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EfFect of uniaxial stress on the electron spin resonance in zinc-blende semiconductors
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We present a study of the effect of uniaxial stress on the electric-dipole spin resonance absorption
in zinc-blende semiconductors. We show that previous work in this field omits an important contri-
bution to the transition amplitude, leading to an underestimate of the strength C2 of the stress-
induced spin-orbit coupling in InSb. The necessary correction factor is between 3 and 4. We sug-

gest experimental configurations that would permit an accurate measurement of this and other re-

lated material parameters. One of these exploits the possibility of an interference between stress-
induced and stress-free spin-flip transition amplitudes. In this way, not only the magnitude of C2,
but also its sign, could be determined.

I. INTRODUCTION

Spin resonance absorption by conduction electrons in
elemental semiconductors having the diamond structure
is electric-dipole forbidden. However, in compound
semiconductors crystallizing in the cubic zinc-blende
structure these transitions are allowed. This results be-
cause, in the presence of a parity-violating spin-orbit in-
teraction, the Landau levels in the external magnetic field

Bo no longer have a well-defined parity. In the absence of
the spin-orbit coupling the stationary states of an elec-
tron are the ordinary Landau levels characterized by a
quantum number n (n=0, 1,2, . . .) and a wave vector k&

along the direction of Bo. Each level has a high degen-
eracy which, classically, can be viewed as the degree of
freedom associated with the center of the classical orbit
in the plane normal to Bo. Each of these levels is spin
split due to the Zeeman interaction between the intrinsic
magnetic moment of the electron and Bo. The mixing of
Landau levels of opposite parities and spin orientations
causes the spin-flip transitions to be allowed in the
electric-dipole approximation so that the intensity of the
resonance is considerably stronger than would be expect-
ed assuming only a magnetic-dipole coupling. The result-
ing eFect is called electric-dipole spin resonance (EDSR).
It has been studied extensively both theoretically and ex-
perimentally. Work in this field, prior to 1975, has been
reviewed by McCombe and Wagner. '

More recent magnetooptical studies in InSb by
Dobrowolska, Chen, Furdyna, and Rodriguez showed
that the intensity of the EDSR displayed striking anisot-
ropy. In particular, under certain circumstances, the in-
tensity experienced large changes under reversal of either
the applied magnetic field or of the direction of propaga-
tion of the incident radiation. The phenomenon was at-
tributed ' to an interference between electric-dipole and
magnetic-dipole amplitudes. The mechanism for making
the EDSR allowed in this case results from the parity-
violating spin-orbit interaction introduced by Rashba and
Sheka. ' This interaction is cubic in the electron wave
vector k and has the form

1 10' =—'PC
E' 3 2 g+

y [cr„(k,e,„—k e„)+c.p. ] (1.2)

for the stress-induced spin-orbit coupling, where c.p.
denotes cyclic permutations. Here e; (i,j =x,y, z) are
the components of the strain tensor, E is the fundamen-
tal energy gap, 6 the separation between the k=0 p3/2
and p &&2 states of the valence band, and P is proportional
to the momentum matrix element between states at the
top of the valence band and the lowest conduction band.
The quantity C2 is the deformation potential constant
defined by Trebin, Rossler, and Ranvaud; Kuchar et al.
and Kriechbaum et al. found the value

~
C2

~

=1.6+0.5
eV for InSb.

Jagannath and Aggarwal' studied the stress-induced
generation at the EDSR frequency in InSb. The strength
of the spin resonance is proportional to the square of the
magnitude of the second-order nonlinear electric suscep-
tibility 7' '. These authors compared the magnitude of

H„=5o[o„k„(k —k, )+oak (k, —k„)

+o,k, (k„—k )],
where 5o is a parameter measuring the strength of the
coupling, cr is the Pauli spin operator, and the subindices
x,y, z refer to components along the cubic axes of the
crystal.

