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Roughening transition on Cu(113): A quantitative analysis of new experimental results
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From an analysis of the peak shapes in helium-diffraction experiments on Cu(113), the roughen-
ing transition temperature is estimated to be 720+50 K. From fits to the experimental results of
Monte Carlo data on various models, particularly on a terrace-step-kink model, effective energies
for the creation of a kink on a step, Wo, and for the interaction between steps, 8'„, are obtained as
Wo ——800+50 K and W„=560+50 K.

I. INTRODUCTION

Roughening phenomena have been studied in much de-
tail since the first theoretical work by Burton, Cabrera,
and Frank, ' which showed that crystal faces are flat at
low temperatures, but may become rough at and above
the roughening transition temperature Tz. In particu-
lar, the nature of that transition is very subtle and it is
usually described by a Kosterlitz-Thouless-type theory.
On the experimental side, thermal roughening has been
observed, for instance, directly for solid-helium crystal
shapes, and convincing indirect evidence for roughening
has been provided for various other materials as well.

As far as close-packed faces of metals are concerned, it
was believed for a long time that possible roughening
transition temperatures would be higher than bulk melt-
ing temperatures. Only a few years ago Lapujoulade
et al. suggested —on the basis of helium-diffraction
experiments —that stepped (ill), l-odd, faces of copper
may undergo roughening transitions well below the melt-
ing point. Subsequent theoretical interpretations were
given by Villain, Grempel, and Lapujoulade (hereafter
abbreviated as VGL) for copper and by den Nijs et al.
for helium-difFraction experiments on Ni(115), providing
additional evidence for roughening transitions. However
a fully quantitative and generally accepted theoretical
analysis of these and other recent experimental findings
on both copper and nickel is still missing. Specifically,
the VGL approach describes the (1 ll) faces as (100) ter-
races separated by steps with effective energies to create a
kink on a step and to shift a step with respect to the
neighboring ones. This is in contrast to a description
based on nearest-neighbor bond energies which does not
explicitly include step-step interactions. '

The VGL picture has been applied to the case of the
(113)face of copper in a Monte Carlo (MC) study of Selke
and Szpilka' for a simplified terrace-step-kink (TSK}
model characterized by two parameters for the effective
kink creation energy 8'0 and the step-step interaction en-

ergy W„. In particular, they showed that the measured
helium-diffraction intensities ' could be reproduced quite

well, assuming a roughening transition temperature T„
of about 650+50 K. ' This estimate turned out to be
largely independent of the actual ratio W„/Wo with a
typical onset of the sharp decrease in intensity occurring
at roughly 0.8TR, a behavior reminiscent of that for oth-
er quantities close to the roughening temperature.

In this article we report on new helium-diffraction
measurements of peak shapes for Cu(113) and their quan-
titative interpretation in terms of various microscopic
models, especially the TKS model studied by Selke and
Szpilka. The analysis of peak shapes allows us to esti-
mate Tz as well as the effective energies Wo and 8'„.

The outline of the paper is as follows: In Sec. II some
of the main ideas of the VGL approach are briefly re-
called and various models intended to mimic the (113}
face are introduced. In Sec. III we present fits of the ex-
perimental results to Monte Carlo data for the TSK mod-
el and an anisotropic discrete Gaussian model as well as
to analytic expressions for an anisotropic body-centered
solid-on-solid (BCSOS) model. " Estimates for T„, Wo,
and 8'„are given and we discuss the thermal behavior of
the kink density. A short summary concludes the article.

II. ANALYSIS OF VARIOUS MODELS

A. Ronghening of the (113)face

The perfect (113) face consists of (100) terraces separat-
ed by (111) steps. Its structure is depicted in Fig. 1 to-
gether with that of Cu(110), whose terraces and steps
have (111)orientation; similarities between the two struc-
tures will be used below.

