
PHYSICAL REVIEW B VOLUME 38, NUMBER 11 15 OCTOBER 1988-I

GW approach to the calculation of electron self-energies in semiconductors
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Various approximation schemes concerning the calculation of the electron self-energy M for a

semiconductor in the (bubble) GW scheme of Hedin [Phys. Rev. 139, A796 (1965)] are discussed. It
is shown by using a contour-deformation procedure in the complex energy plane that M, as obtained

in the first iteration cycle of the 6%scheme, is Hermitian for real energies
~
s

~
& 3es /2, where es is

the unperturbed energy gap, and non-Hermitian for
~
s

~
&3ss/2. The Taylor expansion for M

around the midgap energy value a=0 has a convergence radius of 3cg/2. Extended use of a {trun-

cated) Taylor series at
~

s
~

& 3es/2 is not capable of giving the non-Hermitian part of M, while

there is also no guarantee that the Hermitian part is correctly obtained in this way.

I. INTRODUCTION

Successful ab initio quasiparticle band-structure calcu-
lations for semiconductors are well within reach nowa-

days. ' There is growing evidence that reliable predic-
tions follow already from the relatively simple (bubble)
GW approximation scheme of Hedin, in which, more-
over, it turns out to be allowed to approximate the
single-particle Green function 6 by its simplified local-
density-approximated version 6' '.

In such a GW calculation of the electron self-energy M,
one is confronted with an integration of the product of G
and the screened Coulomb interaction W along the entire
real energy axis. Direct evaluation of this integral for,
e.g., one of the plane-wave matrix elements of M, reveals
that the integrand consists of a sum over wave vectors k'
in the first Brillouin zone (1BZ}of an expression which
contains zero denominators for a large variety of com-
binations of energy and wave vector.

A possible way to deal with this expression is to apply
a contour-deformation procedure in the complex energy
plane, such that an energy integration results along the
imaginary energy axis. ' The above denominator prob-
lem is then circumvented and the involved k' summa-
tions, after having dealt in an appropriate way with the
1/~ k'

~

singularity due to the Coulomb potential and
the nonanalytic behavior of W around k'=0, can be per-
formed by using a special-point —integration procedure. '

It follows, however, that except for real energies within

the energy gap, the contour-deformation procedure also
gives rise to additional pole contributions, the evaluation
of which still requires the knowledge of W at (almost) real
energies. Though a direct calculation of W at real ener-
gies is well within reach, ' it would certainly be of in-
terest to investigate whether an evaluation of the pole
contributions could be avoided. In the approach of God-
by, Schluter, and Sham to this problem, the above-
mentioned pole contributions appear to play no role,
since these authors advocate the use of the analytical con-
tinuation of the Taylor-expanded self-energy M as ob-

tained for purely imaginary energies [see their expression
(25)]. One of the interesting questions in this connection,
to be discussed below, is to what extent, for real energy
values outside the energy gap this Taylor-expanded self-

energy indeed yields the correct self-energy M.
It is shown that the non-Hermitian part of M cannot be

obtained in this way. As far as the Hermitian part is con-
cerned, the question can in practical cases be answered by
comparing truncated Taylor-series expansions with the
exact expressions. the apparent successes of plasmon-
pole models suggest that a truncated Taylor expansion
may very well be adequate.

In this paper we take the opportunity to rubricate a
number of common and uncommon approximations to M
in the (bubble) GW scheme.

We have chosen to start from plane-wave matrix ele-
ments of the two-point function M(r„r2, e). Though it is

not strictly necessary to do so for all our arguments, it
emphasizes the difficulties encountered in performing
wave-vector summations over 1BZ.

II. THE CONTOUR-DEFORMATION PROCEDURE

We start from an expression for the (bubble) GW self-

energy, in which 6 is replaced by G' ', while W may be
identified by the random-phase-approxitnation (RPA)
bubble expression W' ' in terms of the Green function
O' '. In the O' 'W' ' approximation it is straightforward
to show" that the self-energy in Fourier-transformed
form reads

Moo (k;e)= 2 g g QF««(s, G, G', k, k'},
27TR 0

where G, G', K, K' are reciprocal lattice vectors; k and k'

are wave vectors in 1BZ; c, is the energy; Q the crystal
volume. The functions F occurring in (1) may be ex-
pressed as
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(p)
—l E,'gi /fl