Kuchar, Meisels, and Kriechbaum and Kriechbaum,
Meisels, Kuchar, and Fantner performed far infrared
magnetoabsorption experiments in InSb in the Faraday
configuration while the sample was subjected to uniaxial
stress. The presence of the stress breaks the cubic sym-
metry of the crystal giving rise to a spin-orbit coupling
which is linear in the electron wave vector and in the
components of the strain tensor. This leads to an ob-
served enhancement of the intensity of the EDSR line.
The authors of Refs. 7 and 8 interpreted their results us-

ing the expression
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g' ' in a geometrical arrangement in which the electric-
dipole amplitude is enhanced under stress with one in

which, in the absence of stress, only the magnetic-dipole
interaction is effective. " In this way Jagannath and Ag-
garwal deduced the absolute value of the constant C2.
They found

~
C2

~

= 1.0+0.3 eV.
In this paper we discuss the effect of strain on the

spin-orbit interaction and the consequent enhancement of
the EDSR line. We show that the authors of Ref. 7 ornit-
ted a contribution to the electron-photon interaction
leading to an underestimate of C2 by a factor between 3
and 4. References 8 and 10 also omit this contribution.
It is also interesting to note that Eq. (1.2) does not
represent the most general form of the stress-induced
spin-orbit coupling in zinc-blende semiconductors. An
additional, independent, term, linear in k and e is
present. However, the second contribution does not ap-
pear within the framework of the perturbation analysis of
Ref. 9 and, hence, may be regarded as small. We analyze
possible geometrical arrangements in which its presence
may be significant.

We remark that only the magnitude of C2 is deter-
mined on the basis of the experiments in Refs. 7, 8, and
10. In this connection we investigate the possibility of in-
terference between electric-dipole amplitudes due to the
stress-induced spin-orbit coupling and the cubic, stress-
free, interaction H~. We recall that, while the first in-
teraction is linear in k, the second is cubic. Thus, their
contributions to the absorption amplitude are indepen-
dent and linear in Bp, respectively. This allows, in princi-
ple, to alter the relative magnitudes of these amplitudes
by judicious choices of Bp and, hence, the appropriate
frequency of the incident radiation and of the stress. The
interference between the transition amplitudes caused by
the stress-induced spin-orbit interaction H,' and by H~
can be used to determine the relative signs of Cz and 50.
Since, in InSb, 5p is positive, taking the polarity of the
positive [111]direction along the line joining the anion to
the cation' in the primitive cell, this effect can yield the
sign of Cz. An interference with the magnetic-dipole am-
plitude, similar to that considered in Refs. 3 and 4, is also
possible even though less likely to be measurable. It
would have the advantage that it is revealed by a simple
reversal of either Bp or of the direction of incidence of the
infrared radiation.

The complete stress-induced spin-orbit interaction H„
linear in k and e, is obtained forming invariants of the
from u.cr, where the components u, u, u, of u transform
according to the irreducible representation' I 4 of Td.
The components of e generate I,+ I 3+ I 5. The quantity
e» +e» +e» belongs to I,, 26'zz E'» 6yy and

The products of components of k and e belong to
r, yr, =r,+r, or to I )&r,=r, +r,+r,+r, .
There are, therefore, two independent invariants of the
form u.o., one from each set of products just mentioned,
yielding the irreducible representation I 4. We obtain the
appropriate in variants using the Clebsch-Gordan
coefficients' for the group Td. These combinations allow
us to write

H, =a [o„(e,„k, —e„k )+o (e„k„—e,k, )

+o, ( e~, k» —e,„k„)]
+b[cr„k„(e e„—)+cr k (e„—e„„)

+o,k, (e„„—e )] . (1.3)

This form replaces that in Eq. (1.2). We note that the
identification of a with

1
a =—', PC2

Eg

1

E +b (1.4)

H'= ( A v+v A}+B.e H
2c 0

(2.1)

to first order in A (and B). Here v is the velocity opera-
tor

v=(i') '[r,H]=4' 'BH/Bk (2.2)

and BH /BBp is the gradient of H with respect to Bp treat-
ing Ap and Bp as independent quantities.