Thermal excitations cause the steps to meander by
forming kinks. Eventually a roughening transition will
occur at the roughening temperature T„. The disorder
induced by the meandering steps may be described by the
fluctuations of the step positions (or by the fluctuations of
the surface height relative to a reference plane), i.e., by
the correlation function G(r)=([h(r) —h(0)] ), where
h (r) is the step function displacement (or height) at point
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fcc (113) In the following subsections some of the main aspects
of the VGL approach are recalled. This approach is then
applied in the analysis of various models exhibiting the
salient features of the roughening of the (113)face.

B. The VGL approach (Ref. 6)

U =+1

fcc (110)

h=+1

The VGL approach may be applied to a variety of mi-
croscopic models for roughening transitions, particularly
on (1 ll) faces. The surface energy is expressed in terms
of a continuous variable for the step displacement (or sur-
face height) in a sine-Gordon —type form, i.e., the free en-

ergy is that of an anisotropic harmonic lattice adding a
localization term to favor integral values of the displace-
ment. Explicitly, the free energy is written as

9'= —,
' g(rlq„+rl'q )

~ u~ ~
+ V g [1—cos(2nu „)] .

m, n

h=+1

FIG. 1. Schematic representation of the fcc (110) and fcc
(113)faces showing their similarities. The disordered structures
are denoted either by the step displacement u or the height h

normal to the face. G (m, n ) = I (p }=, lnp+ const
T

(2)

u „ is the step-displacement variable for step m at posi-
tion n; uq is its Fourier transform. The variable u~ „ that
appears in the cosine (or localization) term is the long-
wavelength part of u „. The surface tensions g and rl'

refer to the directions parallel and perpendicular to the
steps, respectively; they depend on temperature. A re-
normalization analysis shows that the localization poten-
tial V vanishes above Tlt and that the free energy be-
comes purely harmonic. Then, from the equipartition
theorem for the normal modes uq, the correlation func-
tion G(r)=G(m, n) is obtained as

r, r being a two-dimensional vector. In the case of a
Kosterlitz-Thouless-type roughening transition, in the
limit of divergent distance (

~

r
~

~ ao ) G (r) approaches a
finite value for temperatures below Tz, while it diverges
logarithmically in that limit for T)TR. The microscopic
behavior is related to the macroscopic shape of crystals
through the surface tension. Around a specific orienta-
tion of the crystal face, sharp facets exist only for
T & TR, whereas the crystal is rounded for T & TR. '

Helium-diffraction experiments provide microscopic in-
formation on the surface topography over distances of
typically 10—100 A.

To interpret helium-diffraction data on Cu and Ni (1 1l)
faces, two types of models have been considered. Villain
et al. introduced Hamiltonians describing the energetics
of the faces in terms of effective kink-creation and step-
step interaction energies. den Nijs et al. proposed a
model which does not include explicitly the step-step in-
teraction, but only nearest-neighbor interactions. (It
causes the difference between the two approaches to be-
come more pronounced as l increases}. In the latter case
a scaling relation for TR as a function of I is obtained. As
shown below, our experimental results support neither
this scaling relation nor the type of anisotropy of G(r}
suggested by den Nijs et al. , but they can be explained
quantitatively quite well within the VGL approach.

with
'

1 /2 ' 1/2

+n
7l

For T & T„, G(m, n) remains bounded even for large
values of m and n. The roughening transition tempera-
ture T„ is determined by the following identity:

TR 2
(3)

I(EK)=Io(EK) g e ""(e " ) . (4)
m, n

AK is the momentum transfer parallel to the face, hk is
the total momentum transfer, and t is the elementary
translation between domains. Io(AK) is the form factor
of the ordered face. Using a Gaussian approximation for
the thermal averages, Eq. (4) can be transformed into

where g and g' are the renormalized surface tensions.
Under the assumption that the surface is made of

domains of constant height and that diffraction from
domain walls is negligible, the scattered intensity can be
written as
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1 (2—r)
„„Pr/2)&((3 —r)/2)