+ oo

FK K.(e, G, G', k, k')=Agdt, i —i, (K)dr'I, i, (K') de'
e —e' —el k —k' —irtosgn p E—I k —k' (2)

Here the dr i, i,.(K)'s are plane-wave coefficients of the Bloch wave functions with band index I and energy E&(k—k'), as
obtained, e.g., in the LDA framework. In what follows the functions WK'K (k', e') will be written

WK. K (k', e') =UK K (k')+ W K'K (k', e')
& (3)

where UK K (k') denotes a matrix eleinent of the bare Coulomb interaction and WK'K. (k', e') the screening correction.
The chemical potential )M lies somewhere in the band gap and separates valence and conduction bands; sgn(x) =x /

~

x ~;
go and rt, are infinitesimally small positive quantities. The function W&'K.(k', e') is a symmetric function of complex
energy e.', and is free of poles in the first and third quadrants in the complex c' plane. This can for instance be verified
from Eq. (C5) of Ref. 12. The asymptotic behavior of

~

W' '(e')
~

is 0(
~

e'~ ) for
~

e'~ ~oo. The expression (2) is
easily arrived at by starting from Eq. (35) of Ref. 11. It is straightforward to show that Eq. (2) may be transformed into
the expression

FK K (eiGiG, k, k )=2~&&ydI i, g(K)dl i, i, (K')
I

(p)
1 +~, WG-K, G —K'(k'e }

X 8{) —., (k —k))U, „.„,(k)+ . J'

+ [8{@—el(k —k'))8(eI(k —k') —e)—8(el(k —k') —p)8(e —el(k —k'))],

X WG —K, G' —K'{k e el(k (4)

where 8 denotes the Heaviside unit-step function. The
first term contributing to (4) is arrived at by closing the
integration contour in (2} in the lower half-e'-plane and
by collecting the residues. The remaining terms in (4) are
obtained by closing the integration contour in (2) by
means of two circular contours in the first and third qua-
drants and the imaginary e' axis. Due to the asymptotic
character of W~K'K. (k';e') for

~

e'
~

~oo the circular con-
tours do not contribute, such that apart from residue
contributions an integral along the imaginary e' axis re-
sults. Note that in case e =a&(k —k') the integral in (4) is
to be considered as a principal-value integral. Consistent
with this, we define 8(0)=—,'. The first term in (4} is rela-

tively easy to evaluate, while the same holds for the in-
tegral contribution as the procedure of obtaining 8' ' at
imaginary energies is relatively simple. A special-
point-integration technique can be employed here.
Closer examination of the residue contributions in (4) re-
veals that valence bands only give rise to pole contribu-
tions if e & eI„(k—k'), whereas conduction bands contrib-
ute only if e & eI, (k —k'). Clearly there are no pole con-
tributions at all if e is located within the (unperturbed)
energy gap of the semiconductor. We will make use of
this further on, where it will be argued that it is possible
(with certain restrictions) by constructing and using the
analytical continuation of the integral term in {4) as a
function of c, to circumvent the use of the pole contribu-
tions in (4) for values of e exceeding the gap region. Be-
fore doing so we first discuss two (static} approximation
schemes to M.

III. STATIC APPROXIMATIONS TO kI

I

F» K (e,G, G', k, k')

277lflgdt g g(K)di g g (K )
I

X[8(p,—e((k —k'))UG K G K (k')],

(5)

with contributions due to the vale, nce bands only; expres-
sion (5) has Hartree-Fock character. It does not, when
used in (1), lead to the Hartree-Fock self-energy, as the
dI i, i, (K) coefficients do not belong to self-consistently-
obtained Hartree-Fock Bloch wave functions.

As a second approximation to M we might consider
the possibility of approximating the function
WG' K G. K.(k';e') occurring in (2) for real e', by a con-
stant. In doing so we will discuss two procedures, the
second of which [Coulomb-hole plus screened-exchange
(COHSEX} approximation] is definitely superior to the
first one [statistically screened Hartree-Fock (SSHF)
apIiroximation]. In the first procedure we put

K (k', e')= WG' K G K (k', 0) in (2), take this
factor out of the integral and perform the remaining c'
integration by closing the integration contour in the
lower half-e'-plane [because of exp( —i g e/fii)], just as in
the procedure of obtaining the earlier result (5):

FK K (e, G, G', k, k')

277l Ag dI g g (K')dl*g g (K')
1

X 8(p —ei(k —k') }WG K G. K.(k', 0),

When considering (2) we might as a first crude approxi-
mation set WK'K (k';E)=0 for real E. The resulting ex-
pression for F~ ~. reads which may be viewed upon as a SSHF expression, or al-
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ternatively as a screened-exchange (SEX) expression (see,
e.g. , Ref. 12, p. 39 for this procedure).

