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Lattice vibrations on two-dimensional Penrose lattices are investigated numerically. The resul-

tant spectra exhibit several peaks similar to those of disordered systems. From the dependence of
the vibrational phase difference and the distribution of the local elastic energy on the different

boundary conditions, it is found that the lattice vibrations of this system seem to be isotropic and lo-

calized above a certain critical frequency. The spectral peaks are attributed to van Hove singulari-
ties and localization.

I. INTRODUCTION

Since the recent discovery of quasicrystalline phases in
a rapidly quenched alloy of Al with Mn by Schechtman
et al. ,

' there has been great interest in the physics of
quasicrystals. Although quasicrystals do not have
periodicity, there is still a long-range bond orientational
order in the structure. Therefore quasicrystals are quite
different ordered states from crystals and amorphous
solids. Such a characteristic structure of the system will
lead to new features in the lattice vibrational properties
as well as the theraial properties of quasicrystals. Lattice
vibrations of quasiperiodic systems have been studied
theoretically. ' It has been shown that in the one-
dimensional quasicrystal or the Fibonacci chain, there
are spectral gaps due to the quasiperiodic structure and
that the spatial variations of the eigenfunctions are inter-
mediate between localized and extended in the high-
frequency region.

For icosahedral quasicrystals, phonons and phasons
have been well discussed based on spatial symmetries as
hydrodynamic elastic modes with long wavelengths.
Anisotropic phonon attenuation due to the characteristic
structural order is found while the sound velocities are
isotropic. The lattice vibrational properties of two-
dimensional quasicrystals have been studied numerically
by several authors. ' Lattice vibrations of the Penrose
lattice perpendicular to the lattice plane were investigat-
ed by Odagaki and Nguyen who found energy gaps in
the spectrum due to the nonperiodic structure. They also
declared the peaks in the vibrational modes around the
gaps to be van Hove singularities. Kohmoto and Suther-
land, on the other hand, suggested the existence of the
localized modes such as the confined electronic states
with zero energy in a system similar to that of Odagaki
et al.

The purpose of this paper is to investigate the charac-
teristic features in the structure of the lattice vibrational
spectrum of quasicrystals. In this paper, we take two-
dimensional Penrose tilings consisting of a pair of rhom-
bi" as the two-dimensional quasicrystal. We also take
into account displacements parallel to the Penrose lattice.

The Penrose tilings are obtained by the inflation
method' up to the fifth generations from a seed with five
fat rhombuses. There are two types of the figures due to
the manner of inflations distinguished by the central
figure. We show in Fig. j. one of the Penrose tilings for
the fifth generation. In the following sections, to avoid
confusion, we discuss the type in Fig. 1, since the charac-
teristic results are independent of the structures of the
two different Penrose tilings. The Penrose lattice is now
defined as the atom-decorating Penrose tiling at each ver-
tex of the rhombus.

In the following section, we specify the model of the
two-dimensional vibrational system and formulate the
dynamical matrix elements. In Sec. III the numerical re-
sults of the vibrational spectra, participation ratio, and
vibrational phase are shown. By using these quantities,
the characteristic features of the spectrum are investigat-
ed. A summary and discussion are presented in the last
section.
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FIG. 1. Penrose tiling with 1231 sites for the fifth generation.
The central figure is of a star.
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II. LATTICE DYNAMICS OF PENROSE LATTICE

In this section we present the model for the lattice vi-

brations of the two-dimensional Penrose lattice. We con-
sider atomic vibrations in the plane parallel to the Pen-
rose lattice and deal with vibrations in the harmonic ap-
proximation. We can therefore employ two independent
restoring forces; one is proportional to the bond-length
stretching and the other to the change in rhombus angle
due to bond bending. To develop further, we devote our-
selves to the deformation of one rhombus in the Penrose
lattice as shown in Fig. 2. Consider the rhombus de-
formed under stress and let P; and u; be the lattice-site
vector and the displacement vector of the atom at the ith
site, respectively. Then the position vector of the atom at
the ith site after deformation is given by P; —P;+u;.
The relative lattice-site vector between the jth site and
the ith one, R;, is defined by R; =PJ —P;. In the same

way, the relative position vectors R; between the jth and
ith atoms are given by R; =P —P, The difference in
displacement vector u; between them can be obtained in
terms of relative position vectors, which yields

=P.—P; —(P —P;)

0
IR;)

FIG. 2. Relative position vectors between lattice sites, R;, ,
displacement vectors of atoms, u;, and the relative position vec-
tors between atoms, R„,in a rhombus.

gy to derive the dynamical matrix elements systematical-
ly.

The potential energy consists of two terms: one is due
to the bond stretching and the other due to the bond
bending of rhombuses,

(2.1)
V=V, +V. , (2.2)

This relative displacement vector gives the stretching
and rotation of the edges. The extension is expressed by
the scalar product u, . e, . , where e; =R;./

I
R; I

. Here
we take the restoring force to be proportional to the
stretching of the edges and refer to it as the central force
because it depends only on the stretching of bonds be-
tween atoms.

