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Local empirical pseudopotentials with spin-orbit coupling have been used to calculate transition
energies and transition probabilities for the Si/Ge (4:4) superlattice grown on (001) Si,_,Ge,
(0<x < 1) buffer layers. The characters of superlattice states close to the band edges are shown in
terms of their real-space charge densities and their origin in wave-vector space. Influences of
heterojunction-interface bond length and band offset are examined and the individual contributions
of compositional modulation and atomic relaxation to the enhancement of matrix elements for
cross-gap quasidirect transitions are established. A strain-induced reversal of |m;|=3 and
| my | =;— valence states is demonstrated in terms of the effects on subband energy levels and
polarization-dependence of cross-gap transition probabilities. In the case of the Si/Ge (4:4) super-
lattice grown on Si, a direct comparison is made between theoretical results and recent
electroreflectance data of Pearsall et al. [Phys. Rev. Lett. 58, 729 (1987)]. Comparison is also made
between the results of the present empirical-pseudopotential calculations and results of recent
local-density, quasiparticle, tight-binding, and effective-mass—type calculations. Predictions are
made which can be used to discriminate between different transition assignments which have been
given to the same structure in the electroreflectance spectra for the (4:4) superlattice grown on (001)
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Si.

1. INTRODUCTION

Strained-layer  Si/Si,_,Ge,, Si/(4A™MBY), and
Si/( AMBV!) heterosystems are attracting considerable in-
terest with their prospects of novel electronic and optical
properties and the possibility of a viable route to a Si-
based heterostructure technology. Strained-layer
Si/Si,_,Ge, heterostructures appear to be especially
promising since it is now possible by using buffer layers to
grow defect-free layers of any composition to thicknesses
large enough to be of use in device structures.'~* Thus,
there is considerable potential for substantially enhancing
the existing Si-based integrated-circuit technology.

Although Si is the most technologically important elec-
tronic material, it has a severe disadvantage compared
with, say, GaAs since it is an indirect semiconductor: the
maximum of the valence band is at the Brillouin-zone
center (point I'), while the minimum of the conduction
band is near the Brillouin-zone edge (point X), as shown
in Fig. 1(a). Thus, for example, the quantum efficiency of
Si photodetectors for wavelengths longer than 1 um is
rather poor.* However, by constructing heteroepitaxial
structures of Si and Ge, which is also indirect [see Fig.
1(b)], it may be possible to create new artificial crystals
with quasidirect character. This important problem was
first addressed theoretically as long ago as 1974 by
Gnutzmann and Clausecker,’ although the aspect of
strain resulting from the 4% lattice mismatch between Si
and Ge was not incorporated within their calculations.
The effect of the lattice mismatch was also neglected in
the model calculations of Jackson and People.® However,
consideration of the effects of strain on band structure
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have been shown to be crucial in unravelling otherwise
apparently conflicting experimental measurements.”
More recently, strain-induced confinement has been
demonstrated clearly in the calculations of Morrison
et al.''%2 In that work it was also shown that interesting
momentum-mixing effects leading to enhanced optical
matrix elements for transitions across the zone-center gap
may be expected in short-period Si/Si; sGe, s (001) super-
lattices grown on Si; 15Geg ,5 buffer layers. Effects of dis-
order scattering, studied using the coherent-potential ap-
proximation, have been discussed by Ting and Chang."?,

Turning to the experimental side, Pearsall et al., have
recently presented electroreflectance data on short-period
Si/Ge (001) superlattices grown on (001) Si substrates.'*
It is clear from the electroreflectance spectra that struc-
ture exists which more than likely originates from the
Si/Ge superlattices. Recently, the origin of this struc-
ture, particularly for the case of the Si/Ge (4:4) super-
lattice!® has been investigated using local-density
(and quasiparticle),'® effective-mass—type,!” and tight-
binding'® calculations. In this paper we present results of
calculations based on empirical local pseudopotentials
with spin-orbit coupling which demonstrate that the
basic conjectures of Pearsall et al.!* concerning the
Si/Ge (4:4) superlattice are correct. Comparison is also
made between the results of the present empirical pseudo-
potential calculations and results of the other recent cal-
culations and predictions are made which can be used to
discriminate between different transition assignments
which have been given to the same structure in the
electroreflectance spectra for the (4:4) superlattice grown
on (001) Si.
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FIG. 1. Band structure of (a) Si and (b) Ge along the lines A
and A, calculated using local pseudopotentials with spin-orbit

coupling. The zero of energy has been taken to be the top of the
valence band at I'.

II. METHOD

The calculations are based on an extension of a method
using empirical pseudopotentials, which has been used
successfully to calculate electronic and optical properties
of various superlattlces“ 1219-23 and, more recently,
quantum wires.”* In particular, zone- -folding phenomena
in short- perlod GaAs/AlAs superlattices have been pre-
dicted® in good agreement with experiment.?’ The
reader is referred to these various works for background
to the calculations.

The local form factors for bulk Si and bulk Ge used in
the present calculations have been adjusted so as to
reproduce experimentally determined transition energies
as well as possible, bearing in mind the effects of nonlo-
cality.26—2° The nonzero form factors, as permitted by
symmetry,*® are —0.112, 0.025, and 0.041 a.u. for Si and
—0.117, 0.004 25, and 0.0285 a.u. for Ge. The strained
crystal is viewed as a new crystal with a different Bravais
lattice, which is used to determine the new reciprocal lat-
tice. Most of the contribution to the spin-orbit matrix
elements comes from the regions of space close to the
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atomic sites where the potential is rapidly varying. Since
these core regions are fairly incompressible, it is assumed
that the spm orblt constants A (Ref. 29) in the small-k ap-
proximation®! are mdependent of strain. The lattice con-
stants which we used in the calculations are 4g;=5.431
A and Ag,=5.657 A. Where necessary, the virtual-
crystal approximation is used to model the alloy. In
Tables I and 11, values of energy levels calculated at prin-
cipal symmetry points and at the minimum along A are
given for cubic Si and cubic Ge. Corresponding values
taken from the nonlocal empirical pseudopotential band
structures of Chelikowsky and Cohen?® are shown for
comparison together with values given by Van de Walle
and Martin® and various low-temperature ( ~0 K) tran-
sition energies determined from experiment.

Effects of lattice mismatch on strain accommodation
within heteroepitaxial structures have been discussed by
several authors.’>36—%! For the case of a Si/Ge superlat-
tice with layers consisting of a few monolayers, grown
commensurately on (001) Si, the in-plane lattice constants
Asi xy and A, , of the Si and Ge layers are, to a good

TABLE 1. Eigenvalues for cubic Si at I, X, L, and at the
minimum along A. Comparison is made with selected values
from the nonlocal empirical pseudopotential band structure of
Chelikowsky and Cohen (Ref. 29) and the local-density band
structure of Van de Walle and Martin (Ref. 32), and with exper-
imental transition energies. All energies are in eV.

Point Level Theory Expt.
r Ty —12.58
—12.36*
ry 0.044
8 0.00
¢ 4.42 4.1940.01°
4.10°
¢ 3.51 3.3740.03°
s 3.53
3.432
2.55¢
X X! —2.94
—2.86%
X 1.31
1.172
0.64°
A A 1.17 1.17°
L LY —122
—1.232
Lg 2.28 2.06+0.03¢
2.232
1.45¢
L 4.12
4.34*
L§s 4.13

#Reference 29.
bReference 33.
‘Reference 32.
dReference 34.
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TABLE II. Eigenvalues for cubic Ge at I', X, L, and at the
minimum along A. Comparison is made with selected values
from the nonlocal empirical pseudopotential band structure of
Chelikowsky and Cohen (Ref. 29) and the local-density band
structure of Van de Walle and Martin (Ref. 32), and with exper-
imental transition energies. All energies are in eV.

