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SU(2) gauge symmetry of the large-U limit of the Hubbard model
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We demonstrate explicitly the SU(2) gauge invariance of the large-U limit of the Hubbard

model, i.e., the Heisenberg model written in terms of electron operators with a constraint of one

particle per site. We use this result to demonstrate the equivalence of two apparently very dif-

ferent mean-field theories.

The strong-coupling, near-half-filled Hubbard model
has received considerable attention lately as a model for
the high-T, superconductors. ' It has been pointed out
that the large-U limit with half filling has a local SU(2)
gauge invariance. 2 This may be important for under-
standing the proposed gapless spinon spectrum3 and also
the superconductivity-destroying phase coherence at ex-
actly half filling. This gauge symmetry is also useful for
analyzing various mean-field theories. 45 The physical
reason that motivated us to study this SU(2) symmetry
lies in the fact that the spinons in the resonating-valence-
bond (RVB) state have to be created or destroyed in pairs.
The physical effect of c;t is the same as that of c;—,.

In this report, we give an explicit proof of invariance
under time depende-nt SU(2) gauge transformations. We
then use the gauge invariance to show the equivalence, at
half filling, of two apparently quite different mean-field
solutions: d-wave superconductivity and the "flux phase"
found in the large nlimit of t-he Heisenberg model.

The Mott limit of the half-filled Hubbard model (with
J=t 2/U) is the Heisenberg model

H =(J/4)Q(c'. toPc.p) (cytoPcyp), (1)
x,y

with the constraint c,'tc„, 1. H is, of course, invariant
under the usual global rotational symmetry under which
the electron operators (c1,c2) transform as an SU(2) dou-
blet: c, cpgP. Here gP is an SU(2) matrix. We can
form a second SU(2) doublet out of the creation operators
(cj, —cd). It is convenient to combine these two doublets
into a 2 x 2 matrix:

(2)

Under a global SU(2) transformation, ttt,p transforms as

y
V.p- W.gf .

We now define a second local SU(2) by left matrix multi-
plication of y

:&~p "~~Ãrp.

Clearly, these two SU(2)'s commute. The [global SU(2)]

upon integrating by parts with respect to time and throw-
ing away a constant anticommutator term. However,
there seem to be two problems with this gauge invariance.
First of all, to complete our specification of the Heisen-
berg model we want to impose the constraint to one parti-
cle per site: ct'c, —1 —,

' tryta'ttr=0. This constraint is
not gauge invariant. Furthermore, L is not invariant
under time-dependent gauge transformations: y, (t)

h, (t) y, (t). Miraculously, these two difficulties cancel
each other. We make L invariant under time-dependent
gauge transformations by adding the temporal component
of a gauge field:

L ,' gtrtitt(id/dt+—Ao, ) ter„—H. (4)

spin operators can be written S —,
' trytyoT, where aT is

the transpose of o. Since

gt~tl t

it follows that S is invariant under the local SU(2). Thus,
the Heisenberg interaction

(J/16)g(trytttt, cr ) (trtityttityo )
X,g

is invariant under local gauge transformations: ttt,

h„y„where the transformation matrices 1't„depend on
the site x.

Note that this gauge symmetry is not a symmetry of the
Heisenberg model per se, since it acts trivially on the spin
operators. Rather, it is a symmetry of the large-U limit of
the Hubbard model. It is a consequence of the redundan-

cy of parametrizing spin operators in terms of electron
operators. As discussed below, projecting out gauge-
invariant states corresponds to the Gutzwiller projection
on the states with singly occupied sites. For large but
finite U, there is an approximate gauge symmetry, in the
sense that the symmetry is only broken in the sector of the
Hilbert space containing high-energy states [energies of
0(U)l.