Writing A in the form

A=Re(Ace"q' "") (2.3}

we find

H'= (A Ve ' '+ A*V e'"')
2c

(2.4)

is appropriate within the approximation in the model of
Ref. 9.

In Sec. II we obtain the contribution of H, to the spin
resonance amplitude under various physical and geome-
trical arrangements. Section III gives a discussion of the
results and their comparison with previous experimental
work.

II. INTENSITY OF THE SPIN RESONANCE UNDER
STRESS

In this section we provide a complete derivation of the
electron spin resonance intensity under arbitrary experi-
mental configurations, i.e., for arbitrary directions of the
applied magnetic field and of the uniaxial stress. The
transition amplitude consists of three contributions: (i)
the ordinary magnetic-dipole matrix element; (ii) the
stress-independent electric-dipole amplitude originating
from H„; and (iii) the electric-dipole matrix element
brought about by the stress-induced spin-orbit interaction
H, .

In the presence of a static magnetic field Bp described
by a vector potential Ap, the effective mass Hamiltonian
H is obtained replacing the wave vector of the electron by
the operator k= (p+ e Ap/c ) /R. In addition there is also
an explicit dependence on Bp. We write
H=H(p+e Ap/c;Bp). The components of It obey the
commutation relation kXk= —i(e/Pic)Bp. In the pres-
ence of the alternating field of the incident radiation the
time-dependent Hamiltonian is obtained substituting Ap
and Bp by Ap+ A and Bp+B in H, where B=Vg A is
the magnetic induction of the incident light.

The electron-photon interaction is
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where

V= ,' [—ev,.e'q'}+ &e(n)& e) e'q' .
e BBO

(2.5)

g =(go+2g'k )1+2g"[k,k}

+2yo(xxk„+yyk +zzk, } . (2.12)

Here, the curly brackets are used to indicate the anticom-
mutator of the operators within and co is the angular fre-
quency of the incident radiation and q=co& en/c its wave
vector inside the sample. We denote by e the dielectric
constant of the material and by e a unit vector describing
the polarization of the incident field. When Au matches
the energy difference between an initial, occupied, state

g, and a higher, unoccupied, state ff, resonant absorp-
tion takes place. The corresponding integrated intensity
1s

8 2

(2.6)

Here a is the absorption coeScient, I the full linewidth
at half maximum, n0 the density of electrons, and
n„=Re(e' } the index of refraction. Our task is, thus, to
calculate the matrix element (gf ~

V
~ P;) for the spin-

flip transition under uniaxial stress.
The effective mass Hamiltonian of the conduction elec-

trons can be written as

The quantity H, was defined in Eq. (1.3).
In the following we will treat H~ and H, as perturba-

tions in first order; the effect of H, is negligible except for
its contribution to the g factor. ' We use a right-handed
triad g, il, g with g parallel to Bo and the symmetric gauge

Ao ——
—,'BO( —i), (,0) .

Defining the operator

(2.13)

a =(iRO/2'~ )(k( ik—q),
where Ro = (Pic/eBO )'~ is the Landau length, we find

2

Hc ——fuu, (a a+ —,')+ + %co,o& .Pg go m'
2m' 4

(2.14)

(2.15)

The quantity co, =eBO/m'c is the cyclotron frequency
and [a,a ]=1. The eigenstates of Ho are the well-knownf=
Landau states whose eigenvalues are

E„"(k&)=fun, (n+ —,
' )+(i' k&/2m ')

H =H0+H„+H, +H, , (2.7) + (gom '/2m )fico,s, (2.16)

where

and

Ak
H0 = + 2gOPB~O'+ ~

2m
(2.8)

where n =0,1,2, . . . are the eigenvalues of a a and s =+—,
'

those of —,
'0.

&. We consider only states with k&
——0 and en-

ergies E„'"(k&——0)=E„". The corresponding eigenvec-
tors will be denoted by'

~
n, s ).