1/2 ' 1/2

(a hK +2mp) + (a„b,K„+2n v) — 1 —— (5)

i.e., a superposition of power laws centered at Bragg posi-
tions, v, p being the peak indices. EE„and bE~ are the
components of hK, respectively, perpendicular and
parallel to the steps. a„ is the distance between adjacent
steps and a„ is the interatomic distance along steps. w is
given by

When the incidence conditions are varied, r varies be-
tween zero and a maximum, ~,„. v=0 corresponds to
in-phase conditions where interferences from different
domains are constructive, giving rise to a Bragg peak.
v =~,„corresponds to antiphase conditions, for which
the peak of interest is broadened and exhibits a high sen-
sitivity to surface disorder. By fitting the experimentally
observed peak shapes, preferably under antiphase condi-
tions, estimates for s and ri/g' can be obtained. There-
fore, from helium-diffraction experiments on stepped
faces undergoing a roughening transition, quantities such
as the anisotropic surface tensions can be determined.

C. A terrace-step-kink model

In a previous study on Cu(113), Selke and Szpilka con-
sidered the following Hamiltonian

%= g Wo(u „+,—u „) + g f(u +, „—u „) .

are shifted relative to each other by one-half an intera-
tomic distance.

To determine from the model the experimentally
relevant quantities ~ and q/rI' [see Eqs. (4) and (5)] as
functions of temperature, we calculated the correlation
function G(m, n) using Monte Carlo techniques. In
agreement with the VGL approach, G(m, n) is well de-
scribed by Eq. (2), even for relatively small values of m
and n, and therefore estimates for g and g' can be ob-
tained quite easily from best its of the Monte Carlo data.
The roughening transition temperature follows from the
universality relation (3).

4'e performed standard Monte Carlo simulations on
systems of M steps with M atoms along each step. Full
periodic boundary conditions were used. Usually we
chose M =50; a few runs were done with M =100 to
check possible size dependencies of the estimates for rl
and g' (no appreciable finite-size effect was detected). We
considered three different values of the ratio W /Wp,
namely W„/Wo= 1, 0.2, and 0.7. In the case of weak in-
teractions between steps, typical relaxation and fluctua-
tion times become quite large and run lengths of at least a
few 10 Monte Carlo steps per site (MCS/S) were neces-
sary to obtain reliable results.

Typical results for G(m, n) are displayed in Fig. 2,
showing the correlations parallel and perpendicular to
the steps at a temperature above TR. Obviously the ex-

m, n m, n

Wp is an effective kink-creation energy describing the in-
teractions along steps; f is an effective interaction be-
tween steps (averaging over near-neighbor bond energies
as well as long-range elastic and dipolar forces) and is
given by

0 for Lu )0,
f (b,u)= W„ for hu = —1,

for hu & —1.
PV

o

l

1.6—

1,2

1.0

0.8

I I I I I IIl I I I I I III

W„ is the effective energy per atom to shift steps towards
each other from their crystallographic. Overhangs or
double steps are forbidden by the condition for hu g —1.
It is assumed that no energy is needed to move steps
apart from each other from their crystallographic posi-
tions, reflecting the rapid decrease of the forces between
steps (of elastic or dipolar origin). Of course, the model
involves some drastic simplifications. However, as has
been shown earlier ' and as will be shown below, the
model seems to contain the essential physics to describe
roughening phenomena on stepped faces. It should be
noted that in the ansatz of an effective step-step interac-
tion parameter W„, the details of the crystallographic
structure can be presumably neglected. In particular, we
do not take into account that the atoms in adjacent steps

C

6

0.6

0.2—

Wo — 1.00
W = 020
T = 075

5Q x 5Q

0—
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FIG. 2. Typical correlation function for the TSK model,
8'0 ——1.00, W„=0.20, T =0.75, sample size 50)&50, and length
of Monte Carlo run 4)& 10' MCS/S.
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pected logarithmic behavior already holds for quite short
distances. The rounding at distances close to one-half of
the linear dimension of the system, i.e., M/2=25, is
mainly due to the periodic boundary conditions. These
and similar results confirm that the roughening transition
is, indeed, of Kosterlitz-Thouless type for the TSK model
(also see Refs. 6 and 10) with the prefactor in front of the
logarithmic term taking a universal value at Tz. The es-
timates obtained for ~ and q/g' are discussed in Sec. II E
together with results on variants of the model.