In the second procedure we argue as follows: The ex-
ponential factor exp( i—e'rl(lfi) is essential only in the
evaluation of the integral of the energy-independent part
vo K o. K.(k') contributing to Wo' K o K (k', e').
This c.

' integral, as mentioned abo've, can be done by clos-
ing the contour in the lower half-plane. However, when

I

dealing with the function 8'o' K G K(k', e') in the in-
tegral (2) we easily come to the conclusion, in view of its
asymptotic behavior 0(

~

e'
~

} for
~

e'
~

~oo, that the
exponential factor may as well be replaced by 1. If then
this function 8'o' K G. K(k', e') is subsequently taken
to be a constant, the remaining integral yields
ai[8((M —e((k —k')) —8(e((k —k') —p)] instead of
2m i8((M —s((k —k' }}. The resulting F function is then

F (e, G, G', k, k'}=2miA'g d, „„(K)d;„„(K')[8((u —e, (k —k') }[v ~ (k')+ —'W' '
~ (k', 0)]

I

——,'8(e((k —k') —(u) w o' K o K (k', 0)

=2 'A'yd((, g(K)d('(, (, (K')[8((L(—e((k —k'))wo' K G K (k', 0)——'I'o' K G K(k';0)] .
1

(7)

This result may be identified as the COHSEX approximation '" to the electron self-energy. Clearly both valence and
conduction bands contribute in this approximation. The additional term involving the factor —,

' Wo' K o K.(k', 0)
represents the so-called Coulomb-hole (COH} correction. Indeed, when transforming the matrix elements Mo o.(k', s)
related to (7) back to real space, both the SSHF and COHSEX contributions are recovered in the form presented earlier
by Hedin and Lundqvist. '

IV. DYNAMIC APPROXIMATIONS TO M

We now discuss approximations to M in which the c' dependence of 8" ' will not be neglected. In this connection
we will concentrate on the function

1 +~ (0)

ho Ko K(k k'E)= . dE,
2n i — e —s' —s(( k —k' ) —i rtosgn[(u —e(( k —k' ) ]

which apart from the factor I/2mi is the contribution to the integral occurring in (2) due to the screening only. As
shown before this function can, by the contour-deformation procedure, be written alternatively in terms of an integral
along the imaginary s axis and an additional pole contribution [see Eq. (4)]. We first want to emphasize that the thus-
obtained integral along the imaginary e' axis is nonanalytic at e =a((k —k'). This can, e.g. , be seen by using the follow-
ing identity:

1 +(, ~G —K,G' —K'(k e ) 1
(0)

00 1 ~ p). f ds', ', =—sgn[s —s((k —k')]f dt Wo' Ko «(k';it[s —e((k —k')]),
2mi (E——s' —E((k —k') 1+t (9)

from which the discontinuity at s=s((k —k ) is easily found to be equal to Wo K G K.(k;0). This discontinuity is,
however, precisely canceled by the discontinuity in the pole-contribution term [cf. Eq. (4)] occurring at s=s((k —k ).
Consequently the function h G K o K. (k, k;e) in (8), with which we started in (2), does not have a discontinuity at all
at s=s((k —k').

In view of this, let us introduce the following two functions of a complex variable z:

—1 +(~, ~o-«, o —K(k ~e')(0)

fo—K,o' —K'(k, k', z)= . f de'
2S'l —i oo e'+e( k —k' —z

gG —K,G' —K'(k k z) fo —K, G' —K'(k&k ~z)

+ [8((M —s((k —k') )8(s((k —k' }—Re(z) )—8(e((k —k') —
(M )8( Re(z) —E,(k —k') ) ]

X WG' «G K.(k', z —e((k —k')) .

