
PHYSICAL REVIEW B VOLUME 38, NUMBER 11 15 OCTOBER 1988-I

Inhomogeneity expansion for the incommensurate charge-density-wave system
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We propose an effective-Lagrange description together with a practical calculational method, the
inhomogeneity expansion, for the quasi-one-dimensional incommensurate charge-density-wave sys-

tem. Corrections next to the leading order for the observables are calculated and estimated. We
show that in the lowest-order approximation with the pinning potential being neglected the resul-

tant expressions for those physical quantities of interest are consistent with known results.

I. INTRODUCTIGN

Since the discovery of the synthesis of NbSe3 in 1975,
extensive studies for the quasi-one-dimensional incom-
mensurate charge-density-wave (ICDW) system are re-
ported in the literature. A rich variety of very interesting
experimental phenomena have been discovered.
Meanwhile they were more or. less successfully interpret-
ed by various kinds of phenomenological or semi-
phenomenological theories. ' But it seems to us that a
unified and completely microscopic quantum description
for the ICDW is still left open.

Recently, it was reported ' that from a field-
theoretical point of view, the 1+ 1 abelian chiral anoma-
ly does make sense for the quasi-one-dimensional ICDW
system, and chiral symmetry may play an important role
in the microscopic description for the ICDW. Pursuing
along this line, in this paper, we would like to propose a
systematic approximation scheme, the inhomogeneity ex-
pansion, as a concrete calculational scheme for observ-
ables in the ICDW system. Corrections next to the lead-
ing order for the observables are calculated and estimat-
ed. We show further that if we neglect the pinning po-
tential for simplicity, in the lowest-order approximation
we obtain the expressions for the observables which are
consistent with the known and generally accepted re-
sults. '

In order to make this paper self-contained, we first
summarize some of the discussions in Ref. 2, and then de-
velop a simple but rather elaborate field-theoretical tech-
nique for the ICDW.

II. CHIRAL SYMMETRY
AND CHIRAL ANOMALY IN ICDW

Following the main lines of the Lee-Rice-Anderson
approach we can derive the following Lagrange density
for the quasi-one-dimensional ICDW system from the
Frohlich Lagrangian of interacting electron-phonon sys-
tern. Here we neglect the external random potential for
simplicity, and we have
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where po is the linear density of the ion masses, vF is the
Fermi velocity, coo is the optical phonon frequency and U&

is defined by t) to (Q)/2BQ, f is the two component spi-
nor

(2.2)

r s are Pauli matrices, and P& and Pz are the real and
imaginary parts of

p(x) =p, (x)+i /2(x) =rl(x)e'r'"' (2.3)

with rl(x) and X(x) being the corresponding modulus and
phase of the P(x). These fields are related respectively to
the nonrelativistic electron Schrodinger wave field V(x)
(the spin degree of freedom is kept implicitly) and the
phonon wave field u (x) (i.e., the one-dimensional ion dis-
placement) by
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u (x)=P(x)e'~"+P"(x)e
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where Q /2 =pF is the Fermi momentum which is incom-
mensurate with the lattice spacing and the acoustic part
of the phonon field has been neglected.

In this derivation we keep only the electron modes
which are near the Fermi surface as well as the phonon
modes of momenta near +Q. So we assume QR(x),
fL (x), and P(x) are all slowly varying functions, namely,
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In order to relate Lagrangian Eq. (2.1) to the standard
(1+ 1)-dimensional relativistic field theory expression, we
introduce
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then the expression of the Lagrangian X, Eq. (2.1), be-
comes

are conserved only in the classical case and it was shown
in Ref. 2 that

(2.12)

where &
. ) means the quantum average over the

ground state and E(x) is the electric field (in this note, we
discuss only the zero temperature case but the generaliza-
tion to the finite temperature is straightforward). The
right-hand side of Eq. (2.12) has the correct chiral anom-
aly. It is due to the quantum fluctuations of the ground
state, i.e., the Fermi sea, and breaks the chiral symmetry.
Expressing Eq. (2.12) in terms of the observable quanti-
ties p(x) and j (x), we have equivalently
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j "(x)=(uFp(x)j (x))= —— =uFQ(x)r"p(x),
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(2.8)

where A "(x) is the vector potential and E (x } the electric
field.