The eigenstates of H are written as

H„= z'5 (Ocr„[k„,k —k, }+c.p. ) . (2.9)
q„, =e's~ n, s), (2.17)

The quantity H„of Eq. (1.1) has been rewritten in a sym-
metrized way to ensure its Hermitian character. This is
required because the components of k do not commute in
the presence of the magnetic field. The parameters m*
and g0 are the electron effective mass and the low-field g
factor, respectively; ps = equi/2mc is the Bohr magneton.

The term H, in Eq. (2.7) results from the fourth-order
terms in k in the effective mass expansion. It is given by

H, =eok +ao( Ik, k, }+t k„k„}+Ik„,ky } }

+g ps O' 'Bok +g ps I cr 'k Bo'k }

where S is an Herrnitian operator selected in such a
manner that e ' He' is diagonal in the unperturbed rep-
resentation

~
n, s ). We write

e ' He'
~

, n)s=W(ns)
~
ns), (2.18)

e ' He' =Ho+H„+H, +H, +i[HO, S]+i[H„,S]

where the W(n, s) are the perturbed energy eigenvalues.
To find approximate solution for g„, and W(n, s) we use
the expansion

+y(ps(o„Bo„k„+cr Bo k +o,B kO, ) . (2.10)
+i[H„S]+i[H„S]

,' [[H,S],S]+—. .—. (2.19)

BH

0

We obtain

(2.11)

Here e0, a0, g', g", and y0 are material parameters.
'

This term in the Hamiltonian can be disregarded in the
calculation of the transition amplitude of the spin reso-
nance except that it yields a magnetic-field-dependent
contribution to the g factor. As such it makes an appear-
ance in the absorption coef5cient. The g factor is aniso-
tropic and is defined by the tensor g in

H„+H, +i[HO, S]=0 . (2.20)

Since H„and H, have no diagonal matrix element in the
representation [ ~

n, s ) } we can set'

S=S~+S,
with

(2.21)

To first order in H~ and H„neglecting the off-
diagonal part of H„we require
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and

(n', s'
~
S„~n, s ) =i(E„'l ' E—„"')

X(n', s'
i H„ i

n, s)

(n', s'
~
S,

~
n, s ) =i(E„"' —E„")

X(n, s ~H, ~n, s)

(2.22)

(2.23)

We have used the symbols v„, v„and vo for the quanti-
ties R 'BH„/Bk, R 'BH, /Bk, and A' 'BHp/Bk=(A'k)/
m, respectively.

In order to obtain (0, ——,
'

~

V
~
0, —,') we must express

the operators with respect to the axes g', vi, and g, where

g is parallel to Bp. I.et a, P, y be the Euler angles' of the
(g, Q, g} triad with respect to the cubic axes.

For any vector u,

when the states
~

n, s ) and
~

n', s') are nondegenerate
and zero otherwise. The first-order perturbed states are

P„,= ~
n, s)+iS

~

n, s ). The diagonal part of H, is taken
into account using the actual g factor in E„'" instead of
go

The amplitude of the transition rate between states
g;=e'

~

n, s) and 1(&f
——e'

~

n', s') is

Mf; ——(gf ~

V
~
P;) =(n', s'

~
V+i[V,S]

~
n, s) .

(2.24}

For the spin-flip transition of interest in the present work
n=n'=0 and s= —,

' while s'= ——,'. We have taken our
initial state as that for which s = —,

' because in InSb g is

negative.
The expression for V is approximated by

I g K &K

wherei =x,y, z, a.=+,—,g, and

Q+ =Qg+lQ~

The coeScients R,„are given by

R„+ R„' =——,'e'~—(cos acosP+i sina),

R„&——cosa sinP,

R +
——R' =—,

'e' r(si nacosP i co—sa),

R~&——sina sinP,

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

V =e v+(i cope3/e/2e )(n Xe)'g '0' . (2.25) R, + ——R,' = ——,
'e' ski Pn, (2.33)