Point Level Theory Expt.
r Iy —12.20
—12.66*
Iy —0.30 0.29°
—0.29*
g 0.00
| 0.86 0.89°
0.90*
0.02¢
I 3.23 3.00°
3.01#
I's 3.43
3.22%
X X5 —2.66
—3.29*
XS 1.05
1.16*
0.61¢
A 0.90
L Lis —1.09
—1.43*
L§ 0.75 0.74°
0.76
0.09°¢
L§ 4.08
4.16*
L§s 4.16
4.25%

*Reference 29.
"Reference 35.
‘Reference 32.

approximation, expected to be determined by the lattice
constant of the substrate; thus, Ag,, =A4g and
AGe,xy = Agi- The lattice spacings along the superlattice
axis are, to a good approximation,*” determined from
considerations of the elastic response of the individual
bulk crystals. Thus Ag,=4g5 and Ag.,> Age
> AGe,xy; in fact, using the elastic constants given by
Brantley,*? we find Ag.,=5.825 A. Feldman et al. have
recently reported results of ion-channeling experiments
on ultrathin epitaxial films of Ge embedded in Si which
generally support an approach based on macroscopic ar-
guments.

For the purposes of the present calculations, the intera-
tomic spacing d;,, at the heterointerfaces is taken to be
the mean of the lattice spacings of the constituent (un-
strained) materials of  the superlattice, ie.,
d;, =+(Ags+ Ag.). However, in order to check the sen-
sitivity of the results to this choice, calculations have also
been performed with d;,, = A /4 and d;,, = 4 5. /4; this
point will be discussed later.
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III. BULK Si AND Ge

The effect of uniaxial stress on a crystal is to lower the
symmetry of the lattice** and so produce splittings of oth-
erwise degenerate states and modify optical selection
rules.*>*¢ Such effects have been investigated in great de-
tail by optical piezoabsorption, piezoreflectance, and
various other measurements; the reader is referred to the
review papers by Keyes*’ and Pollak.*® In order to illus-
trate the effects of uniaxial stress, the band structures
along A, , and A, of tetragonal Si on (001) cubic Ge and
tetragonal Ge on (001) cubic Si are shown in Fig. 2;
specific energy levels are shown schematically in Figs. 3
and 4. By comparing Fig. 1 with Fig. 2, it can be seen
that splittings have occurred at the important zone-
center (I') and zone-edge (X) regions. Since the I'§ level
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FIG. 2. Band structure of (a) tetragonal Si [on (001) cubic
Ge] and (b) tetragonal Ge [on (001) cubic Si] along the A lines.
The left-hand side of each panel shows the band structure be-
tween I' and X, , and the right-hand side shows the band struc-
ture between I' and X,. The zero of energy has been taken to be
the top of the valence band at I'. These band structures should
be compared with the sections of band structure given on the
right-hand side of Figs. 1(a) and 1(b).
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has full cubic symmetry, it is affected only by the hydro-
static component of the strain. The main effect of the hy-
drostatic component is the transfer of charge away from
the atomic and bond sites to the antibonding region or to
other regions away from the atomic and bond sites. The
[001] strain does not distinguish between L valleys.

At the center of the zone for the case of tetragonal Si
on (001) cubic Ge, the effect of the compressive strain in
the [001] direction is a decrease in the overlap between
the p, orbitals on neighboring atoms and an increase in
the overlap between p, and p, orbitals. This has the
effect of weakening the p, bond and strengthening the
Px>Py bonds. Thus, in the absence of spin-orbit coupling,
the p, (light-hole) state moves up in energy and the p,,p,
(heavy-hole) states move down in energy. There is sub-
stantial mixing of the | 3,+1) and |1,£1) bands, lead-
ing to a repulsion of the levels. Similar but opposite
effects occur in the case of tetragonal Ge on (001) cubic
Si.*¥~% These shifts result in substantial anisotropy in
the effective masses at I'. As far as the lowest conduction
bands are concerned,™ it can be seen from Fig. 3 that, for
tetragonal Si on (001) cubic Ge, the conduction-band

(a) 4.422
4
3533
3.506
3

> ./
9 2.279
> —
=2
b
(]
C
(O]
1.308
1171
1.__
0.0
0 ==
—0.044

TABLE III. Theoretical and experimental values for the
valence-band deformation potential b and the A conduction-
band deformation potential constant =} in Si and Ge. The de-
formation potentials calculated here correspond to values (in
eV) obtained with tetragonal Si on (001) cubic Ge and tetrago-
nal Ge on (001) cubic Si. The values of b have been calculated
with the spin-orbit splittings switched off.

Si Ge
b —2.38¢ —2.744
—2.35° —2.552
—2.19° —3.1°
—2.10+0.10° —2.86+0.15¢
=4 9.73¢ 9.50¢
9.16* 9.42°
3.37° 4.37°
8.6+0.4¢
*Reference 32.
PReference 18.
‘Reference 54.
9This work.
‘Reference 55.
4
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FIG. 3. Energy levels of (a) cubic Si and (b) tetragonal Si [on (001) cubic Ge] at high-symmetry points. The camel’s-back structure

along A is also illustrated.
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FIG. 4. Energy levels of (a) cubic Ge and (b) tetragonal Ge [on (001) cubic Si] at high-symmetry points. The camel’s-back struc-

ture along A is also illustrated.

minima lying along [100], [100], [010], and [010] are split
off and pushed up with respect to those lying in the [001]
and [001] directions. The movement of the two sets of
valleys is reversed for the case of tetragonal Ge on (001)
cubic Si, which becomes indirect on account of the A,,
minima rather than the L minima (see Fig. 4). The depth
of the “camel’s back” is increased in the case of those A
minima which are lowered in energy. There is no
camel’s-back structure associated with the L valleys. De-
formation potentials calculated for these structures are
given in Table III; comparison is made with other values
available in the literature.

IV. Si/Ge (4:4) SUPERLATTICE
ON (001) Si: THEORY

In Fig. 5(a) we show the energy levels calculated at the
center of the superlattice Brillouin zone (SBZ) for the top
three valence states and the lowest five conduction states
in the Si/Ge (4:4) superlattice grown on (001) Si. The
states are labeled either as valence Vi or conduction Ci
states with integer i =1,2,3, ... such that a state closest
to the band edge is assigned i=1. Unless otherwise stat-
ed, all of the results presented in this paper have been ob-
tained from calculations using the offsets given by Van de
Walle and Martin.’? A wealth of states exists both above

and below those illustrated in Fig. 5. In particular, the
states lying immediately above state C5 are associated
with the bulk zone-center antibonding complexes.
Charge densities for these eight states are shown in Fig.
6. These charge densities have been calculated in an x-z
plane which passes through atomic positions. It can be
seen from Fig. 6 that the lowest two conduction-band
states C1 and C2 are fairly well confined in the Si layers,
although state C2 does have some zone-center admixture
resulting in s-type charge-density components in the Ge
layers. The complementary nature of the charge densi-
ties of these two states is similar to that of the charge
densities of the two corresponding states in the Si/Ge
(6:6) superlattice shown by Froyen et al.'® State C3 is
distributed throughout both the Si and Ge layers, while
state C4 is reminiscent of the resonant zone-edge-related
states which are found in other structures such as
GaAs/Al Ga,_,As (001) superlattices.?> State C5 is
clearly rather different from the lower conduction-band
states. It originates predominantly from the zone-center
region of Ge and so its charge density, localized mostly in
the Ge layers, is concentrated around the atomic sites:
the state is predominantly s-like. This is in contrast with
states associated with the zone edge of Si and Ge bulk
crystals, which have a significant amount of p and d char-
acter in their wave functions and so are rather delocal-
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FIG. 5. Energy levels of the top three valence states

(V1-¥3) and the bottom five conduction states (C1-C5) at the
center of the superlattice Brillouin zone in the Si/Ge (4:4) (001)
superlattice. The three cases correspond to different (001) buffer
layers: (a) Si, (b) Siy sGeg s, and (c) Ge. In each case the zero of
energy has been taken as the energy of the top valence state, V1.
Conduction states C1-C4 are zone-edge-related states, while
state C5 is the ground zone-center-related state (see Table IV).

ized or free-electron-like throughout the bulk-crystal unit
cell.’® The mechanism of orthogonalization of interact-
ing zone-center and zone-edge-related states is similar to
that which has been shown to exist in GaAs/AlGaAs
superlattices;** this mechanism is essentially independent
of the distribution of strain within the unit cell. The
momentum-mixing effects, controlled by the phases of the
states, give rise to enhanced cross-gap transition proba-
bilities.