The Lagrangian (2.6} is invariant under the following
global gauge and chiral transformations:

g(x) ~e' 1(|(x), g(x) ~g(x)e
(2.7)

P(x}~e ' f(x), f(x)~g(x)e ', X~X—2P .
The global gauge invariance merely reflects the charge
conservation. But the unexpected chiral invariance is a
dynamical one and it is based among others on the in-
commensurability of the system.

The Noether current, induced by the Gauge transfor-
mation, is the usual conserved electric current and has its
"relativistic" expression as

III. EFFECTIVE LAGRANGIAN

In order to develop a systematic approximation
scheme, we first derive an effective Lagrangian which in-
volves only the phonon variables by carrying out the
functional integral for the electron variables. Here we
follow the chiral transformation method discussed by
Bardeen et aI. and applied to the ICDW system by
Krive and Rozhavsky.

We introduce the path integral expression for the gen-
erating functional of the system

Z[A]= f . f [dg][dg][dX][dyt]exp —' fd x X

(3.1)

where X is given by Eq. (2.6). And then, we change the
variables into the chiral transformed field P', f ' as

iysr/2 —,
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so the electron Lagrangian X,&, Eq. (2.6), can be now
written as

with charge density p(x) =f (x)1(t(x) and j(x)
=uFQ (x)~3$(x). The Noether current induced by the
chiral transformation

where
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The generating functional Eq. (3.1) then becomes

(3.3)

Z'[A]= f f [df'[dg'][dyt][dX]exp —fd2x(X+X') (3.4}
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where X' is the contribution from the Jacobian of the
transformation
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and X,l is formally defined as
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(3.14)
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This is a well known result in field theory. But since
all the procedures which we are going through are rather
involved, we prefer to prove it by utilizing the following
known formula appeared in the Schwinger model
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Since the functional integral on the right-hand side of
Eqs. (3.7) and (3.8) are exactly the same, by comparing
these two equations and rescaling them with appropriate
constants, we obtain Eq. (3.5) with X' in the form of Eq.
(3.6). We note that Eq. (3.6) is gauge invariant although
we had used the Lorentz gauge for the derivation.

The integration over f' and P
' is more involved. How-

ever, formally one can ~rite

where we fixed the gauge as the Lorentz gauge, i.e.,
B&A "=0. In Eq. (3.7) we have also taken account of both
the pseudospin and the spin degrees of freedom. Replac-
ing A„by 8„and g, g by P', P

' just to change the nota-
tion, we may also have

In the above equations we have introduced the gap pa-
rameter 6 to replace the modulus of the phonon variables

g and the dimensionless coupling constant A, as

6 6 4—ri, A, = N(eF)V'2 '
2 Poo
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where N(eF ) is the density of states at the Fermi surface.
&(&F) = 1 I2~uF.

After this procedure, the original electron Lagrangian
Eel, Eq. (2.6), is split effectively into three parts.

(1) X,„, which represents a direct phonon-phase—
electric-field interaction with an universal coefficient. It
provides the anomaly physics.

(2) An effective free Lagrangian of phonon-phase vari-
able X, X&, in which the corresponding original free La-
grangian has been combined together. This Lagrangian
describes exactly the main physics of the phase mode
propagation which were worked out by Lee, Rice, and
Anderson.

(3) Eel, for which we shall develop a systematic inho-
mogeneity expansion in the following section. From the
definition of Xe~, Eqs. (3.14) and (3.15), it is clear that the
A„and P dependence of X„is only through 8„,which is
defined in Eq. (3.3).