D. The anisotroyic BCSOS model
TSK (a) fcc (113) (b)

Although Monte Carlo methods are very powerful and
versatile, it is convenient to have analytical expressions at
one's disposal, especially when fits to the experiment are
needed.

Villain et al. studied the case of a very large anisotropy
(W„&&Wo); neglecting the renormalization of g' (i.e.,
setting q'= W„},they calculated the value of r} in a one-
dimensional approximation for a single step. They found

g=(T/2}e ' . Nevertheless, in spite of their qualita-Wo /T

tively correct behavior, the above formulas suffer from
various uncertainties which preclude precise determina-
tion of 8'o and W„. It is shown below that exact analyti-
cal results may be obtained for the anisotropic body-
centered solid-on-solid (BCSOS) model, "which turns out
to be closely related to the TSK model. '

As discussed above, the TSK model introduces
effective couplings between neighboring steps, disregard-
ing some aspects of the geometry (shift of one-half an in-
teratomic distance in the atomic position in adjacent
steps). Indeed, by studying in the following the aniso-
tropic BCSOS model, " we show that the details of the
geometry are of minor importance, once the values of the
kink-creation energy 8'0 and of the effective interaction
between adjacent steps, 8'„, have been fixed.

The anisotropic BCSOS model" describes the roughen-
ing of the (110) face of a fcc crystal. Possible
configurations are depicted in Fig. 3, together with those
of the TSK model and the real (113) face, exhibiting the
differences in the details of the geometry. We now intro-
duce anisotropic couplings J„and J, which may be in-
terpreted in the same spirit as the effective couplings in
the TSK model, i.e., J corresponds to the kink-creation
energy, while J„denotes the effective interaction between
adjacent steps. In spite of the different geometry [see
Figs. 3(a)—3(d), it follows immediately that the simplest
excitations with only one kink cost the same energy for
the TSK model and the anisotropic BCSOS model, pro-
vided J~=8'o and 2J =8'„. Using these identities, we
found good agreement between analytical results on the
BCSOS model and the numerical data for the TSK mod-
el, demonstrating that geometrical aspects are of rather
minor relevance.

Similar to the isotropic case, " exact results on the an-
isotropic BC SOS model may be obtained via the
correspondence to six-vertex models. ' ' The roughen-
ing transition is of the Kosterlitz-Thouless type. The
transition temperature T& is given by

, Mo

~ ~ ~

0

~ ~0
~ ~

~ ~

0
0 —0
Op0

fry (110I (() BCSQS (d)

FIG. 3. Step configurations for (a) the TSK model, (b) a fcc
(113) face, and (c) a fcc (110) face. Panel (d) shows the
correspondence between step positions and atomic heights in re-
lation with the BCSOS model. ~ represents atoms in layer 1, o
atoms in layer 2 (above 1), and atoms in layer 3. J„and J„
are the coupling constants referred to in the model.

b,(T„)= —1,
where

5(T)=(x +y 1)/2xy, —

with x =exp( —J„/kaT) and y =exp( J~/kaT). Fo—r
T & Tz and for large distances, the correlation function
G(m, n) can be written as

G(m, n)=((u „—uoo) ) = A (T)lnp+const,

with p =~ +P pf and

(10)

(gg')' =(n /2)T[ —,
' —( I/m )arcsinb ] . (12)

The anisotropy A, ( =g/g', see Sec. II B) is known exact-
ly only for T =2T„,where