In order to provide further insight into the superlattice
states shown in Fig. 6, the spectral distributions (cf. Ref.
20) of the states are shown in Table IV. It can be seen
from Table IV, for example, that state C5 is constructed
mostly from the lowest two conduction bands of the host
crystal (tetragonal Sijy ;Ge,s). There is coupling to the
coupled*® | m; | =1 bands (bands 2 and 3) and to higher
conduction bands (not shown) and there is significant
momentum mixing across the host-crystal Brillouin zone;
there is no coupling to the | m; | =32 band (band 4). The
full charge density is not purely s-like, but is complicated
by the introduction of sp components into its wave func-
tion. sp, hybridization, concomitant with a shift in
charge density away from the atomic sites, is especially
evident in the Si region. The spectral distributions in
Table IV show that the lowest four conduction-band
states (states C1-C4) are derived essentially from host-
crystal conduction-band states belonging predominantly
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to the outer half of the host-crystal Brillouin zone.

The spectral distributions of states ¥'1-¥3 show that
the uppermost valence-band states are derived from a
rather restricted region of wave-vector space centered on
I'. Bearing in mind that the host crystal states at the top
of valence band correspond to strain-split states (the ener-
gy separation of bands 3 and 4 at the zone center of the
strained host crystal is about 0.1 eV), it is clear from in-
spection of the spectral distributions of the superlattice
valence-band states in Table IV that significant heavy-
hole—light-hole mixing is occurring. There is also cou-
pling between the valence and conduction bands, espe-
cially in the split-off state V3.

V. COMPARISON WITH EXPERIMENT

In order to make a comparison between the results of
the present theory and the results presented by Pearsall
et al.," values of log,, of the modulus squared of the op-
tical matrix elements for all transitions between the
valence- (V' 1-¥3) and conduction-band (C1-C5) states
of Fig. 5(a) have been plotted against transition energy in
the lower part of Fig. 7(a). The present calculations do
not include excitonic effects. The matrix elements used
to construct Fig. 7(a) have been calculated with the polar-
ization vector lying in the plane of the heterointerface.
Corresponding matrix elements calculated for light polar-
ized along the superlattice axis are plotted in Fig. 7(b).
Room-temperature electroreflectance data'* for a (4:4)
superlattice on (001) Si are shown in the upper part of
Fig. 7(a). The theoretical transition energies, based on O-
K bulk band structures, have been reduced by 0.1 eV in
order to facilitate comparison with the electroreflectance
data.

Critical points, necessarily present at points of high
symmetry in the Brillouin zone, introduce structure in
the joint-density-of-states function, which, in turn, gives
rise to structure in the electroreflectance spectrum. In
fact, it can be seen that there is reasonable correlation be-
tween features in the electroreflectance spectra and the
theoretical predictions for zone-center transitions. In
particular, both the theoretical and the experimental
spectra are rich in structure below 1.6 eV, which cannot
arise from an equivalent alloy structure. However, it is
not yet entirely clear how the room-temperature
electroreflectance spectra should be interpreted, especial-
ly in connection with line-shape analysis, the shortness of
the superlattices (breakdown of k, as a good quantum
number), and complications associated with atomic ter-
racing and phonon assistance of transitions. Fluctuations
in the widths of the superlattice layers will readily pro-
duce fluctuations of the superlattice transition energies by
one- or two-tenths of an eV. For example, additional bia-
tomic steps in some of the Si layers would give rise to
reductions in the lowest zone-center transition energies
by about 0.1-0.2 eV, since the lowest conduction-band
states are well confined in the Si layers. Much more in-
formation (e.g., on superlattice length, temperature, po-
larization, electric field, and phase dependence of the
electroreflectance spectra) is required for a more com-
plete identification of critical points.
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Bearing in mind that the layers are only about 5-6 A
in thickness, it is not surprising that the observed transi-
tions are fairly broad, although electroreflectance often
gives rise to broad features in regions with several transi-
tions. The large number of transitions in the range
1.2-1.6 eV account for the broadening on the high-
energy side of the feature observed around 1.2 eV. How-
ever, it would appear that there is some discrepancy in
the assignment of transitions to the features observed be-
tween 2.3 and 3.0 eV. In the present work there are no
allowed transitions at the center of the SBZ which ac-

count for the strong feature at 2.3 eV. The implication of
the present work is that this structure originates from a
critical point(s) away from the zone center. In fact,
several dipole-allowed transitions at O K are predicted to
occur around 2.4 and 2.8 eV (and at higher energies).
These transitions originate from distinct points in the
SBZ associated with mappings of the host-crystal L val-
leys. This contrasts with the results of calculations, apart
from the local-density calculations, described in Refs.
16-18, which indicate that structure at 2.3 eV at 300 K is
also connected with transitions at I from the top of the

TABLE IV. Sum over spin of the moduli squared of the leading coefficients in the expansion of the states shown in Fig. 5(a) at the
center of the superlattice Brillouin zone in the Si/Ge (4:4) superlattice on (001) cubic Si. The wave vectors are in units of 27/(lattice
constant of the unstrained host crystal). For each superlattice state, the coefficients, normalized so that the largest coefficient is 1, are
shown separately for the four valence bands (bands 1-4, with band index increasing with increasing energy) and for the lowest four

conduction bands (bands 5-38).

