs.
(10a)—(10c) in third order in the field amplitude E(t).
The initial values of the system are taken as the steady-
state values without field. The induced polarization is
given as

(12)

Using Eqs. (3), (4), and (12) we can extract the differential
susceptibility 5+ in the form

I f '
Q g ill

5X(t, t')= 2ii—44 e
' ' ' f dt"e "'"6' (t' t")f —dt"'e" ' ' ' 8'(t' t" t"'—)—

lit

+f dt"e "' Ct (t' t")—f dt"'e ' BL(t' t" t"')— —
0 0

—[i e —
& +y —I ]l", „, „, [i(e —QL ) r]t"'—

0 0

0 0
(13)

To analyze the influence of relaxation effects, we discuss in the remainder of this section the case of resonant interband
excitation well above the semiconductor band gap. In this case we have to sum Eq. (13) over the whole k space. As a
consequence of the electron-hole Coulomb attraction, the density of states has to be multiplied by the Coulomb
enhancement factor, ' leading to a more or less structureless combined density of states, which we treat as a constant D.
Consequently, the contributions of the second and fourth term of Eq. (13) vanish. Inserting the resulting expression
into Eq. (8), we obtain the differential transmission as

5T(co)= p D Re f dt e e r'f dt'e "' BL(t t')CL(t t' —t)——
6'0C 0

+e- ' dt'e '" "a~(t+t t')6'~(t t')— —
0

(14)

This formula is rather general, but still we can deduce some results straightforwardly from it. Neglecting all relaxation
mechanisms, we showed in Ref. 14 that spectral transmission oscillations occur which are centered around the central
frequency of the pump pulse. These results are exactly reproduced if we set y and I to zero in Eq. (14). Examples for
the coherent oscillations are plotted in Fig. 1 for different values of t . Figure 1 shows that the period of the oscillations
is inversely proportional to the time delay between probe and pump. For zero delay, Fig 1(c), only one underswing is
left besides the central peak. For positive t (not shown) this underswing also vanishes and the oscillatory structures
evolve into the spectral hole.

To investigate the influence and relative importance of the different damping mechanisms, we now consider the case
of an extremely short dipole damping time I /y. After partial integration and letting y~ ~, Eq. (14) yields

5T(co)~ f dte '~ @z(t t)
~

—Re — Ct(t )f dte
' 6t(t+t )

(to —QL, } +(2y) p 2y i(to—Qt, —) p

(15}
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ot

5T(co)=C
~

eL
~

Re
(tr+2y i—b, )(o I—'+id, ) o+ I —iA I +20

The detuning co —QL is denoted h. Again, we can see
that increasing the dipole damping y only decreases the
magnitude of the spectrum but the structure remains
essentially unchanged.

In Fig. 2 we show differential transmission spectra for
various values of I /tr for the case of r = —5/o. The di-
pole damping y is kept constant with the value

y =2.51o. We see that increasing I /0 causes a decrease
in the amplitude of the oscillatory features and the cen-
tral peak becomes more and more dominant. For large
values of I'/o, the oscillations disappear completely, and
only a Lorentzian spectrum remains. The critical value
for I /rr is approximately 1. We can loosely say that if
the decay of the population is faster than the change of
the pump amplitude, the pump pulse appears for the
semiconductor almost like a continuous wave for which

oscillatory patterns are not expected.
Increasing the value of I /o. can be done experimental-

ly by changing the temporal width [fullwidth at half max-
imum (FWHM)], b, t-=(21n2)/o, of the pump pulse.
Since I is fixed for a particular sample and fixed excita-
tion conditions, varying the pulse width allows to mea-
sure the sequence of patterns shown in Fig. 2. Hence,
this scenario can be used in femtosecond pump-probe ex-
periments to measure the population damping rate I by
monitoring the vanishing of the coherent oscillations by
increasing the temporal pulse width for fixed probe-pump
delay.