We have expanded the imaginary exponential e'~' in
powers of q r and neglected first- and higher-order
corrections in the magnetic-dipole coupling. The
electric-quadrupole term i /2[ e v, q r j is not included be-
cause its lowest-order term, namely i /2[@ vp, q r j yields
zero matrix elements between states having opposite spin
orientations. Terms involving [ e v „,q r j and [e v„q r j
give negligible contributions to the spin-flip transitions.
In addition, since we are only interested in transitions be-
tween states with the same Landau quantum number, we
keep only the even-parity terms in V+i[ V, S]. Thus, we
replace this quantity by the even-parity operator

and

R,
&

——cosP . (2.34)

The form of H„ is

Hq ———,'5p g o„[k~,k„k„jhei, ; R;Q&3RJqRJ„.
]CA@V kij

(2.35)

where eI,; is the Levi-Civita antisymmetric tensor. After
some transformations we obtain

V=& vg+e v~+i[e vp&Sg]+i[e vp&S~]'

+(icopz&e/2e}(nXe) g o' . (2.26)

I

Hq = 5p(a~+io—v)Q+ 25p(c'r( io'~)Q +—5pcr~Q( (2.36)

where

Q=(k+k +k k+ —8k k()Fp+2(3k+k k(+3k k+k( —4k(}F,

+2(k+ k k+ —4k+ kt )Fr+2k ~k(F3 —10k k~F', —2k 3 F~

Q&——(k+k k+ —k+k —k k+ +4k+k&)F, +4k+k&F2 —k+F3+H. c.

(2.37)

(2.38)

with and

Fp —
,', i sin——2a sin—2PsinP,

F, = —,', e'~[cos2a sin2P

(2.39) F3 )6 e '~[cos2a sin2P

+i sin2a sinP(1+cos P)] . (2.42)

+i sin2a sinP(3 cos P—1)], The expression for H, is conveniently written in the form
(2.40)

F2 ——
—,', e '~[2cos2acos2P

+i sin2acosP(3cos P—1)],

H, =QD„„k„o„,
pv

(2.41) where

(2.43)
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D„„=a[@,(R „R,„—R Q,„)+c.p. ]

+b[R„„R„„(e„„—e„)+c.p. ] .

We define

f2 1L =1++ «g2 E(+) E(-)
0 0 1

/g f
m'/2m

1+( /g /

m'/2m)

(2.44)

(2.45)

The matrix element of the magnetic dipole interaction
1S

(0, ——,
'

~

(i~p~&e/2e)(nXE). g o
~

0, —,')
l copll +e ("x")(g).(g+ q),

2e

where (g ) = (0
~ g ~

0) is the expectation value of the g
tensor in the lowest Landau level. This quantity is given
by

and

$2
L =1+

m R2El-l El+l
0 0 1

( ~g ~

m'/2m)
1 —( (g )

m'/2m) ' (2.46)

where E„'*' is short for E„"'with s =+—,'. The matrix ele-

ment of the velocity operator associated with the stress-
free interaction H~ is

(0, ——,
'

~

e v„+i[@vo, S.„]~0, —,')

(g&=(go+2g'R +}ao-'}I
+2g "Ro (g'+«i')
—yoRO (g„xx+g yy+g, zz) . (2.50)

In the next section we discuss applications of these re-
sults to specific geometrical arrangements. We quote the
explicit dependence of D+, D, and D& in terms of
the Euler angles a, P, y and the components of the strain
tensor deduced from Eq. (2.44). They are

D+ ———(ey, g„+e g +e„g, )

450
~

[L+F(')(g+ivi)+'L F2 (g ivy)+—3Ff g] g .
0

(2.47)

——[(e —e„)(2+(e„—e„„)g

+(e„„—&yy )g,'],
where, of course, g„+ig» =e +—' sinP and g, =cosP;

(2.51}

In a similar way we obtain

(0, ——,
'

~

e v, +i[a vo, S,) ( 0, 2 )

=2% '[D+ L~(/+i«i)+D L (g—i«i)

+Dr E) (2.48) and

+(e„„—e )sin2p], (2.52)

=(b/4)e '«[(eyy —e„)(cosa cosp —i sina)2

+ (e e„„)—(sina cosp+ i cosa)

D& ———(ia/2)e «[e„,( scocaosP i sinu—)+e (sina cosP+i cosa) —e„ysinP]

+(b/2)e '«sinP[(eyy —e )cosa(cosa cosP i sina)—

+(e„—e„„}sina(sina cosp+i cosa) —(e„„e}cosp].— (2.53)

III. APPI.ICATION TO InSb AND COMPARISON
WITH EXPERIMENTS

The purpose of this section is to apply the general
theory developed in Sec. II to InSb in specific geometrical
configurations and to compare our results with the exper-
imental work reported in Refs. 7, 8, and 10.