Wave vector k,

Wave vector k,

—-1.0 —0.5 0.0 0.5 —1.0 —-0.5 0.0 0.5
Band Band
State C5 State Cl
8 0.0000 0.0000 0.0220 0.0000 8 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0001 0.0000 0.0001 7 0.0000 0.0000 0.0000 0.0000
6 0.0013 0.1977 0.0034 0.1993 6 0.6173 0.0070 0.0000 0.0104
5 0.0011 0.0186 1.0000 0.0189 5 1.0000 0.2592 0.0002 0.2031
4 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0018 0.0000 3 0.0000 0.0000 0.0019 0.0000
2 0.0006 0.0085 0.0106 0.0084 2 0.0011 0.0019 0.0119 0.0014
1 0.0006 0.0004 0.0000 0.0004 1 0.0018 0.0013 0.0008 0.0007
State C4 State V1
8 0.0000 0.0000 0.0000 0.0000 8 0.0000 0.0004 0.0004 0.0004
7 0.0000 0.0000 0.0000 0.0000 7 0.0000 0.0007 0.0015 0.0007
6 0.2985 0.0053 0.0000 0.0044 6 0.0000 0.0001 0.0075 0.0001
5 0.2687 1.0000 0.0002 0.9959 5 0.0000 0.0000 0.0001 0.0000
4 0.0000 0.0000 0.0000 0.0000 4 0.0001 0.0038 1.0000 0.0038
3 0.0000 0.0000 0.0015 0.0000 3 0.0001 0.0006 0.2115 0.0006
2 0.0006 0.0005 0.0107 0.0005 2 0.0000 0.0000 0.0047 0.0000
1 0.0005 0.0012 0.0042 0.0012 1 0.0000 0.0000 0.0000 0.0000
State C3 State 12
8 0.0000 0.0000 0.1426 0.0000 8 0.0000 0.0004 0.0001 0.0004
7 0.0000 0.0000 0.0000 0.0000 7 0.0000 0.0000 0.0064 0.0000
6 0.1010 0.0097 0.0088 0.0096 6 0.0002 0.0009 0.0016 0.0009
5 0.0990 1.0000 0.0669 0.9813 5 0.0002 0.0006 0.0014 0.0006
4 0.0000 0.0000 0.0000 0.0000 4 0.0006 0.0012 0.2127 0.0012
3 0.0000 0.0000 0.0001 0.0000 3 0.0006 0.0032 1.0000 0.0032
2 0.0005 0.0026 0.0005 0.0027 2 0.0000 0.0002 0.0004 0.0002
1 0.0004 0.0016 0.0001 0.0016 1 0.0000 0.0000 0.0000 0.0000
State C2 State V3
8 0.0000 0.0000 0.0029 0.0000 8 0.0000 0.0001 0.0000 0.0001
7 0.0000 0.0000 0.0000 0.0000 7 0.0000 0.0000 0.0007 0.0000
6 1.0000 0.0098 0.0002 0.0064 6 0.0012 0.0073 0.0000 0.0073
5 0.6850 0.0482 0.0071 0.1152 5 0.0013 0.0043 0.0101 0.0043
4 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0001 0.0024 0.0001
3 0.0000 0.0000 0.0000 0.0000 3 0.0000 0.0001 0.0011 0.0001
2 0.0020 0.0001 0.0002 0.0004 2 0.0003 0.0010 1.0000 0.0010
1 0.0014 0.0017 0.0000 0.0023 1 0.0003 0.0000 0.0001 0.0000
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FIG. 7. (a) Lower part: Plot of log,o of the modulus squared
of the optical dipole matrix element against transition energy
for all zone-center cross-gap transitions between the valence
and conduction states shown in Fig. 5(a) at x=0. The polariza-
tion vector has been chosen to lie in the [110] direction. The
symbols /A, +, and X represent transitions from states V1, V2,
and V3, respectively. The transition energies have been reduced
by 0.1 eV compared with the calculated values in order to facili-
tate comparison with experiment. Corrections to energy levels
for the shortness of the superlattice embedded within Si are of
the order of the convergence error within the calculation (see
Sec. VI). Upper part: Room-temperature electroreflectance
data of Pearsall et al. (Ref. 14) for a (4:4) superlattice on (001)
Si. Theoretical values for indirect edges (along k, , and k,) and
dipole-allowed transitions (denoted L) associated with mapped
L points are indicated. (b) Plot of log,, of the modulus squared
of the optical dipole matrix element against transition energy
for the case of [001] polarization.

... OPTICAL TRANSITIONS IN Si/Ge SHORT-PERIOD SUPERLATTICES

7543

valence band to state C5 (see Table VIII).

Within the present calculations, “in-plane” (superlat-
tice) indirect edges are expected at 0.79 eV (heavy hole)
and 0.93 eV (light hole). These values are consistent with
recent photocurrent measurements (0.78 and 0.90 eV at
300 K),!6 although it is not clear whether the indirect
edges, or perhaps one of the edges, observed in the exper-
iment are those (at 0.83 and 0.97 eV) associated with the
“axial” (superlattice) indirect edges or, more likely, tran-
sitions from the superlattice valence states to extended
conduction states in the Si layers cladding the superlat-
tice. These points will be discussed further in Sec. VII.

VI. Si/Ge (4:4) SUPERLATTICE
ON (001) Si: THEORY CONTINUED

As mentioned earlier, the present calculations have
been performed with a heterointerface bond length d;,,
taken to be one-quarter of the average of the bulk cubic
lattice constants Ag; and Ag.. In order to test the sensi-
tivity of the results to this choice, two additional calcula-
tions have been performed with two extreme values of
diy: diny=As;/4 and Ag./4. For brevity, we refer to
the three different heterointerface bond-length
configurations as follows:

Case A: d,,,=Ag/4=1.358 A,

Case B: d,,,=(Ag+ Ag,)/8=1.386 A ,
and

Case C: dyy=Ag./4=1.414 A .

Energy levels calculated for the three configurations are
given in Table V and corresponding logarithms of the
modulus squared of the optical matrix elements with
[110] and [001] polarization are presented in Table VI for
the cross-gap transitions from states V1. It can be seen
from Table V that although d;,, changes by only 0.03 A
between cases B and A and between cases B and C, there
are changes of up to =55 meV in some of the energy lev-
els. The zone-center energy gaps for the three cases are
0.85 eV (A), 0.90 eV (B), and 0.93 eV (C). Examination of
the spectral distributions of state V1 for the three cases
(cases A and C not shown) shows that the ratio of the
zone-center component from band 4 to that from band 3
(summing over spin states) is

Case A: 1.0:0.37,
Case B: 1.0:0.21 (see Table IV) ,
Case C: 1.0:0.03 .

Clearly, the degree of heavy-hole-light-hole mixing is
very sensitive to the width of the heterointerface bond
length and, for the structures considered here, is a
minimum in case C. This is reflected, for example, in the
difference between the optical matrix elements for the
transition V1-C5, which shows the largest variation, i.e.,
3 orders of magnitude, between [110] and [001] polariza-
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TABLE V. Shown are the energy levels (in eV) calculated at the center of the superlattice Brillouin
zone for the states closest to the band gap in the Si/Ge (4:4) superlattice on (001) Si. The energy levels
have been calculated using three different heterointerface bond lengths: A, d,, = Ag/4; B,
dw=(Ag+ Ag.)/8; C, djny= Ag. /4. In parentheses are the energy differences for the states in A and
C compared with those given in B; a negative sign has been used to indicate a drop in energy with
respect to the corresponding state in B. The energy levels shown in column B are plotted in Fig. 5(a).
The movement of the various energy levels can be understood in terms of arguments similar to those
presented in Sec. III.

Energy (eV)

State A B C
C5 2.646 (0.055) 2.591 2.536 (—0.055)
C4 1.749 (—0.053) 1.802 1.853 (0.051)
C3 1.490 (—0.024) 1.514 1.539 (0.025)
2 0.982 (—0.048) 1.030 1.075 (0.045)
C1 0.875 (—0.021) 0.896 0.918 (0.022)
Vi 0.022 (0.022) 0.000 —0.013 (—0.013)
V2 —0.180 (—0.037) —0.143 —0.111 (0.032)
V3 —0.387 (0.015) —0.402 —0.418 (—0.016)

TABLE VI. Shown is the log,, of the sum over spin of the modulus squared of the optical matrix ele-
ments with [110] and [001] polarizations for transitions from V1 across the band gap at the center of the
superlattice Brillouin zone in the Si/Ge (4:4) superlattice on (001) cubic Si. The three cases shown for
each polarization correspond to calculations performed with three different heterointerface bond
lengths (see the caption of Table V).

[110] [001]

Initial Final polarization polarization

state state A B C A B C
V1 Cl1 —5.1 —4.9 —4.6 —6.1 —6.3 —-7.1
V1 C2 —34 -3.0 2.5 —4.6 —4.5 —53
V1 C3 —25 —2.1 —1.6 —34 —3.6 —44
V1 C4 —-7.0 —-73 —6.7 —6.9 -175 -85
V1 CS5 —1.7 —1.3 —0.9 —2.3 —2.5 —3.7

TABLE VII. Illustrated is the convergence of log,, of the sum over spin of the modulus squared of
the optical matrix elements with the number n of host-crystal bands (not including spin) in the expan-
sion of the superlattice wave functions. The case with n=8 corresponds to the case in which the four
valence bands (i.e., eight including spin) and the lowest four conduction bands are included in the basis
set; increasing n corresponds to increasing the number of conduction bands. The transitions considered
are transitions with [110] polarization across the band gap from state V1 to the lowest five conduction
states at the center of the superlattice Brillouin zone in the Si/Ge (4:4) superlattice on (001) cubic Si.
Forbidden transitions are particularly sensitive to convergence aspects of the calculations. Indicated in
parentheses are local-density (LD) results for transitions with [100] polarization as calculated by Hy-
bertson and Schliiter (Ref. 16).