Assuming a population decay rate I =1/100 fs ', we
show in Fig. 3 the oscillatory structures around the cen-
tral pump frequency for otherwise the same conditions as
in Fig. 1. A comparison between Figs. 1 and 3 reveals
that the most prominent consequences of the dissipative
processes are the reduction of the oscillation amplitudes
with respect to the central peak and the pronounced
broadening of the central peak with increasing temporal
overlap between probe and pump.

IV. NONRESONANT EXCITATION OF THE EXCITON
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FIG. 3. Normalized differential transmission spectra calcu-
lated for interband excitation. The central pump frequency 01
is assumed to be mell above the semiconductor band gap. The
temporal FWHM of the pump pulse, Eq. (9), is 120 fs and the
damping constants have been taken as y=0.035 fs ' and
I =1/100 fs '. (a)-(c) are for diferent time delays t~ between

pump and probe, where the probe precedes the pump max-
imum: (a) t~= —400 fs, (b) t~= —200 fs, and (c) t~=0.

To study the coherent structures in the spectral vicini-

ty of the exciton resonance, we assume that the exciton
relaxation time is relatively long in comparison to that of
the band states. This assumption seems to be:quite
reasonable because the exciton does not suffer the rapid
intraband scattering which is most responsible for the
coherence decay of interband transitions at very early
times. Since we ignore effects like phase-space filling and
Coulomb screening, we can describe the exciton transi-
tion as a dipole-coupled two-level transition. ' In this
case Eqs. (10a)—(10c) can be applied and the result in Eq.
(13) is valid when the number of the k states is reduced
into one.

In the following we concentrate on the case of a pump
pulse which is spectrally detuned from the exciton reso-
nance. Actually, this allows both nonresonant excitation
spectrally below the exciton as well as interband excita-
tion. Even though our treatment is best applicable for
the case of excitation in the transparent region of the
crystal, we may still use it also as a simple approximation
for the case of interband excitation since the contribu-
tions of the band states and of the exciton are simply ad-
ditive. '

Inserting (13) into (8) and assuming for convenience
I =2v and y=v and that the pulse duration is much
shorter than v ', we obtain the differential transmission
in the form
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5T(co) o-.2(((, , Re f dr f dr'C~(r)8~(r')e

+Re
[i(co—Ql ) —2«]( + p, ~, [i(e —Q~ ) —«]( ( —t')

dt Al(t+t~)e dt'll t' e
v —ih p —CG

(17)

Here, b, =co—e is the probe detuning from the exciton
resonance and v is the exciton linewidth. The oscillatory
structures of 5T are contained in the second term on the
rhs of Eq. (17); the first integral is independent of co.

However, because of the prefactor I /(v i 6 }—the oscilla-
tions now occur around b, =0, i.e., around the exciton
resonance e and not around the laser frequency Ql .

Using the exponential pulse shape, Eq. (9), we analyti-
cally evaluate Eq. (17). Since the lengthy mathematical
expressions allow no more physical insight than Eq. (17)
itself, we present only the resulting spectra. Assuming
nonresonant excitation spectrally below the exciton reso-
nance, we plot in Fig. 4 the differential transmission spec-
tra for fixed pump frequency and varying delay time. For
negative t~ we see oscillatory structures around the exci-
ton resonance. These oscillations are not symmetric as in
the case of the interband transitions because the pump
laser is detuned with respect to the exciton resonance.

When the delay time approaches zero, the oscillatory
structures disappear, leaving a differential transmission
which has an almost dispersive shape. This dispersive
shape indicates that the exciton resonance has been shift-
ed to higher energies (increased transmission on the low-

energy side and decreased transmission on the high-
energy side}. This is the so-called light shift (dynamic
Stark shift), which has recently been observed for the ]s
exciton in semiconductors. ' Hence, we see that the
coherent oscillations evolve continuously into the dynam-
ic Stark shift.

To study the amplitude decrease of the oscillatory
structures with increasing detuning from the resonance,
we evaluate Eq. (17) for the case of large detunings. If
the detuning exceeds both the exciton linewidth and the
spectral width of the pump pulse, we can write the
asymptotic behavior of 5T as

5T(ro) = p, Im
LQ 4 1

KE'pC 8 —Qg
(18)

LQ 4 I I I 2vh
5TQ7 = — p~eoc e —Qr (v'+g')' ' (19)

which clearly exhibits a dispersive shape similar to the re-
sult obtained for a simple frequency shift of an absorption
line. The proportionality of the transmission changes to

and the inverse proportionality to the laser detun-
ing are the characteristic signatures of the Stark shift.