The Langrangian, L= lg„c t'(id/dt)c„Hl, can also-
be written in a gauge-invariant way:

L =
2 gtrtirt(id/dt) tit, H, —
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Here, Ao is an SU(2) gauge field, i.e., a traceless, Hermi-
tian matrix which can be written Ao= —,

' o"Ao. Under

gauge transformations, Ao transforms as Ao h L40
+i(d/dt)]h t. L is now manifestly gauge invariant.
However, we seem to have changed the Lagrangian in an
unjustified way by adding the gauge field. Fortunately,
we have simply introduced Langrange multipliers which
enforce the constraint of one particle per site. The three
components Ao of the matrix Ao are Lagrange multipliers,
since they appear only linearly in L. They constrain to 0
the three c[uantities, trytcyy. Observing that
trito+y 2c'ic t, we see that the three constraints are
ct'ct 0, c1c2 0, ct'c, 1. These constraints mean, re-
spectively, that there are no vacant sites, no doubly occu-
pied sites, and one particle per site. The first two are, of
course, implied by the third, so this is simply a redundant

way of imposing the third constraint. This completes our
proof of the SU(2) gauge invariance of the Heisenberg
model, when written in terms of electron operators.

Next, we consider the nature of the gauge symmetry
breaking that occurs for finite U/t and other than half
filling. For finite U/t we promote Ao from Lagrange mul-

tipliers to Hubbard-Stratonovich fields by adding an extra
term to L: L +(3/8U)g, trA j. Integrating out Ao
shifts H by the Hubbard interaction

H-H+(U/2)g, (CJ c„.—1)'.

This corresponds to a mass term for the gauge field, Ao,
which breaks the gauge invariance. Invariance under
time-independent gauge transformations is, in fact, pre-
served by this mass term. The addition of a chemical po-
tential to move away from half filling corresponds to add-
ing a term to L: L L +(3 Up /8) Etr Ac11r'. This term
breaks the invariance under time-independent gauge
transformations down to the U(1) subgroup: y

exp(ieo')y, or equivalently, c, e'ec, . Naively add-
ing a hopping term completely destroys all remnants of
the gauge symmetry. However, when U/t is large, and
the doping is small, the hopping term has a small effect
and the gauge invariance is only broken by a small
amount. This approximate gauge invariance may still be
useful for describing the effective low-energy theory of
spin excitations. Furthermore, by introducing separate
spinon and holon operators, a related U(1) gauge invari-
ance can be defined in the theory with finite U/t and the
non-doubly-occupied sector projected out. 6

As an application of this gauge invariance we will now
show the equivalence of two apparently very different
mean-field theories of the half-filled Hubbard model.
Baskaran, Zou, and Anderson (BZA), and also Rucken-
stein, Hirschfeld, and Appel, applied a Bardeen-Cooper-
Schrieffer-type factorization to the Heisenberg interac-
tion, assuming that

((C1zc1y C1xc1y)):Axy

was nonzero for nearest-neighbor points x and y. Al-
though BZA assumed that d,„y was the same for all
nearest-neighbor pairs, Kotliar later considered the pos-
sibility that h, y might have a different phase for links run-
ning in the x or y directions. Defining A„and hy to be the

~12 ~23 ~43 ~14 e I~ I

Using the U(1) gauge invariance they observed that only
the phase of X12Z2g4g14, the flux, is observable. 7 [For the
SU(n) models with n & 2 there is only a U(1) gauge in-
variance. ]

BZA and Kotliar found a gapless Fermi surface in the
s-wave or d-wave phase, but a gap vanishing only at
(~ n/2, ~ n/2) in the mixed phase. AfHeck and Marston
found a gapless Fermi surface in the uniform phase and a
gap vanishing only at (~ n/2, + x/2) in the flux phase.
They also found that the four points where the gap van-
ishes can be shifted in wave-vector space by a gauge trans-
formation. Only the dispersion relation for particle-hole
excitations is meaningful. In fact, using an SU(2) gauge
transformation, we can show that BZA's or Kotliar's s-
wave or d-wave state is equivalent to AfHeck and
Marston's uniform phase and Kotliar's mixed phase is
equivalent to AfHeck and Marston's flux phase. To show
this, we make a gauge transformation on the even sublat-
tice, points 2 and 4: c1 C1t, c1 —cv. This has the fol-
lowing effect on the order parameters:

~12 12& ~23 ~23& ~43 ~43y ~14 ~14 ~ (8)

Thus, we see that the s-wave state (all 6 real) maps into
the uniform phase. The mixed state maps into 112

X43 1, X23 114 i —This h.as flux n, and can be
mapped into the form given above by a further U(1)
gauge transformation.