Initial Final Number of bands n
state state 8 12 20 40
| 4! C5 —13 —1.4 —1.3 —1.4
Vi C4 —-5.3 —5.4 -7.3 —8.1
Vi C3 —2.1 —2.1 —2.1 —2.1 (LD: —2.2)
V1 2 —34 —-3.1 —3.0 -3.0 (LD: —-3.2)

|4 Cl —4.7 —4.7 —4.9 —5.1
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tion in case C, compared with less than 1 order of magni-
tude in case A (see Table VI). Generally, however, the
squared matrix elements, for a given polarization, appear
to be stable to within 1 order of magnitude over the wide
range of d;,, that has been considered. Apart from shifts
approaching 80 meV for some of the transitions, there are
no significant changes to the picture given in Fig. 7. Un-
certainties in the heterointerface bond length (and
abruptness of the potential) are unlikely to affect the con-
clusions of this work concerning the assignment of transi-
tions to features in the electroreflectance spectrum of
Pearsall et al.'* Apart from the results given in Tables V
and VI, all other results in this paper correspond to case
B.

For completeness, the convergence properties of the
calculations are considered. The calculations are per-
formed in single-precision arithmetic. In Fig. 8 the con-
vergence of the zone-center energy levels in the (4:4)
superlattice are shown as a function of the number of
host-crystal bands included in the expansion set of the su-
perlattice wave functions. It can be seen from this figure
that the energy levels have substantially converged with a
basis set built from 12 (i.e., 24 including spin) host-crystal
bands. The most sensitive state is the s-like state CS.
The fact that the energy levels converge so quickly, even
though the superlattice has such a short period, stems
from the fact that there is very little mixing of bands (see
Table IV). The corresponding rapid convergence of the
dipole matrix elements for the V1-Ci (i =1-5) transitions
is shown in Table VII. The matrix elements for the
quasidirect transitions (with [100] polarization) as calcu-
lated by Hybertson and Schliiter are also shown. Bearing
in mind the many differences between the two types of
calculations and also the various uncertainties which ex-
ist (e.g., see Table VI), the order of magnitude agreement

35
r aQ
L e
T ——— O e e -
3.0_— CS
255
— r e ——— e -
% r ———— PO
8 L T -3
> -
2 b ZIme-—-—-—- o e .
© 15  TTe———— o i LT R
O 15F «C1
o r
1.0
L e e e
0.5_— ——— : _______________ _:V1
L - ————— e - QV
0—ll|llllllllllllllI|11Jlllllllllllll|ll3l
5 10 15 20 25 30 35 40

number of bands

FIG. 8. Convergence of the energy levels of the states shown
in Fig. 5(a) as a function of the number of host-crystal bands in-
cluded in the expansion set of the superlattice wave function.
The zero of energy is the top of the valence band of bulk cubic
Si. The corresponding convergence of optical dipole matrix ele-
ments is shown in Table VII.
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between the results is good. Apart from the results
presented in Fig. 8 and Table VII, the results presented in
this paper have been obtained using an expansion set with
20 bands. Thus, energy levels can be considered to be
converged to within 20-40 meV.

VIL Si/Ge (4:4) SUPERLATTICE
ON (001) Si;_,Ge, (0<x<1)

We turn our attention to two different Si/Ge (4:4)
superlattices for which optical spectra are not available in
the literature. We consider the case of the (4:4) superlat-
tice grown on a Sij sGe, s buffer and on a Ge buffer. The
growth direction is [001] in both cases. Macroscopic ar-
guments, as discussed above, are used to find the atomic
positions; consideration of “bond bending” is not
relevant to the present configurations since the intracellu-
lar distances within each layer transform according to the
macroscopic strain tensor.’’ It is assumed that the lattice
constant of the buffer layer, which is playing the role of
an effective substrate, is unaffected by superlattice defor-
mation. In particular, we note that the Si and Ge layers
in the superlattice on the SiysGe,s buffer layer are
symmetrically strained so that, in principle, there is no
restriction on the total length of such a superlattice in the
growth direction.

Energy levels for these two new superlattices are given
in Figs. 5(b) and 5(M) and log,-squared-matrix-
element—transition-energy plots are given in Figs. 9 and
10. It can be seen from Fig. 5 that there is a close
correspondence between the states in the (4:4) superlat-
tice on the three different buffer layers. The charge densi-
ties of the states for the three superlattices are fairly simi-
lar, although small changes do occur which can be traced
to movement of the various band edges. The major dis-
tinction between the superlattices is the ordering of the
character of the valence states (states V'1-V3). As the Ge
concentration in the buffer layer increases, the strain in
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FIG. 9. Plot of log;, of the modulus squared of the optical
matrix element against transition energy for all zone-center
cross-gap transitions between the valence and conduction states
shown in Fig. 5(b). The polarization vector has been chosen to
lie in the [110] direction.
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FIG. 10. Plot of log,, of the modulus squared of the optical
matrix element against transition energy for all zone-center
cross-gap transitions between the valence and conduction states
shown in Fig. 5(c). The polarization vector has been chosen to
lie in the [110] direction.

the Si and Ge layers changes. For the case of a Si buffer
(or substrate in the case of the experiments that have
been discussed) only the Ge layers are under tetragonal
distortion and the top bulk Ge zone-center valence state
is an |m;| =3 state. For the case of a Ge buffer, only
the Si layers are under tetragonal distortion and the top
bulk Si zone-center valence state is an | m; | =1 state.
Thus, a change in the buffer-layer composition leads to
substantial changes in the band structures of the constitu-
ent Si and Ge layers. For the offsets considered here, the
effective heavy-hole-like barrier remains approximately
constant (about 0.8 eV) for all Si,_,Ge, buffers, whereas
the effective light-hole-like (strictly mixed light-hole and
split-off) barrier drops from about 0.7 to 0.3 eV in going
from a Si to a Ge buffer. This substantial drop in the
effective light-hole-like barrier, coupled with the relative
positions of the zone-center bulk valence states, forces
the | m; | =1 zone-center superlattice state to anticross
the | m; | =3 state. The anticrossing can be seen very
clearly in Fig. 11, in which the energies of the top three
valence states have been plotted as a function of the frac-
tion of Ge in the Si;_,Ge, buffer layer. As the amount
of Ge in the buffer layer is increased from 0% to 100%,
the |m;| =2 state shifts from being the uppermost
zone-center valence state to being the state below the up-
permost valence state. The crossover occurs at a Ge con-
centration of about 60 at. %.