Next we examine whether we can derive the anomalous
Ward-Takahashi identity, Eq. (2.13), from the effective
Lagrangian. Taking the functional derivatives of
f d x X,l with respect to 8„(x) and b,(x), respectively,
we have

Z[A]= f . f [de][dX]exp —' f d xZ, ff
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where Sp means tracing both the spin and pseudospin in-
dices, and
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which is in accordance with Eq. (3.15). In Eq. (3.17), x
and p are operators, and

Taking derivatives of Xdi with respect to A„(x), b(x),
and X(x), we obtain the following generalized Ward-
Takahashi relations:

Moreover, Eq. (3.17) and all the relevant previous expres-
sions are understood as being defined in the Euclidean
space, although we write those expressions formally in
terms of the Minkowsky notation. It is important to note
that Eqs. (3.16)—(3.18}now fix the precise meaning of the
X,i which is originally introduced forinally by a formal
functional integration over the 1(' and 1(

' variables. and
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Using Eq. (3.19) we can easily verify that the equation
of motion (3.21) for the phase variable X(x) is precisely
the anoinalous Ward-Takahashi identity, Eq. (2.13),
which is independent of the details of 8(x,x).

IV. INHOMOGENEITY EXPANSION

In this section we discuss the calculation of 8(x,x),
which appears in the equations of motion. Since it is de-
rived from the gauge invariant Eq. (3.14) by a functional
derivative, therefore 8(x,x) should also be gauge invari-
ant.

We use the following identity:

8 (x,x) = &x
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the expectation bracket, i.e., the functional integration
over 5 and 7, since the frequency and the wave number
of 6 and X are restricted to satisfy Eq. (2.5), the order of
the spatial and temporal derivatives for the physical
quantity could be taken as the order of a convergent ex-
pansion. Then Eqs. (4.1) and (4.2) provide a systematic
expansion scheme: inhomogeneity expansion for the
practical calculation. Moreover, examining the relevant
expressions in Eqs. (2.13}, (3.3), and (3.21), it is not
diScult to verify that such an inhomogeneity expansion
would be consistent with the following estimation: The
derivative of the vector potential should be one order
smaller than the derivative of the phase order parameter.
It is also obvious that the derivative of the amplitude of
the order parameter should be the smallest one.

We regularize the integration in Eq. (4.1) to keep the
gauge invariance. Then the integration variable p„can
be shifted to a finite amount. Especially if we shift p„by
uFeB„(x)Ic, we can eliminate B„(x)in the denominator.
We then obtain
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and d p =Ug dp dp
Because our whole discussion is under the condition

that only the electrons near the Fermi surface are taken
account of, the spatial and temporal variation of the
physical quantities are accordingly smooth compared to
the inverse of the Fermi wave vector or that of the opti-
cal phonon frequency. Although 8(x,x) is used inside
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We consider the Sp[y"8(x,x)] first. The n =0 term of
Eq. (4.3) will not contribute since

D(x,x} p
(2iriri) uFy"p„+b, (x}

which is independent of B„,and

Sp[y"D(x,x)]„O=O . (4.5)

Moreover, it can be easily seen that for all the terms with
even number n we have

Sp[ y
"8(x,x )]„,„,„=0,

where the d'Alembertian 2 means B„B".Eq. (4.6) is real-
ly a gauge invariant form.

Substituting Eq. (4.6) into Eqs. (3.19) and (3.21), the
charge-current expression has the form
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which is a part of the Furry's theorem. Therefore, a
straightforward calculation for the contribution of the
n =1 term gives
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and the equation of motion for the phase variable
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ln fact, all the contribution of Eq. (4.6) can be described
by an effective Lagrangian as

e AVF 8 (x)(gi'"CI di'd")B„—(x)
6~c2a2 "

e AUF AUF
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2e
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2
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where rn is the electron mass and N the linear density of
the conduction electrons. It is again proportional to
(A'co/b ) .

Utilizing Eq. (4.3) we can also calculate Sp[8(x,x)] or-

which is the integration of Eq. (3.16).
The contribution of Sp[y"8(x,x)] to the equation of

motion for the phase order parameter has roughly the or-
der of (irico/b, ) where co is the characteristic frequency
for the temporal variation of the system. In our discus-
sion, co should be kept much smaller than the optical
phonon frequency coo, therefore, so far iru(io is not larger
than 6, such corrections are not important. For the
charge-current expressions Eq. (4.7), we should further
estimate the electric-6eld-dependent term compared to
the diamagnetic current eA(x}g (x)f(x)/mc, since the
latter has been neglected at the very beginning of our ap-
proach. The ratio of the two is of the order of

der by order in a similar way. The contribution of the
n =0 term will no longer vanish and gives the well
known leading order contribution to the gap equation.
The next-to-leading order of Sp[5(x,x)] can also be in-
tegrated according to Eq. (3.16), and therefore can be de-
scribed by an effective Lagrangian which has the follow-
ing form