In the experiments by Kuchar et al. and Kriechbaum
et al. the sample was subjected to uniaxial stress along
[110]. The external magnetic field Bo and the direction of
propagation of the incident radiation (Faraday geometry)
were parallel to [112].The components of the strain ten-
sor, in this case, are

zx yy 2 ( ll + 12)& zz 12

1

xy 4 T$44& 6yz 6zx 0 &

y, yosin P(3cos P—1) (3.1)

for the cyclotron resonance active configuration [CRA:
EcRA=2 ' (/+i «i)]. For the cyclotron resonance inac-
tive geometry [CRI: ecR, =2 ' (f—ig)] we obtain

where T is the force per unit area and s; are the elastic
compliance coef5cients. We take the Euler angles
a=7m/4, y=0, and leave p arbitrary. The angle p is,
thus, that between [001]and the direction of Bo. We find

l COSP(0, ——'
i

V
i
0,—') = —L [bT(sll —s,2)x&z

+ —,'50RO (3 cos P—1}]
—(a)p, ll~e/4&2eR o)
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(0, ——,
'

~
V~0, —,'&= — L+(aTs44 —65ORO sin P)

copa v e
[go+2g'Ro +2g"Ro +yoRO (1——,'sin p ——,'sin'pcos p)] .

&2e
(3.2)

In Refs. 7 and 8 the contributions due to the stress-
free spin-orbit interaction (proportional to 50), the
magnetic-dipole coupling [terms proportional to ps in

Eqs. (3.1) and (3.2)] and the strain term proportional to b
were not considered. Thus, for incident radiation in the
CRI geometry, the transition amplitude would reduce to

i cosp
L+aTs44 .

2X&2

The quantity L+ is given by Eq. (2.45). However, the au-

thors of Refs. 7 and 8 calculated correctly only the
second term, namely

(fi Im "R )(E'+' E')—
but omitted the first. The latter owes its origin to the
contribution of H, to the velocity operator while the
former is the matrix element of the zero-order velocity
due to the first-order correction, proportional to e, of the
energy eigenstates. We note that for InSb at BO=50
kG

(A /m*Ro)(Eo+' E'~ )—'= —[1+(
~ g ~

m "/2m )]

= —0.76

and 8, Bo was directed along [112]so that cosp=( —,
' )'~~.

The quantities in Eq. (3.3) are, respectively, +3.4i X 10,
—0.36iX10, and 0.6X10 cm/s. The first is thus 10
times larger than the second and the third, being in quad-
rature with the first two, does not contribute more than
3% to the intensity of the spin-fiip transition. Disregard-
ing the term proportional to b, the contributions to the
transition amplitude arising from the CRA polarization
1S

(0, —
—,
'

~
V~ 0, —,

' &= iO 3—3X1.0 cm/s

under the same conditions as above. ' We note that this
term is, like the similar contribution proportional to 50 in

Eq. (3.3), one order of magnitude smaller than the stress-
induced transition amplitude. Thus we conclude that,
taking proper consideration of the correction (value of
L+ ) noted above, the value

~
C2

~

= 5 eV is meaningful.
In the experiments of Jagannath and Aggarwal' the

stress and the magnetic field Bo were directed along the
[111]axis and the wave vectors of the incident and emit-
ted beams were along [110]. In these circumstances
e„„=eyy

——e~z ——
3 ( s ) ) +2$ )2 }T, eyz

——e~~
——E„y ——($'44 T/6 ).

In the ordinary Voigt configuration (a ~~/} we find

while L+ =0.24. Therefore these authors have underes-
timated C2 by a factor of about 3.2.