V. CONCLUSIONS

In conclusion, we have studied oscillatory structures in
the differential transmission spectra of semiconductors.
As shown in Ref. 13, our results agree well with the ex-
perirnental findings. We analyzed the effect of population
and polarization damping using a simple model for the

This equation shows that the amplitude falls off inversely
proportional to the detuning of the pump, but the shape
of the spectral structures is detuning independent, allow-
ing the observation of oscillatory structures around the
exciton resonance even for large detunings. Note that for
cw excitation, i.e., ( r (t) =const, Eq. (18) becomes

Ep(L, ~)
~ („m(,„Ep(L,m)

~ )„m)——

+5E (L, co)
i „p,„. (20)

Inserting (20) into (5) and ignoring quadratic terms in
5E~ yields

decay mechanisms. For the situation when the transmis-
sion changes are observed around the pump pulse, the
physical origin of the oscillatory structures may be de-
scribed as a transient population grating created by the
pump and probe pulses together. This grating is generat-
ed during the time of overlap between the pulses and the
oscillations in the spectra are manifestations of the total
interference between the probe pulse and that part of
pump pulse which is scattered from the grating into the
direction of the probe beam. This explanation is valid
when the phase-coherence time is very short and the
fields are weak. Strong fields have been discussed in Ref.
14 and they were shown to bring new effects.

To obtain a better understanding of the oscillatory
transmission changes, it is instructive to discuss the situa-
tion when the pump-induced changes are small in com-
parison to the total transmitted probe field. ' In this case
one can write
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APPENDIX

In this A endipp 'x we discuss the effects caused by a
finite temporal width of the probe pulse. If the b
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I

5T(co) ~ — Im f dt Bz(O, t)e' ' f dt'e' " 5X(t+t', t)
i6 (Oco)i . — ~ '

o
(Al)

A rough estimate indicates that the inner integral in Eq.
(A 1) changes as a function of the parameter t on the same
time scale as the pump pulse. Hence, if the probe pulse is
shorter than the pump pulse, or, equivalently, if its fre-
quency spectrum is much broader than that of the pump
pulse, the 5-function approximation should be good.
However, to obtain quantitative results on the impor-
tance of the finite probe-pulse width, we need an explicit
expression for the change in the susceptibility.

We start from Eq. (13},but to keep the situation as
simple as possible, we now ignore all relaxation effects.
As an example, we choose the situation of band-to-band
transitions. In this case, after setting y and I" equal to

Again, the joint density of states is taken as constant.
Explicit results are obtained using the pump-pulse shape
of Eq. (9}and the probe-pulse shape

8 (t)=e eP

Evaluating Eq. (Al) yields

(A3)

zero in (13) and summing over the k states, the expression
for the differential susceptibility takes the form

5X(r, r') = i 2—p4D(e„, )f dr" BL(r r")C—
L

(r' r")—.
0

(A2)

+2+ 2

5T(co) ac Re
7l

2crt
ge

o (o +i h)[(2o +i 5) ri ]—

( —ih+a )t
4o ge

(cr +b, )(o ib, )—(o ri )—

( —ih+g)t+e 2o —it 1

cr(o id)z(—ri ih) —2o(o ib, )—(2cr+ri ih)—

1 2o'

2o(o+i 6)(2o ri+ih—) (oz++2)(o ig)(cr ri)
(A4)

when t is negative. As illustrative examples we plot in Fig. 5 some spectra where we fixed the spectral width o of the
pump pulse and varied the width g of the probe pulse. For g & o the spectra are essentially unchanged in comparison
to those obtained by approximating the probe pulse as a 5 function in time. Significant deviations are obtained only
when the spectral width of the probe pulse becomes smaller than that of the pump pulse.
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