A, =g/q'=x /y (13)

As will be argued below, Eq. (13}seems to give a good ap-

3 (T}=(2/n )[—,
' —( I/m. )arcsinb(T)]

A comparison to the VGL approach (see Sec. II B) yields
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proximation also at other temperatures T)TR. It
should be noted that for the BCSOS model the surface
roughness is limited due to the constraint that the height
differences at neighboring sites cannot be larger than uni-
ty. One obtains A ( T~ ao )=6/H, and the exponent r/2
in the power law describing the line shape of the
diffraction peaks [Eq. (4)] has a maximal value of —,'.

Expanding r/2 for T close to Tz leads to

20—

~ 1.8—
C

1.6—
CL
C)
CX

1.4—
C)

1.2—

TSK BCSOS

AN

NR—

r/2= —,'+C(T —T„)'i (14) 1.0—

i.e., v is expected to exhibit a cusp at Tz. The question of
its observability is discussed in Sec. III.

& 2.0—
C

1.8—

W„/Wo = 1

J„/J„=05
J„= Wo

E. The anisotropic discrete Gaussian model

&= g J„(u +, „—u „) +J(u „+,—u „)
m, n

(15)

Comparison of the energies for the lowest excitations,
such as single kinks, with those in the TSK model yields
the correspondence J = Wo and 2J„=W„(restriction to
low-lying excitations seems to be reasonable, because,
even at the roughening temperature, mainly these excita-
tions do occur).

At high temperatures the corresponding values of g
and g' can be easily determined

g =2J~ and g' =2J„.
So the correlation function follows as

(16)

To clarify the role of details of the models on the esti-
mates for the experimentally relevant parameters g and
g', we also studied the anisotropic discrete Gaussian
(DG) model. In this model the step-step interaction
[compare to Eqs. (6) and (7)] is described by a harmonic
term as the kink-creation energy, but with a different pre-
factor. Explicitly, the Hamiltonian can be written in the
form

TSK j+C) 1.6—
LLJ

1.4—
cf

1.X

~ NR-

BCSOS
2— AN

TscsosI TTsK

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

T/Wo

J=1.45 —1.48 (Ref. 15)]. Therefore a simple extrapola-
tion of the analytical high-temperature results is some-
what questionable, and we performed Monte Carlo simu-
lations on the anisotropic DG model to determine the
temperature dependence of g and g' for various anisotro-
pies. Again, runs of length of about 10 MCS/S were

FIG. 4. Comparison between the anisotropy g/g', and the
mean surface tension [(gg')'i2] for various models. Error bars
are Monte Carlo results for the TSK model, X are Monte Carlo
results for the discrete Gaussian model (DG) (dashed line is a
guide for the eye), AN (solid line) corresponds to

8'p /T
g= W„, g'=(T/2)e of VGL, and NR is the unrenormal-
ized result. W„/Wp ——1 for TSK and J„/J„=0.5 for BCSOS
(Jy Wp )

G(m, n)= T
4m(J J )'

' 1/2

~ln m
J„

' 1/2

+n (17)

CV 5—

4—

CL

CKI—

TSK

AN

NR

Accordingly, the exponent ~ is linear at high tempera-
tures. In the experimentally interesting antiphase condi-
tion, one then has

7 5 T
8 (J J )I/2 (18)

k~ T„=(4/n. )(J„&y )' ', (19)

which may be compared, for instance, in the isotropic
case (k~ Tz /J —1.28), to the supposedly accurate esti-
mate based on extensive Monte Carlo work [k&Tz/

Using the universality relation [see Eq. (3)], which is
expected to hold for transitions of the Kosterlitz-
Thouless type, and extrapolating the high-temperature
results to lower temperatures, one obtains the rough esti-
mate

W./Wo= o2
J„/J„= 0.1

J =Wo

».0—
TSK

0.8 — i ~
OG ~

g 0.6—
LU~ 0.4—

TSK

TKsOs
Z '

iI R

I

0.8
I I I

0.6 0.7

FIG. 5. Same as Fig. 4, but with
J„/Jy ——0.10.