Since we have introduced the temporal component of a
gauge field, it is natural to ask if we can also find the spa-
tial components. These can be introduced by rewriting
the Heisenberg interaction using a second Hubbard-
Stratonovich transformation. First, it is convenient to
rewrite the Heisenberg interaction as

H=( J/8)+try, 1tiytyyyf —.
X,g

value of A,y for these two cases, Kotliar then discussed tne
s wave, A, =Ay; the d wave, t4= —hy; and mixed,

it~ .At half filling, he found that the s-wave and d-
wave cases were equivalent. This equivalence follows
from making a U(1) gauge transformation on every
second row: c„ inc, T. his changes the sign of A„but
not Ay. However, we cannot map the mixed state into the
s-wave state by a gauge transformation.

AfHeck and Marston considered a different mean-field
theory based on the large nl-imit. They considered a
nonzero expectation value for

&c t'cy. & =—X,y. (7)

They considered general configurations invariant under
translations across diagonals of the square lattice. This
permits four different Z's since there are two inequivalent
points as well as two inequivalent directions. Labeling the
four points around a plaquette 1, 2, 3, and 4, they dis-
cussed two relevant phases:

uniform: f12 Z23 Z43 X]4,

and
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We now introduce a Hubbard-Stratonovich matrix field
U~ (not to be confused with the Hubbard coupling con-
stant), U,y

= (J/8) yr„yet, by rewriting the Hamiltonian

H =gtr [(8/J) UstyU„y+ (@AU,„yy+ H.c.) ) .
x,y

(8/J) U„„=
&xy ~xy

, ~xy &xy,

where U is an SU(2) matrix. (Here, we are referring to
the ordinary bosonic elements of the Hubbard-Stra-
tonovich matrix. ) The integral over X, 6 can be written as
the integral over (~X( + ~A( )'~ times the (normal
Haar measure) integral over the SU(2) matrix U. We ex-

pect that the integral over (~Z( 2+ ~A~
2)'~2 will be dom-

inated by a nonzero saddle point with fluctuations being
unimportant at low energies. Thus the low-energy sector
will be described entirely by normal lattice gauge theory
variables.

The phases of X and 6 were interpreted as U(1) gauge

U transforms under gauge transformations as U„y
h, U„&hyt. This is the same transformation as that of

the lattice variables in a lattice gauge theory. In that
case, the matrix U is restricted to be an SU(2) matrix and
thus can be written U,„=exp(i8,„),where the matrix 8 is
traceless and Hermitian. In the continuum limit, e,z be-
comes the component of the gauge field corresponding to
the direction of the link xy. The components of the ma-
trix U are

fields previously. 5 s We now see that X and A together
form an SU(2) gauge field. The essence of what we have
done here is similar to field-theoretic descriptions of other
problems in which the constraints on the physical vari-
ables are difficult to handle. The fermions can now be in-
tegrated out in principle since it is only a linear problem
and the SU(2) gauge symmetry average takes care of the
Gutzwiller projection. We may characterize the differ-
ence between the uniform and the flux phase (or s-wave
state versus mixed state) in an SU(2) invariant
way, by the sign of the SU(2) plaquette variable:
trU, &U„,U,„U,. This quantity is positive in the uniform
phase and negative in the flux phase. The correlations
among the gauge fields may, as suggested in Refs. 3 and 5,
affect various lattice modes of the oxygens through the
overlap charges on the links, leading to the ortho-
rhombic-tetragonal transition in the high-T, oxides.

In conclusion, we have explicitly demonstrated the local
SU(2) gauge invariance of the Heisenberg model. With
the help of this symmetry we have showed the equivalence
of two apparently different mean-field theories. Further
work on this non-Abelian gauge theory may be the best
way to understand the mysteries of the RVB state.
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