The crossover also manifests itself in a change in opti-
cal properties. To illustrate this, log,, of the modulus
squared optical matrix elements for the transitions be-
tween the top three valence states (V'1-¥3) and conduc-
tion state C5 have been plotted in Fig. 12 for (a) [110] and
(b) [001] polarization as a function of buffer composition.
It can be seen from Fig. 12(b) that the squared matrix ele-
ment for the V2-C5 transition with [001] polarization
drops by about 3 orders of magnitude after the crossing.
This is a reflection of the decrease in p,-like components

x in Siy —x Gey
FIG. 11. Variation in energy level of the top three valence
states at the center of the superlattice Brillouin zone in the
Si/Ge (4:4) superlattice on (001) Si,_,Ge, (0<x < 1) buffer lay-
ers. The zero of energy at each buffer-layer composition has
been taken as the mean energy of the three valence states. An
anticrossing of the m; =% and % states occurs at x =0.6.
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for the eye. The energy levels of the valence states have been
shown in Fig. 11.
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FIG. 13. Longitudinal subband dispersions of band-edge

states in the Si/Ge (4:4) superlattice grown on (001) Si.

in the wave function of state V2 with increasing Ge con-
centration in the buffer layer. The corresponding drop in
the value of the matrix element for the ¥'1-C5 transition
in going from [110] to [001] polarization on a Si buffer is
much less, a reflection of the strong heavy-hole-light-
hole mixing occurring in the superlattice. The hole re-
versal can also be seen directly by comparing the longitu-
dinal subband dispersions of the Si/Ge (4:4) superlattice
on (001) Si and (001) Ge; these dispersions are shown in
Figs. 13 and 14, respectively. It can be seen from Fig. 14
that there is an anticrossing of the top two valence states.
This anticrossing does not occur in the (4:4) superlattice
on Si. It can also be seen that the dispersions of the
lowest conduction states are much smaller than those of
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FIG. 14. Longitudinal subband dispersions of band-edge
states in the Si/Ge (4:4) superlattice grown on (001) Ge.
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the valence-band states. This is due to the fact that the
lowest conduction-band states are derived primarily from
bulk zone-edge states, which are associated with large
longitudinal effective mass. The anticrossings described
here also occur in other Si/Ge superlattices; for a fixed
period, the Ge concentration at which the hole states
cross decreases as the ratio of the width of the Si layer to
the width of the Ge layer increases. Similar reversals
have recently been reported in absorption and
gain measurements on (001)-oriented (Cd,Mn)Te
and (Zn,Mn)Te strained-layer multiquantum-well
structures.”® Hole reversal has also been demon-
strated in In,Ga,_,As/In,Al;_,As (Ref. 59) and
In, Ga,_, As/InP (Ref. 60) strained-layer superlattices.
The drop in the zone-center energy gap in going from

1.2

0.8

0.6

energy (eV)

0.4

1 [
S buffer Ge

FIG. 15. Lowest bulk-crystal conduction-band levels of the
Si (@) and Ge (M) superlattice layers for the case of a Si-
buffered and a Ge-buffered superlattice. Corresponding levels
have been joined by solid (Si) and dashed (Ge) lines. This figure
has been constructed using data from Figs. 3 and 4 and band
offsets given in Ref. 32. The zero of energy has been taken as
the energy of the lowest conduction-band level, i.e., Si A,.
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the Si to the Ge buffer is caused primarily by the upward
movement of the | m, | =3 valence state with increasing
x. For the three cases, the zone-center gap is 0.90 eV (Si
buffer), 0.81 eV (Si;Gey s buffer), and 0.64 eV (Ge
buffer). Such changes in the transition energies, at least
between the Si-buffered and Ge-buffered structures,
should be resolvable in electroreflectance experiments.
By comparing Figs. 7(a), 9, and 10, it can be seen that
changing the buffer-layer composition does not substan-
tially affect the zone-center cross-gap-transition proba-
bilities, a reflection of the dominant role of symmetry in
determining the band structure.

For the case of a Si buffer, the sixfold degeneracy of the
(bulk) A minimum in the Si layers is not lifted, although
the degeneracy of the corresponding minimum in the Ge
layers is lifted (note that these bulk levels are not allowed
levels within the superlattice). As the Ge concentration
in the buffer layer increases, the degeneracy of the Si A
minimum is lifted and the four A, , levels are raised with
respect to the two A, levels. This can be seen clearly in
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Fig. 15, in which the lowest bulk-crystal conduction-band
levels of the Si and Ge layers in the superlattice have
been plotted for the two extreme cases of buffer composi-
tion. The offsets used to construct Fig. 15 are those given
by Van de Walle and Martin.>? It would appear from
Fig. 15 that the lowest transverse zone-edge-related super-
lattice state is likely to be much higher in energy than the
lowest longitudinal zone-edge-related superlattice state
for the case of the Ge buffer. This simple argument does
of course rely on (a) the individual ultrathin layers behav-
ing like bulk crystals, (b) crude aspects of band-folding
being retained in such thin-layered structures, and (c) the
band offsets predicted by Van de Walle and Martin*? be-
ing substantially correct.

In order to check aspects (a) and (b) of this argument,
superlattice states have been calculated at various points
in the SBZ for a range of Si;_, Ge, buffers. Energies of
states V4-CS5 at I', Ay, M, X, and Z are given in Table
VIII for the case of a (001) Si buffer and a (001) Ge buffer.
The point Ay corresponds to a point 82% along the [100]

TABLE VIII. Energy levels of states ¥4-C5 at points (of high symmetry) in the Brillouin zone of the Si/Ge (4:4) superlattice on a
(001) Si substrate and on a (001) Ge substrate. In both cases, the zero of energy has been taken as the energy of state V1 at I'. The
wave vector labeled Ay corresponds to a point 82% along the [100] direction, where there is a minimum in the dispersion of state C1.
The point labeled X corresponds to one of the two distinct points onto which host-crystal L valleys are mapped. The points labeled
M and Z correspond to the edges of the minizone in the [100] and [001] directions, respectively. Energy levels which can be readily
extracted from published results on the (4:4) superlattice have also been included so that general comparisons can be made between
the results (in parentheses) of the different types of calculations, i.e., local density (LD, Ref. 16; the results for the conduction states
include shifts to correct for the usual LD errors), quasiparticle (QP, Ref. 16), tight-binding (TB, Ref. 18), and effective-mass type (EM,
Ref. 17; these results correspond to room temperature). The comparisons are not intended to be strict comparisons since the different
calculations do not have identical inputs. Transition energies read from figures have been rounded to the nearest tenth of an eV.

Superlattice state

Wave
vector V4 V3 V2 Vi Cl 2 C3 C4 C5
Si substrate
r —1.79 —0.40 —-0.14 0.00 0.90 1.03 1.51 1.80 2.59
(1.16) (1.27) (1.75) (1.94) (2.6) LD
(—0.42) (—0.1) (1.1) (1.24) (1.76) (2.0 (24) QP
(—0.1) (1.0 (1.1) (1.6) (1.8) (22) TB
(—=0.1) (0.97) (1.15) (1.59) (=) (2.3) EM
Ay —-3.13 —3.06 —2.89 —2.85 0.79 1.44 2.21 2.56 343
(0.92) LD
(0.85) QP
0.71) EM
M —-3.01 —2.97 —2.80 —2.65 0.99 1.01 1.59 1.86 4.58
(—3) LD
X —1.43 —1.37 —0.99 —0.94 1.43 1.46 2.86 2.89 3.95
(—0.9) LD
VA —0.95 —0.83 —0.80 —0.74 0.83 1.05 1.83 1.91 2.39
Ge substrate
r —1.90 —0.25 —0.11 0.00 0.64 0.79 1.20 1.46 2.21
(—0.12) (0.75) (0.82) (0.93) (1.96) (1.90) EM
Ay —2.82 —2.80 —2.55 —2.52 1.07 1.66 2.24 2.49 3.90
M —2.66 —2.63 —2.49 —2.37 1.25 1.27 1.65 1.83 5.01
X —1.20 —1.16 —1.01 —1.00 1.28 1.30 2.47 2.50 3.79
V4 —0.96 —0.91 —0.87 —0.80 0.53 0.75 1.73 1.74 2.13
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direction, where there is a minimum in the dispersion of
state C1; the position of this minimum is independent of
the buffer composition. The point X corresponds to one
of the two distinct points onto which host-crystal L val-
leys are mapped and the states at this point correspond to
the states labeled L,  in the work of Froyen e al.'® The
points labeled M and Z correspond to the edges of the
SBZ in the [100] and [001] directions, respectively.