On the other hand, the vector product u;J Xe,, gives
the change of the direction of the relative lattice-site vec-
tor R; to R; or the rotation of the jth atom around the
ith atom. The opposite side edge that has the same end,
ith site, rotates in the same way, too. The difference be-
tween the angles, u; X e; —u;k X e;k, gives bond bending
around the ith site. We assume that the bending
U 'J X E j u 'k X E'; k provides the torque around the ith
atom. The force acting on the jth atom is derived by di-
viding the torque by the edge length. The direction is
perpendicular to the edge. As a reaction, the ith atom is
pushed by the sum of the forces. There are torques
around the other sites in the Penrose lattice in the same
way. Then the ith atom is affected by the torque around
the nearest-neighbor atoms. That is, each atom is
affected not only by the nearest neighbors but also by the
second nearest neighbors to maintain the lattice struc-
ture. We refer to it as the angular force, since it is due to
bond bending.

The coordination number of sites in the Penrose lattice
has a value from 2 to 7 as seen in Fig. 1. Therefore it is
too complicated to construct the dynamical matrix ele-
ments individually for each vertex in the way mentioned
above. Instead we introduce the harmonic potential ener-

where

v. =L y (e,, —e,„)',
&,j,k

(2.3)

Crn =5I nk X radii kEnlE l(1 51— —
i (~l)

(2.4)

Here the superscripts a and P denote the Cartesian coor-
dinates. The potential energy due to the bond bending is
rewritten in terms of the displacement vectors as follows:

+, =—p (ej Xuj —e~ Xu; —ez Xuk+ek Xu;)
i,j,k

(2.5)

The dynamical matrix elements AI„~, due to the bond
bending is similarly obtained as

where e,j is the rotation angle of the jth atom around the
ith atom defined by e; =e;.Xu;. /IR;. I. The summa-
tion in the first term is performed over all the connected
pairs. The sum in the second term is over all the ang1es
of the rhombuses in the lattice. k and g are the force con-
stants of the central and the angular forces, respectively.

The dynamical matrix elements C&„~ due to the bond
stretching can be obtained by the partial derivative of the
potential with respect to the displacement vector as
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~In g (elk Elj )(elk elj ) 5 g (elk eIj )(~1k elj ) g g 'Ekl~kl 5 g eflekl for n =I, (2.6a)
j, k y k, m y

Al~q g + Eq((eik E)„) 5 + e(„(EIk e'(„) g + En(('e„k e„l ) 5 + E„I(E„k Enr)
r r k y

for n =I +1 or n =1 —1, (2.6b)

=g g Ej„EJI—5 ' g e&„ejrl for n =I +2 or n =I —2
r r

(2.6c)

The first equation, (2.6a), is for the diagonal elements.
The summations over j and k are performed for the
nearest neighbors of the 1th site and the sum over m for
the second nearest neighbors through the atom at the kth
site. The second one, (2.6b), is for the case that the two
sites are the nearest neighbors. We sum up the terms for
the nearest neighbors of atoms at the 1th or the nth site.
The last one, (2.6c), is for the second-nearest neighbors,
in which the summation is carried over the nearest neigh-
bors of both atoms at the Ith and the nth sites.

The equation of motion is written in terms of the
dynamical matrix [DPP I as follows:

mii, —g g DI„~u~=O, (2.7)
n P

where D&„~——CI„~+ A I„~. Here we assumed that all
masses are unity. Therefore the vibrational properties of
this system depend on the two independent force con-
stants k and g.

In the following section, we apply this equation to the
Penrose lattices with different sizes and obtain eigenfre-
quencies and eigenfunctions numerically under different
boundary conditions.

the difference in the density of states between the regular
lattice and the Penrose one. In the former case, only two
cusps are found due to the van Hove singularities. On
the contrary, several peaks are found in the latter cases as
seen in mass-disordered systems. ' The lowest peak ap-
pears at lower frequency than that of regular lattice and
becomes moderate. The others spread out through the
whole range of frequency. The dominant spectral peaks
appear at cu =2.5, 9.3, 13.0, 17.1, 21.0, and 24.0. There
is a large gap around co =24 and some small gaps below
it. Although the small gaps disappear with increasing
size, both cases with different sizes have the peaks at the
same frequencies, and the global structures of spectra are
quite similar independent of the lattice size. Therefore
we may be able to extrapolate the properties of the
infinite systems from those of finite ones.