(10)

It can easily be verified, using (7), (8), and (11), that for
real z the function g' coincides with the function h ', i.e.,

go —K,G' —K'(k&k &E} hG —K, G' —K'(k&k ~e)

(c, real) . (12)

The function f ' of (10) is defined as an integral along the

I

imaginary c.
' axis. The integrand is analytic in the whole

complex z plane except if z=e'+e((k —k'). According
to a well-known theorem of functions of complex vari-
ables' the function f (z) can only be nonanalytic on the
line Re(z)=e((k —k'). Indeed, the function f' has a
discontinuity' across the line Re(z)=e((k —k') equal to

K (k', z —s((k —k')). On the other hand, the



38 GS'APPROACH TO THE CALCULATION OF ELECTRON SELF-. . . 7533

function g' of (11) is continuous across this line since the
e-function contributions precisely cancel the discontinui-

ty in f'. Using Riemann's principle' it follows that

gG «G, «, (k, k', z) is analytic across the line

Re(z) =el(k —k'), and consequently analytic in the whole

complex z plane, except for singularities of the function
Wz «G. «.(k', z —el(k —k'}). Because of this analyti-

city, the function g' can be expanded in a Taylor series
around z =0. The radius of convergence of this series,
R&(k —k'), is determined by the singularity of
WG' «G «(k', z —el(k —k') }which lies closest to z =0.
In RPA the closest singularities will be located at
z=z, =+ min&-Iel, (k"+k') —el„(k"}I+sr(k—k') with
k" in 1BZ, where Ic and lu indicate the energetically
lowest conduction and highest valence band, respectively.
This is based on the observation that
min& Iel, (k"+k') —el„(k")j is the smallest energy e at
which some denominators in the polarization function
P~z'«(k', e) vanish; see, e.g., Eq. (40) of Ref. 11. The ap-
parent nonanalyticity at this c. value is therefore also
present in the functions WG' «G. «(k', e). The abso-
lute value of this energy c is at least equal to the unper-
turbed energy gap eg. Note, incidentally, that this is the
minimum energy required to excite an electron-hole pair
in the semiconductor. Measuring the band energies from
the midgap-energy value, the absolute minimum value for
R&(k —k') equals

RI(k —k') =et+ a((k —k'),

if i stands for a conduction band, and

RI(k —k') =eg —e&(k —k'),

(13)

(14)

if I stands for a valence band.
In view of the above considerations we may now write

bG —«, G' —«'(k k e) r aG —«, G' —«'(k k
m=0

where the coeScients are given by

In order to obtain MG G.(k;s) we have to perform the
summations over k', K, K', 1 as indicated in Eqs. (1) and
(2). As a general result we may then write

MGo. (k;s)=Mo"G. (k)+ g bGG (k, m)E
m=0

(17)

where the first term in the right-hand side of (17) stands
for the Hartree-Fock-like contribution and where the
bo G coeKcients are related to the above a' coeScients
in an obvious way. The radius of convergence of the

1 d
uG —«,G' —«'«k'm )=, gG —«, 6' —«'(k k'z)l =om! z

dm fG «, G «(k k"z )—lz =o. —

series in (17) is determined by the minimum value of all
RI(k —k') radii, which is R =3e /2.

The merit of the expression (17) lies in the fact that as
long as we limit ourselves to

l
E

l
&3es/2, we do not

have to evaluate pole contributions to (4) explicitly. The
direct calculation of 8" ' at such real energies is thus
avoided. In practice it is to be expected that only a few
terms in the Taylor-expansion expression have to be eval-
uated.

The question now arises what to do if
l
e

l
&3sz/2.

This question is relevant since we know that the exact en-

ergy gap in most cases will be larger than the unper-
turbed LDA gap cg, such that in order to obtain a renor-
malized band structure, we very likely have to consider
values of MG G (k;e) at

l
s

l
values exceeding the value

3sz/2, if at least the band structure in the close vicinity
of the energy gap is to be predicted. A first answer to
this question might be to use a truncated version of the
Taylor expansion in (17) for larger

l
e

l
values [note that

the full series expansion in (17) is diuergent for the latter
energy values]. Indeed, it is known that rather good ap-
proximations to 8' ' exist whose dynamical behavior is
completely described in terms of plasmon poles, located
at energies far away from the energy-gap region. Extend-
ed use of (17), employing a few terms in the expansion
only, could therefore very well yield very good approxi-
mate renormalized band structures. This has, however,
in principle to be verified by comparing the thus-obtained
band structures with those obtained in the framework of
an exact evaluation of the integral and pole contributions
to M. Such a direct evaluation of the various contributing
terms in (4) is indeed within reach, including the pole
contributions. In this connection we refer to Ref. 10
where a novel and fast method is outlined for a direct cal-
culation of the RPA dielectric function at real energies.
The necessary W' '-matrix elements in (4) can then easily
be obtained by subsequent inversion of this dielectric
function. However„purely on the basis of the apparent
nonanalyticity of W' '«(«k', )efor

