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Large interfacial charge density in unstrained GaAs-AlAs(111) suyerlattices
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We calculate the formation enthalpy of (GaAs)„(AlAs)„(111)superlattices for n =1 and 3 and

compare with previous (001) and (110) calculations. The (111)interfacial double layer and valence-

band offsets for n =3 are also compared with (001) and (110) calculations. A new feature of the

(111)unstrained superlattice is large zeroth-order internal electric fields which set up large interfa-

cial charge densities ( —+4.3 X 10 ' C/m') whose fields very nearly exactly cancel the zeroth-order
fields.

In previous work [hereafter I (Ref. 1) and II (Ref. 2)]
we compared the interfacial double layers,
formation enthalpies, and valence-band offsets of
(GaAs)„(AlAs)„(001)and (110) superlattices with n =1
and 3. In calculating these quantities for (111) superlat-
tices we find unexpectedly large zeroth-order electric
fields across the quantum wells and very large net electric
charges on the interfaces which set up screening fields.
These can arise because the unstrained (111)superlattice
has the same symmetry as the piezoelectrically strained
bulk zinc-blende crystal.

The computational method is well described in I and II
where we claimed relative accuracies of a few meV. We
use the same Gaussian basis set here. We fit charge den-
sities, potentials, and energy densities with the same
mixed set of functions (in, of course, different sym-
metrized combinations) at a set of superlattice random
points generated from the same seminal zinc-blende set.
The only part of the calculation in which there is not an
exact one-to-one correspondence among (001), (110), and
(111) is the k-point sample of the Brillouin zone (BZ).
For (GaAs)3(A1As)3(111) we use a 108-point BZ sample
which is considerably denser and thus even more accu-
rate than the 64- and 48-point (001) and (110) samples.
This configuration is used to calculate the cohesive ener-

gy of the monolayer (ill) superlattice and bulk GaAs
and AlAs as well. Thus the small lack of convergence in
the BZ sum cancels on subtracting the bulk energies from

the superlattice energy to obtain the formation enthalpy.
There are two different (111)interfaces. The interfacial

planes are As planes where each As atom has three Ga
neighbors and one Al neighbor (a Ga interface) or three
Al neighbors and one Ga (an Al interface). The forma-
tion enthalpy of the Ga and Al interfaces cannot be cal-
culated separately since they always occur together in the
superlattice. One could consider a slab with a single in-

terface and two surfaces. If one had a Ga (Al) interface,
one surface plane would consist of As atoms on the AlAs
(GaAs) side and the other surface plane would consist of
Ga (Al) atoms. Thus the enthalpy of the two different in-

terfaces cannot be disentangled from the surface energy
of the four different kinds of surfaces. Because the inter-
faces have equal and opposite charges in the superlattice,
we must assume that they are also charged in the slab
and that this charge comes from the surfaces so that the
surfaces cannot be ignored by considering the interface to
lie between two semi-infinite bulk crystals.

In Table I we list the contributions to the total and
cohesive energies and formation enthalpy of the one-
and three-layer (111) superlattices, and in Table II we
compare the formation enthalpy per unit cell (i.e., per
pair of interfaces) for the (001), (110), and (111)one- and
three-layer superlattices. We can see that the
(GaAs)&(A1As), (001)-(110)and (111) superlattices are un-

stable to disproportionation, that (GaAs)3(A1As)3(001) is

almost stable while (GaAs)3(A1As)3(111) and (110)are, re-

TABLE I. Four contributions to the total and cohesive energies and formation enthalpy of
3(GaAs) &(AlAs) l(111)and (GaAs)3(A1As)3(111) at lattice constant a =5.6622 A.
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EE„,ld (Ry)
Et.t.l «y)
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E„h(eV)
3( EGaAs +EAlAs

) (eV)
Formation enthalpy (meV)

n=1

23.497 231
9.330470

—36.438 163

—100.902 834
—104.513296
—100.933 842

48.6985
48.7289
30.4

n =3

23.497 679
9.330 278

—36.439 803

—100.902 834
—104.514 680
—100.933 842

48.7173
48.7289
11.6
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will yield exactly the same fields in its bulklike regions. '

One might have supposed as Mailhiot and Smith'

(MS) did when considering piezoelectric fields in strained,
i.e., lattice-mismatched, (111) superlattices that long-

range electric fields are screened by the dielectric con-
stants of the constituent semiconductors. The un-

screened piezoelectric fields are, even for 1.5% strains,
only about 10%%uo of the zeroth-order fields we are con-
cerned with and are not distinguishable from them, in the
sense that once the cubic symmetry is destroyed by pick-
ing out one of the [111]directions, other changes which
do not further reduce the symmetry add nothing basically
new. Because in the unstrained superlattice all atoms ex-

cept those at the interface remain in tetrahedral atomic

surroundings, there is a physical difference between the
two cases. Thus it is quite possible that the MS prescrip-
tion for obtaining the piezoelectric fields is essentially
correct' but that internal fields in unstrained slabs are al-
most completely screened. MS have pointed out that
internal electric fields reduce energy-band gaps. The
detection of reduced gaps would be one way to prove the
existence of such fields.
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