0.5

BCSOS

NR

AN

0.9

W„ /Wp ——0.20,
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done using a vectorized algorithm suitable for a Cray
computer.

Results of the various models will be discussed and
compared in the following subsection.

F. Comparison of results on the various models

As described in Sec. II C, estimates for g and g' can be
obtained by fitting Monte Carlo data on the correlation
function G (m, n) to the ansatz given in Eq. (2). Using the
approxiinate transcriptions relating ( Wo, W„) to (J„,J» ),
one may then compare these estimates for the TSK and
anisotropic DG models with each other and with the
analytical expressions for the anisotropic BCSOS model
[see Eqs. (12) and (13)].

Results on the anisotropy rilq' and the mean surface
tension [=(rishi')'~ ] for W„/Wo (or 2J„/J~)=1 and 0.2
depicted in Figs. 4 and 5. We also included the approxi-
mate formulas of VGL (denoted by AN) (expected to
hold only for W„« Wo,' see Sec. IID) and, for the
discrete Gaussian model, its high-temperature "non-
renormalized" (NR) values. In the case of the anisotrop-
ic BCSOS model the anisotropy rilri' may be approxi-
mated by Eq. (13) at temperatures different from 2'
(which is justified a posteriori)

Obviously the results for the anisotropic DG and the
TSK models are quite similar at temperatures in between
T„and about 2', refiecting that only a few double (or
triple) kinks are present at these temperatures. Also, the
results on the anisotropic BCSOS model do not differ
greatly, which shows that geometrical details do not play
a significant role. The increase of the mean surface ten-
sion (rishi')' at high temperatures is due to the constraint
on the height differences preventing large disorder. In
the case of the DG model the high-temperature limiting
values are approached rather rapidly. The approximate
formulas of VGL seem to underestimate both the anisot-
ropy and the surface tension appreciably upon lowering
the temperature towards T„.

At any rate, for the ratios we considered we can con-
clude that slight differences between the DG, TSK, and
BCSOS models are apparent, but, nevertheless, the result-
ing values for ri=g(T) and g'=ri'(T) are rather insensi-
tive to the details of the Hamiltonians. This suggests that
the kink-creation energy Fo and the step-step interaction
energy W„may be estimated unambiguously and rather
precisely by comparison of the data on the models to ex-
perimental results.

III. EXPERIMENT AND ANALYSIS

h8(deg)

k; = 6.0 A
'

.T= 70K
~ T =770K

1—
~ e

~ ~ f $ ~

~ ~ o ~ ~ ~ y ~

0 l

30
I

40 60

he(dig)

.T= 70K
~T= 770K

polished. Is was then cleaned in situ by cycles of argon-
ion bombardment (400 V, 10 pA, 1 h) and annealing at
800 K. Such a treatment was pursued until diffracted in-
tensities were steady. Figure 6 shows the measurements
of the specular-beam width [full width at half maximuin
(FMHM)] versus the incidence angle 8;. For a sample
temperature of 70 K only a slight oscillation of the width
is visible, reflecting the presence of a small amount of dis-
order. Moreover, the minimal width, corresponding to
in-plane conditions, is 68=0.70', while a direct measure-
ment of the incident beam yields 58=0.55'.