It can be seen from Table VIII that state C1 at Ay lies
about 0.1 eV below state C1 at ' for the case of a Si
buffer. For the case of a Ge buffer, state Cl at Ay lies
0.43 eV above state Cl1 at I'. This change in relative
alignment of state C1 at I’ and Ay corresponds well to
the change in alignment of the bulk A,, and A, levels
shown in Fig. 15. Thus, the simple argument based on
strain-split bulk levels appears to work fairly well, even
though the layers in the superlattice are only four mono-
layers thick. In the case of a Si buffer, the lowest conduc-
tion states in the superlattice-buffer system are the bulk A
conduction states in the Si layers cladding the superlat-
tice, whereas the uppermost valence states are the
valence states in the superlattice. The situation is re-
versed in the case of a Ge buffer: the lowest conduction
state [for the (4:4) superlattice] is the superlattice state C1
at Z, whereas the uppermost valence states are the zone-
center states in the Ge layers cladding the superlattice.
Changing the compositions of the layers cladding (se-
quence of) Si/Ge superlattices provides scope for mani-
pulating the alignments.

Although arguments based on strain-induced shifts of
bulk levels appear to hold well for understanding mono-
tonic trends in the energy levels of the zone-edge-related
superlattice states, caution must be exercised for the L-
related states. Oscillations in the energy levels of L-
related nonfolding states have already been described by
Froyen et al.'® for the (2:2)-(4:4)-(6:6) sequence of Si/Ge
superlattices on (001) Si. By comparing Fig. 2(b) in the
paper by Froyen et al.'® with the energy levels of states
C1 and C2 at X in Table VIII, it can be seen that both
calculations predict a small splitting of the nonfolding L-
related states in the Si/Ge (4:4) superlattice on (001) Si.
As expected, this splitting is not affected much by the
buffer layer (see Table VIII) since it is connected essen-
tially with the underlying atomic repeat period for the di-
amond structure in the [001] direction and the matching
of the superlattice layers with respect to this repeat
period.

In order to make a comparison between the results of
the different types of calculation [empirical pseudopoten-
tial (EP), corrected local density (LD), quasiparticle (QP),
tight-binding (TB), and effective-mass-type (EM)], energy
levels which can be readily extracted from published re-
sults'®~!8 have also been included in Table VIII. Com-
parison between EP and LD squared matrix elements has
already been made in Table VI. In the case of the results
for the Si buffer, the different calculations identify the
same states, apart from state C4, which is missing from
the EM results, although there are discrepancies of up to
0.4 eV in the energy levels. Such discrepancies clearly
pose a problem in unravelling the fairly reproducible
electroreflectance spectra of Pearsall et al.'* In the case
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of the Ge buffer, the EM predictions of People!” differ by
up to about 0.5 eV compared with the predictions of the
present EP calculations. Also, the calculations of Peo-
ple!” suggest that transition ¥'1-C4 is quasidirect; this is
not confirmed by the EP calculations. Corrections allow-
ing for the overestimate of the fundamental indirect gap
of Si by 0.1 eV and the underestimate of the I'§-I"S gap of
Ge by 0.2 eV in the full QP calculations®' would tend to
improve agreement between the present results and the
QP results for the (4:4) superlattice on (001) Si.

Returning to the question of quasidirect Si/Ge struc-
tures, it is clear that buffer layers with high concentra-
tions of Ge must be used in order to avoid the prospect of
Si/Ge superlattices being truly indirect on account of
transverse zone-edge-related states or A conduction states
in the buffer layer. However, vestiges of the bulk
camel’s-back structures may still be retained which result
in some downward dispersion along the preferred axis.
This can be seen in Fig. 16 and in Table VIII, which
shows that C1 at Z is 68 and 109 meV below C1 at I for
the (4:4) superlattice on (001) Si and (001) Ge, respective-
ly. The increase in the longitudinal subband dispersion in
going from a Si to a Ge buffer is connected primarily with
the increase (from 137 to 214 meV; see Fig. 3) in the
depth of the camel’s back with increasing tetragonal dis-
tortion in the Si layers. The I'—Z subband width of state
C1 is found to vary linearly with Ge concentration in the
buffer layer. This downward dispersion of state C1 along
the superlattice direction (k,) is not present in all short-
period Si/Ge superlattices. For example, in the (2:6)
superlattice, state C1 disperses upwards in going out from
the zone-center towards Z (see Fig. 17). However, the
width of the miniband is only about 15-17 meV over the
entire range of Si; _,Ge, buffers. The (6:2) superlattices,
for example, are similar to the (4:4) superlattice in that
the minimum in C1 along the k, direction is away from
the zone center. The zone-center V1-C1 transitions in the
(2:6) and (6:2) superlattices are significantly enhanced.

0.9

(4:4) on Si

0.7

energy (eV)

0.6

(4:4) on Ge

0.5

k,

FIG. 16. Longitudinal subband dispersions of state C1 in the
(4:4) superlattice on (001) Si and (001) Ge.
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FIG. 17. Comparison between the longitudinal subband
dispersions of state C1 in the (2:6), (4:4), and (6:2) Si/Ge super-
lattices on (001) Si. The zone-center energy gap decreases with
increasing thickness of the Si layers.

Values of log;, of the modulus squared dipole matrix ele-
ment for the zone-center ¥'1-C1 transition with [110] po-
larization are found to be —1.7 [(2:6) superlattice on
Si;_,Ge,] and —3.5 [(6:2) superlattice on Si, _, Ge, ].

By calculating the energies of cross-gap transitions at
X (from Table VIII), it can be seen that the lower-energy
transitions for the case of a Si buffer fall into two distinct
bands. The (V1/V2)-(C1/C2) transitions span the
range 2.37-2.45 eV and the (V3/V4)-(C1/C2) transi-
tions span the range 2.80-2.89 eV. These bands have
been indicated on Figs. 7(a) at 2.3 and 2.7 eV (allowing
0.1 eV for temperature). Thus, direct allowed non-zone-
center transitions account for the major structure at 2.3
eV in the electroreflectance spectrum which could not be
accounted for on the basis of zone-center transitions.

In order to provide a prediction which can be used to
verify the assignments given in this paper, the energies
calculated for various transitions at I' and X have been
calculated as a function of buffer composition. As the Ge
concentration in the buffer increases, the (V1/V2)-C5
band of zone-center transitions are predicted to overlap
the lowest-energy transitions occurring at X. In terms of
electroreflectance spectra for the Si/Ge (4:4) superlattice,
the structure at 2.3 eV at x=0 is predicted to rise slightly
in energy with increasing x, while the structure occurring
at 2.6 eV at x=0 is predicted to drop and merge with the
structure originating from 2.3 eV. The merger should
occur for Ge concentrations in the region of 30-40 at. %.
In reality, complications with line-shape analysis may
make the merging structures difficult to disentangle.
There should, however, be little ambiguity in detecting
converging structures in the range 0 <x <0.3. Since the
results of the quasiparticle and tight-binding calculations
assign structure at 2.3 eV at x=0 to zone-center transi-
tions, an increase in x would presumably be expected to
give rise to diverging rather than converging structures in
electroreflectance.

Marked nonlinear variations in the (V1/V2)-(C1/C2)
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cross-gap transitions at X are associated with a reversal
of pairs (neglecting spin) of valence states at X with
changing buffer composition; this reversal is intimately
connected with the hole reversal which has been demon-
strated at the zone center. The transitions at X show no
significant  polarization = dependence; the only
polarization-dependent transition is the V2-CS zone-
center transition for x >0.6. However, observation of the
polarization dependence of the V2-C5 zone-center transi-
tion for the case of Ge-rich buffers may be difficult owing
to overlap of transitions, which is predicted for the range
0.6 <x <1.0. The relative alignment of the zone-center
and L-related states is rather independent of band offset.
Electroreflectance and photocurrent experiments on (4:4)
superlattices as a function of buffer composition would
also provide useful information on assignments of in-
direct and pseudodirect transitions in the low-energy
range (0.5-1.4 eV) of the spectrum since the indirect edge
associated with the transverse X-related states is rapidly
swept up in energy as x increases. A check on the third-
derivative nature of the electroreflectance spectrum (e.g.,
by thermoreflectance), especially in the infrared region,
would also be useful.