AVF
b, (x)Clb(x) . (4. 1 1)

The ratio of Eq. (4.11) to the amplitude part of the free-
phonon Lagrangian, Lz, Eq. (3.11},is of the order of

A, 'ti coo

4+2

As discussed above, the derivative of the amplitude of the
order parameter is the smallest among the others, the
effective Lagrangian, Eq. (4.11), is also unimportant.

Since all the corrections are inversely proportional to
it might be interesting to see the effect of the

temperature-dependent cases where the 6 will decrease as
the temperature increases.

According to the above discussion, the leading-order
contribution of X,&, Eq. (3.14), incorporated with the oth-
er parts of the Lagrangian as shown in Eqs. (3.10)—(3.13),
gives a fairly good description for the zero-temperature
ICDW system with pinning potential being neglected.
Then Eqs. (4.7), (3.20), and (4.8) becoine
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where we have utilized the expression for the m*, Eq.
(4.18). Usually it is reasonable to have

2 m 2 2
Ug « UF «UF ~

m*

Therefore, so far we have our system that

rr(co) = le n

m *co
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(4.17)

4Am*= 1+ m,
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n =2 pF dp 2mUF

PF 2M 7TR

Equation (4.17) is just the low-frequency limit of the con-
ductivity derived by Lee, Rice, and Anderson, where m '
is the effective mass first introduced by Frohlich. More-
over, with the formal solution of Eq. (4.15}for the phase
order parameter, the second term on the right-hand side
of Eq. (2.13) will have the following form:
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Notice in Eqs. (4.12)—(4.15) we have also taken the mean
field approximation. Equation (2.13) as well as Eq. (4.15)
[in connection with Eqs. (4.12) and (4.13)] reveal the in-
teresting intuition of the classical approach, e.g., Ref. 1,
that of a sliding charge density wave being accelerated by
an applied electric field. The ICDW is in fact a collective
degree of freedom of the Fermi sea below the Peierls gap.
It is a Goldstone mode intimately connected to the in-
comrnensurately symmetry broken Peierls' ground state.
The 1+ 1 abelian chiral anomaly describes the accelera-
tion mechanism of the Goldstone mode in an applied
electric field.

The solution for 5 from Eq. (4.14) for the static, homo-
geneous case is straightforward, we can easily have that

&
—1/A.

If we solve the equation for the phase variable, Eq. (4.15)
formally for the spatial homogeneous case, and substitute
it into the current expression, Eq. (4.13), we can immedi-
ately derive

ej (ru) =e(~)&(o)) (4.16)
with

2 2
A,fl cop—

ppr) 2
—u& X(x)-=1+ar' ax' = 4a'

(4.19}

Substituting Eq. (4.19) into the anomalous Ward identity
Eq. (2.13) with the same approximation, it becomes

1 B(j(x)) B(p(x)) m 2e—UF E x
uF dr Bx m 7Tfl

(4.20)

The above discussion indicates the interesting physics of
the phase variable which propagates as a Goldstone mode
with the phason propagator as

r

2pp A, R cop
1+G' 4h' dr'

vg AA cop

u 4b'
J

82

Bx

The term of Eq. (4.19) thus contributes an interesting "re-
normalization" effect, m/m', to the anomaly in accord
with the Goldstone mode mechanism. This is in fact a
phonon drag effect to the sliding charge density waves.
Equation (4.20) is an interesting equation which connects
mainly the observable quantities so far the random pin-
ning potential can be neglected.

In summary, in this note, we suggest a well defined ab
initio effective Lagrangian incorporated with a practically
applicable calculation method. It provides an interesting
way for the further microscopic studies, especially for the
future applications of the field theoretic technique to the
ICDW system with random pinning potentials.
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at2

we could neglect u&B /BX and (m/m')uzi /BX com-
pared to uF8 /BX, and the above equation simplifies to
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