The residual disorder brought about by various crystal
imperfections is thus low. For T =770 K the specular
width exhibits very strong oscillations. The location of
extrema corresponds to phase and antiphase conditions
between domains, except for a small shift that can be as-
cribed to an outward relaxation. Such a behavior clearly
shows that the Cu(113) face becomes rough through the
formation of kinks along steps. Peak profiles were mea-
sured as functions of the crystal temperature. In our
analysis the influence of inelastic scattering was taken
into account by the following procedure. Figure 7 shows
the specular peak for increasing crystal temperatures.
For in-phase conditions it is clear that the peak width at
half maximum is constant, whereas the inelastic back-
ground steadily increases. It is easy to fit such profiles by
the sum of a Gaussian of constant width and of a
Lorentzian function meant to represent the background.
For each temperature such a Lorentzian was determined
and subtracted from the antiphase profile, as inelastic

The experimental apparatus has been fully described
elsewhere. ' The Campargue-type nozzle beam was
operated at two energies (21 and 63 meV). Most experi-
ments were performed with the incidence plane perpen-
dicular to close-packed rows. The detector could be ro-
tated in and out of the incidence plane so that the shape
of the specular peak could be measured in two orthogonal
directions.

The sample was cut from a copper single crystal; after
desulfurization it was mechanically and electrochemically

~ 0

~ ~ ~

~ ~ ~ ~

I

40
I

60

t l t

e;(deg) 80

FIG. 6. Variation of the angular width 50 (FWHM) of the
specular peak. The horizontal dotted line represents instrumen-
tal width (k; =6.4 and 11 A ').
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/i ~
/i

j~j kgb
I

8.= 684
I

ANTIPHASE

T = 720K

k;= 11A

8 =660
1

~L
970K

-- ~820K

370K
I

4 y„(deg) I

-2
I I I

4 q„(deg)

8;= 594

PHASE

920K

I

59

~ 670K
I

8„(deg)

FIG. 7. Cu(113)/He. Intensity profiles for the specular peak
under antiphase conditions (top) and in-phase conditions (bot-
tom). The incidence plane is normal to the steps; measurements

were made in (8, ) and out (q, ) of the incidence plane.

scattering is not sensitive to phase or antiphase condi-
tions. For the peak profiles in antiphase conditions the
change of shape with temperature is apparent in Fig. 7.

The global instrumental function was chosen in order
to yield the observed specular shape for in-phase condi-
tions. Figure 8 shows some of the adjustments obtained
by this method. Figure 9 shows the exponent ~/2 and
the anisotropy q/rl' as functions of T. For T & 900 K no
reliable values of the anisotropy could be obtained due to
the influence of background on the fitting procedure. Us-
ing the analytical expressions for the anisotropic BCSOS
model for these two quantities resulted in a very satisfac-
tory fit, with Wo ——J =800+50 K and
W„=2J„=560+50 K, together with Tz ——720+50 K.
As has been stated above, the analytical expression for
the anisotropy is only an approximate one. However, be-
cause it agrees quite well with the MC data for similar
models, it may be used to get a direct estimate for the pa-
rameters Wo and W„. Indeed, as shown in Fig. 9, for
these values of Wo and W„Monte Carlo data on the DG
and TSK models agree nicely with the experimental data.
Our value of Tz is not far from that determined by Liang

64
I

66
I

68 8„(deg)

FIG. 8. Cu(113)/He. Typical fit of the scattered intensity

(specular peak) in (8„)and out (q, ) of the incidence plane. In-

cidence was normal to steps.

et a/. ,
' who found Tz ——620+10 K; however, their esti-

mate is clearly out of our error bars. As for Wo and W„,
we strongly disagree with their results ( Wo ——2100+75 K,
fV„=86%10 K).