The question of band offsets in the Si/Ge system has
been tackled using various theoretical models, although
on the experimental side the picture is rather sparse. The
reader is referred to the paper by Cardona and Christen-
sen,%? where various theoretical and experimental predic-
tions have been compared.

In order to check the sensitivity of results presented in
this paper to possible variations in the band offsets, the
calculations for the Si/Ge (4:4) superlattice on Si and Ge
(001) buffer layers have been repeated with offsets
different from those predicted by Van de Walle and Mar-
tin.>? In each case the Ge bulk band structure has been
shifted both up and down by 0.3 eV with respect to the Si

Si BUFFER Ge BUFFER
- 0 + - 0 +
3.0
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25 e
— 2957
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FIG. 18. Energies for transitions at the center of the super-
lattice Brillouin zone between the top two valence states (V1
and ¥2) and the bottom five conduction states (C1-CS5) in the
Si/Ge (4:4) superlattice on a Si buffer (left-hand side) and on a
Ge buffer (right-hand side). In both cases, the column marked O
corresponds to results obtained using the offsets given by Van de
Walle and Martin (Ref. 32). The columns marked + (—) cor-
respond to calculations in which the bulk Ge band structure has
been shifted up (down) by 0.3 eV with respect to the bulk Si
band structures.
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bulk band structure. A shift of 0.3 eV has been chosen
merely to exacerbate any changes which occur as a result
of changing offsets. In Fig. 18 the transition energies for
transitions at the center of the superlattice Brillouin zone
between the top valence states (V1 and V2) and the bot-
tom five conduction states (C1-C5) are shown for the
two Si/Ge (4:4) superlattices. The case of the Si buffer is
shown on the left-hand side and the case of the Ge buffer
is shown on the right-hand side. In both cases, the
column marked O corresponds to results obtained using
the offsets given by Van de Walle and Martin®? and the
columns marked + (—) correspond to calculations in
which the Ge band structure has been shifted up (down)
by 0.3 eV with respect to the Si band structure.

It can be seen from Fig. 18 that the energies for zone-
center transitions from the top of the valence band to the
ground zone-center-related state C5 are fairly indepen-
dent of offset. A similar feature has been observed in
GaAs/Al, Ga,_,As superlattices.”> In general, transi-
tions to and between excited states are more sensitive to
the band offset. Figure 18 shows that energies for transi-
tions between V1, V2, and the bound conduction states
(C1-C3) decrease with increasing valence-band offset,
while energies for the transitions between V1, V2, and the
resonant zone-edge-related state C4 increase with increas-
ing valence-band offset. These trends can be understood
qualitatively in terms of the movement of the bulk band
edges and the connection between these band edges and
various confined (or resonant) states. The optical matrix
elements for all transitions considered in Fig. 18 show lit-
tle variation within the range of offsets considered. Bear-
ing in mind the difficulties associated with the interpreta-
tion of the electroreflectance spectra, it would be prema-
ture to attempt an assessment of the effective band offset.

VIII. COMPOSITIONAL MODULATION
VERSUS ATOMIC RELAXATION

The data in Table VIII and the results concerning the
hole reversal show that both the existence and distribu-
tion of tetragonal distortion play an important role in
determining many of the salient features of the band
structure. This is especially so in connection with the
splittings and relative positions of the transverse and
longitudinal zone-edge-related conduction states and in
the mixing of valence states. However, it is clear from
Figs. 7, 9, and 10 that the distribution of strain within the
superlattice unit cell does not have a substantial effect on
the magnitudes of the squared optical matrix elements for
the zone-center transitions. The sizes of the matrix ele-
ments reflect the mixing of different momentum com-
ponents into the superlattice wave functions. In the ab-
sence of momentum mixing, transitions from states at the
top of the valence band (zone-center-derived) to states
near the bottom of the conduction band (zone-edge-
derived) would be dipole-forbidden. Thus, momentum
mixing, leading to quasidirect transitions, has occurred as
a result of the formation of the superlattice. Since the
formation of the strained-layer superlattice can be viewed
in terms of a process of compositional modulation fol-
lowed by a process of atomic relaxation (strain accommo-
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dation), it is not obvious to what degree compositional
modulation and atomic relaxation have each contributed
to the enhancement of the optical matrix elements.

In order to establish the individual contributions of
these processes to the enhancement of the optical transi-
tion probabilities, additional calculations have been per-
formed in which strain has been artificially removed. For
the case of the (4:4) Si/Ge superlattice on Si, this was
achieved by substituting the tetragonal Ge with a cubic
Ge-like material. The form factors used to generate the
Ge-like band structure were —0.120, 0.050, and 0.036
a.u. The lattice constant of the Ge-like material was tak-
en to be the same as that used for Si (see Sec. II). Bearing
in mind that the tetragonal distortion splits some of the
degeneracies, the Si and Ge bulk energy-band discon-
tinuities at I', X, and L were arranged to be as close as
possible to those used in the control calculations. These
discontinuities, which are not in fact crucial, are shown
in Fig. 19. log,, of the modulus squared optical matrix
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FIG. 19. Band discontinuities at I', X, and L used in the cal-
culations designed to establish the individual contributions of
the processes of compositional modulation and atomic relaxa-
tion to the enhancement of the optical transition probabilities
(see text). The alignment of the energy levels in the diagram on
the left-hand side corresponds to the case of the superlattice
with layers of cubic Si alternating with layers of tetragonal Ge
(see also Fig. 15). The diagram on the right-hand side corre-
sponds to the case of the superlattice with layers of cubic Si al-
ternating with layers of a cubic Ge-like material. In both cases
the buffer layer is Si.
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(i =1-5) zone-center transitions calculated for the two systems
shown in Fig. 19.

elements for the zone-center transitions with [110] polar-
ization from state V1 to the lowest five conduction states
are shown in Fig. 20 for the cubic-tetragonal and cubic-
cubic Si/Ge (4:4) superlattices on Si. The results for the
cubic-tetragonal superlattice are the ones which have al-
ready been shown in Fig. 7(a). Neglecting the unimpor-
tant differences in transition energies between corre-
sponding transitions, it can be seen from Fig. 20 that the
effect of atomic relaxation on the squared matrix ele-
ments for the quasidirect transitions in an enhancement
of approximately 1 order of magnitude. The already al-
lowed direct transitions occurring at about 2.7 eV are
practically unaffected by the introduction of the atomic
relaxation. Thus, strain accommodation appears to pro-
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duce an effect which is not insignificant only on those
transitions which are, in any case, fairly weak. This can
be understood qualitatively in terms of the effect of a per-
turbation on otherwise orthogonal functions within an
overlap integral. The underlying enhancement of the
quasidirect transitions and the phase factors determining
the parities of the states are controlled by the composi-
tional modulation, i.e., the layer thicknesses and the im-
posed reduction in dimensionality.

IX. SUMMARY

In summary, we have used results of pseudopotential
calculations based on local empirical pseudopotentials
with spin-orbit coupling to make a comparison with the
electroreflectance data of Pearsall et al. for the Si/Ge
(4:4) superlattice grown on a (001) Si substrate. The char-
acters of superlattice states have been shown in terms of
their real-space charge density and in terms of their ori-
gin in wave-vector space and a strain-induced crossing of
|m;| =2 and 1 valence states has been demonstrated.
The influence of heterointerface bond length and band
offset have been examined and the individual contribu-
tions of compositional modulation and atomic relaxation
to the enhancement of dipole matrix elements for cross-
gap quasidirect transitions have been established. Predic-
tions have been made for the Si/Ge (4:4) superlattice
grown on the entire range of (001) Si;,_,Ge, O<x<1)
buffer layers. A more detailed study of critical point
structure throughout the superlattice Brillouin zone
which is necessary for detailed interpretation of
electroreflectance spectra will be presented elsewhere.
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