l
s

l
&s the use of

(17) is suspicious and needs further investigation.
Extended use of (17) is of course incapable of giving the

non-Hermitian part of M at real energies for which

l
s

l
& 3sg /2, as the matrix elements MG o (k; e) given by

(17}belong to a Hermitian matrix. This Hermiticity can
be traced back to that of the matrix f ' for real z [see Eq.
(10)], which gives rise to Hermitian matrix elements

b~ G (k, m) in (17). In order to show the Hertniticity of
f for real z, use has to be made of the property
WG «G «(k;e') = WG «G «(k; —E') and of the(O) (O)

Hermiticity of the 8' ' matrix at purely imaginary ener-
gy. Note that these two properties of 8" ' hold as well
for the exact 8' function as can easily be verified from
Eq. (C5) of Ref. 12.

On the other hand, we know that the function M ob-
tained in the (bubble) G' '8' ' approximation at real en-
ergies

l
E

l
&3Eg/2 is a non-Hermitian function indeed.

This is a consequence of the pole contribution occurring
in (4}, which for

l
e —eI(k —k')

l &eg contains a non-
Hermitian part due to the non-Hermiticity of the screen-
ing interaction function 8" '. Again, this non-
Hermiticity is a general property of the exact 8' func-
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tion' for energies exceeding the lowest excitation energy
of the N-particle system. We repeat, however, that ex-
tended use of (17) might very well lead to good predic-
tions for the real parts of quasiparticle energies. Note in
this connection that the non-Hermiticity of M at real en-
ergies

~

s
~

& 3s /2 is closely related to the finite proba-
bility of particles at such an energy to decay through the
excitation of electron-hole pairs (via Coulomb interac-
tion), which is impossible if

~

s
~

&3E /2. The implica-
tions of the Hermitian or non-Hermitian character of M
in the respective energy regions

~

s
~

& 3ez/2 and
s

~
&3sz/2 for quasiparticle lifetimes are not immedi-

ately obvious: one has first to solve Schrodinger-like
quasiparticle equations" in which the above Mo G.(k;s)
matrix elements play their role, leading to eigenvalues
Eti,(s), and secondly one has to solve the equation
Et i,( e) = s, the (possibly complex) solutions e of which are
the quasiparticle energies. The possibility that complex
solutions are obtained even with

~

Re(s }
~

& 3sz/2 cannot
a priori be excluded.

For completeness we mention still another approach to
(4) in which the W ' ' functions occurring in the pole con-
tributions are replaced by their static values at
e —et(k —k')=0, while the integral along the imaginary
axis is computed in full detail for all c. We call this the
static-pole approximation (SPA). The computational ad-
vantage is obvious: We only need to calculate 8' ' along
the imaginary s' axis (including s'=0}. Improved ver-
sions in which the Wo' ~ o. «.(k', s —st(k —k')) func-

tions are replaced by Taylor expansions around
s —st(k —k') =0 may be considered as well.

V. CONCLUSIONS

This paper deals with a variety of static and dynamic
approximations to the electron self-energy matrix ele-
ments MGG(k;e) in the GW-approximation scheme.
While the static approximations are very likely to be of
limited value when considering, e.g., quasiparticle band-
structure calculations, the method of analytically con-
tinuing the functions hG KG. z.(k, k', z) of (8) looks
promising. The procedure advocated by Godby et al. is
in fact very similar to this method. As it is not a priori
certain to what extent the method applies for

~

s
~

-values
exceeding the value 3s /2, the recommendation is that
an evaluation of MGG (k;s) in the spirit of Eq. (17)
should be carefully compared with results to be obtained
from an exact evaluation of all terms in (4). Anyhow,
whether one wants to make use of the analytical-
continuation method or not, the expression (4) in itself
has calculational advantage over expression (2), and as
such is useful if one aims at explicit evaluation of
MG G (k;e) matrix elements. We are currently calculat-
ing the respective contributions to M as given in (4) for
the semiconductor Si. It will enable us, among other
things, to investigate the eventual merits of an extrapola-
tion polynomial obtained by truncating the Taylor expan-
sion in (17).
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