For a possible explanation of this disagreement, let us
first recall that an analysis of He-diffraction data
(intensity-versus-T curves) very similar to Liang's
analysis of grazing-x-ray data has been performed by
Selke and Szpilka with a VGL-type Hamiltonian. As
stated in the Introduction they found T„=650+50 K
and showed that the decrease in intensity sets in appreci-
ably below the roughening transition temperature (typi-
cally at 0.8T„). Most importantly, such a behavior was
found for various anisotropies (from W'„/Wo ——1 down to
0.014) and therefore it does not depend strongly on the
actual value of W„/Wo. In our opinion this clearly
shows that measuring the peak height versus temperature
is quite insufficient for an evaluation of W„and Wo.
Peak-shape measurements seem to be crucial for deter-
mining Wo and W„. In other words, it is necessary to
measure the form factor from which correlation func-
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FIG. 9. Adjustment of the experimentally observed values of
g/g' and r/2 (error bars). The solid line corresponds to the an-
isotropic BCSOS model, C to the discrete Gaussian (DG) mod-
el; the dotted line shows unrenormalized (NR) results and the
dashed line is a guide for the eye for DG results. J„=800 K,
JR=280 K. g corresponds to the TSK model (8'o ——800 K,
8'„=560 K).

tions can be deduced. It is noticeable that, for He
di8raction, spectra can be obtained for temperatures as
high as 970 K (see Figs. 7 and 8), whereas the grazing-x-
ray measurements of Liang et al. only show a structure-
less background already for T & 600 K.

As can be seen in Fig. 9, the predicted cusp of ~/2 near
T„ is very small and consequently diScult to observe.
One must notice that the peak shape is still a power law
for T 5 Tz, so that values of ~/2 and g/g' are obtained
even below the roughening point.

This can be understood if one realizes that the coher-
ence length of our instrument is limited to about 100 A,
so that correlations are only observable up to distances of
that order. It is well known from Monte Carlo calcula-
tions that an apparent logarithmic behavior is observed
below T„ if only short distances are probed. ' In order
to make this statement more quantitative, we carried out
MC calculations for the discrete Gaussian model corre-
sponding to J =800 K and J =280 K. We used the DG
model (for which computer programs were less time con-
suming) and as a criterion for logarithmic behavior we
chose to test the correlation function G(m, 0) for
1(m & 10, which corresponds to about 50 A. Using the
above criterion, we obtained an apparent logarithmic be-
havior for temperatures as low as 650 K, i.e., 10% below
the roughening transition. So it is clear that the cusp
near Tz can be blurred due to limited transfer length as
shown here or for even larger samples by Saito et al. '

So it appears such a cusp would only be visible if the
transfer length of the apparatus were of the order of a

FIG. 10. Kink density along steps calculated in a Monte Car-
lo simulation of the DG model; a few values for the TSK model
are introduced for the sake of veri6cation.

few thousand A.
From our Monte Carlo calculations the density of

kinks could be easily extracted. As shown in Fig. 10, the
number of kinks steadily increases with temperature,
without obvious singularity in the vicinity of Ttt, and
reaches 0.25 for T =720 K, corresponding to one kink
every fourth step atom on the average.

The value of the kink-creation energy is much lower
than what can be deduced from a broken-bond calcula-
tion (-3000 K; see VGL), but not far from a tight-
binding —type calculation [Wo = (cohesion energy)/32
=1200 K]. ' More sophisticated calculations would be
necessary to understand better the value experimentally
determined.

The value of g/g'=4 is clearly not unity, in contrast to
the theory of den Nijs et al. Moreover, the ratio of
roughening temperatures for Cu(113) and Cu(115) is
720/380=1.89, whereas den Nijs et a/. predict T„(113)/
Ttt(115)=25/9=2. 78. On the other hand, the VGL ap-
proach in terms of kink-creation energy and step-step in-
teraction applied through the TSK or similar models ex-
plains the present results and allows quantitative estima-
tion of defect-creation energies.

IU. SUMMARY

From the measurements of helium peak shapes on
Cu(113) we have deduced both the roughness parameter
~/2 and the anisotropy g/g', thus obtaining a full
description of the correlation function. The roughening
temperature was found to be Tz ——720+50 K. By using
Monte Carlo calculations we were able to fit the experi-
mentally observed thermal behavior of ~/2 and g/g'.
We could determine the kink-creation energy
8'o ——800+50 K as well as the energy per atom for shift-
ing a step with respect to the neighboring ones,
8'„=560+50 K
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