Since b is expected to be small compared to a, this ap-
proach is satisfactory as long as the term in 50 is small
compared to the stress-dependent term in Eq. (3.2). The
magnetic-dipole amplitude in Eq. (3.1), being proportion-
al to yo, is three orders of magnitude smaller than the
contribution proportional to 5O. It can, therefore, be
neglected. The same conclusion is not permitted for the
magnetic-dipole interaction in Eq. (3.2). In fact, it is this
term which, in conjunction with the zero-stress spin-orbit
coupling, is responsible for the interference effect dis-
cussed in Refs. 3, 4, and 12. We recall that this effect was
used to determine the sign and magnitude of 5O from the
magnetotransmission data. '

Using the numerical parameters for InSb in Refs. 8, 10,
and 3, i.e., P =9.4X 10 eV cm, E =0.2352 eV,
6=0.803 eV, m *=0.015 m, g = —41.6 at 50 kG,
50=2.2X 10 eV cm (Ref. 3), s~ =3.18 X 10
(kbar) ', and

~
C2

~

(corrected) = 5 eV, Eq. (3.2) yields

(0, ——,
'

~

V
~
0, —,

'
& = (+4.2i cosP

—1.3i sin pcos+0. 6)

)& 10 cm/s, (3.3)

for T =1 kbar and Bo——50 kG. The first two terms in
this expression corresponds to the stress-induced and the
stress-free spin-orbit couplings and the third to the
magnetic-dipole amplitude. In the experiments of Refs. 7

(0, —
—,
'

~

V ~0, —,'&=(icop &e/2e)g (g& f, '(3.4)

i.e., the spin-flip transition is due entirely to the
magnetic-dipole radiation. When e ~~/~~ [1 1 2] we find

(0, ——,
'

~

V
~
0, —,

'
& =(i IIi&3)L+(50Ro + ,'aTs~) . (3.5—)

We estimate that at Bo——62 kG and T=2.24 kbar,
50Ro =2X10 ' eVcm, while —,

'
~

a
~
Ts44=3X10

eVcm. Thus the term in 50, through interference with
the stress term, contributes less than 15% to the transi-
tion probability in this experiment. We note that when
T=0, the contribution of the stress-free spin-orbit cou-
pling to the absorption coefficient is less than 1% of that
when T=2.24 kbar. In Ref. 10 only the second term in
L+ was taken into account so that the value of C2 must
be corrected by the factor (L+ —1)/L+. At Bo =62 kG
and T=2.24 kbar, g = —36 which yields L+ ——0.21.
Therefore, the corrected value of

~
C2

~

is 3.8 eV.
As a final example we mention a geometrical arrange-

ment in the extraordinary Voigt (EV) configuration (e
and n perpendicular to Bo) which could be useful in the
determination of both the magnitude and the sign of Cz.
We take e=g, n=Q, Bo Bog parallel to [0——01] and the
stress along [111]. The EV configuration is chosen be-
cause of the absence of the magnetic-dipole interaction.
The selection of the uniaxial stress along [111]eliminates
the term proportional to b in 0,. Taking a=p=O we
find
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(0, ——,
'

~

V
~
0, —,

' ) =(50/2fiR o)L e

+(ias~TL+ /6A) . (3.6)

An interference between the two amplitudes in Eq. (3.6)
is strongest when y =tr/4 or 3n/4 T. hose directions cor-
respond to incident radiation propagating along [110]
and [1 10], respectively. We note that L+ and L have
different signs so that constructive interference when

n~~[T10] would imply that C2 &0. We now estimate the
values of the quantities in Eq. (3.6) for Bo ——50 kG and

T= 1 kbar taking
~

C2
~

=4.4 eV, g = —40, 5o=2.2
X10 eVcm, and m'=0. 015 m. We find (5oL l
2fiRo)= —0 5.4X10 cm/s and (

~

a
~

TL+s44/6A') =1.7
X10 cm/s. Because of the comparable magnitudes of
these quantities we expect the interference effect to be
measurable.
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