To check the dependence of the spectra on the force
constants, we keep k =1 and change the strength of the
angular force constant g continuously from 0 to 2. Fig-
ure 5 shows the dependence of the eigenvalues on g for
the second-generated Penrose lattice for legibility. The

III. VIBRATIONAL SPECTRA AND ENERGY
DISTRIBUTION

A. Density of states: D (co )

CO

~~
C

L
6$

N=1225
FREE BC

At first, as a reference, we calculate the density of
states D (co ) of regular square lattice of 1225 atoms in a
35X35 array. The force constants k and g are assumed
to be unity, respectively, and a free boundary condition is
used. Results are shown in Fig. 3. The solid line exhibits
the exact solution for the regular lattice which can be de-
scribed in terms of the complete elliptic integral of the
first kind. ' There occur van Hove singularities at
cu =3.5 and 16.0. The agreement with numerical results
is excellent except the low-frequency region below
co =1.5, where the lattice vibrations at the perimeter of
the lattice are important. These vibrational modes are re-
moved under a fixed boundary condition.

Next we apply the method to the Penrose lattice with
two different sizes and plot the density of states in Fig. 4.
Figure 4(a) is for the fourth generation with 481 atoms
and Fig. 4(b) for the fifth one with 1231 atoms. The
lowest three modes due to the uniform translations and
rotation are excluded in these spectra. We can see clearly

~ , I

i ~

gl
I

i ~

II( I ~

~ )I

~ I ~
I

10 20

FIG. 3. Density of states of the lattice vibrations parallel to
the x-y plane for the two-dimensional square lattice with 1225
atoms in a 35)(35 array under the free boundary condition.
The solid line denotes the exact result described in terms of the
complete elliptic integral of the first kind. The force constants k
and g are taken to be unity, respectively.
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spectrum is sparse, and there are some large gaps that
cannot be seen in Fig. 4. These gaps, however, vanish ex-

cept the one with the highest frequency and the spectrum
becomes denser in the larger systems because they are
originated from size effect.

The distribution of the spectrum spreads as increasing
g and only a few modes cross above g =0.5. In the low-
frequency region, the eigenvalues are almost independent
of the force constant g. In the high-frequency region,
however, the eigenvalues seem to depend severely on the
value of g. To see the difference in spectra more clearly,
we calculate eigenfrequencies for the cases with
(k =1,g =1) and (k =1,g =2) for the fourth generation
and plot eigenfrequencies versus mode number for these 0

L$p f '[ 't
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I
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'gl

20

(0
~~
C

N=481
FREE BC

FIG. 5. Dependence of the lattice vibrational spectrum of the
Penrose lattice with 76 sites for the second generation on force
constant g. The force constant k is kept to be unity.

th
~~
C

6$

10 20

N= 1231
FREE BC

two cases in Fig. 6. The difference in eigenfrequencies in-
creases in the region of large mode number. However,
the dependence of the eigenfrequencies on the mode num-
ber for both cases is quite similar and does not change
drastically.

Then we conclude that the spectrum does not lose the
essential characteristic features with changing force con-
stants. We, therefore, investigate the vibrational proper-
ties with both k and g to be unity hereafter.

We have estimated the density of states so far to inves-
tigate how the bond-orientational order affects the lattice
vibrations. The resultant density of states has the several
peaks. Although we have supposed that the quasicrystals
to be positioned between the regular periodic crystals and
the disordered solids due to the long-range bond-

=1, 9=2

I I I

I I
I

I

10 20

FIG. 4. Density of states of the lattice vibrations of the Pen-
rose lattice {a) with 481 sites for the fourth generation under the
free boundary condition. The structure is the same as Fig. 1.
The displacement vectors are parallel to the lattice plane. (b)
Penrose lattice with 1231 sites for the fifth generation.

00 400
MODE NUMBER

eoo

FIG. 6. Eigenfrequencies vs mode number of the Penrose lat-
tice for the fourth generation. Two cases are plotted; one is for
(k = 1,g = 1) and the other for (k = 1,g =2).
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orientational order, our spectrum for the Penrose lattice
seems to be rather similar to that of the mass-disordered
lattices with light impurities' than the regular ones. The
spectral peaks in the mass-disordered system are due to
the van Hove singularity and the localization. ' Here, if
there are the localized vibrational modes in the Penrose
lattice, such modes must be independent of the boundary
conditions.

To investigate the dependence of the density of states
on the boundary conditions, we calculate the density of
states for the fifth generation under the fixed boundary
condition. Figure 7 shows the resulted density of states.
%e see that the vibrational spectra do not depend on the
boundary conditions in the whole frequency range except
the low-frequency region co & 5.0.

In the following subsections, the dependence of the lat-
tice vibrations on the boundary conditions is investigated
for the spatial distribution of elastic energy and also the
vibrational phase.

B. Energy distribution and participation ratio

(3.2)

The angle brackets denote the statistical average over
atoms. The participation ratio has the value of 1/N
when the energy concentrates on one atom, ~here N is
the total number of atoms. On the other hand, the P&
has the value of unity when the energy is shared among
all atoms equally.

Figure 8(a) depicts the participation ratios of the Pen-
rose lattice for the fourth generation with free boundary.
The participation ratios are smaller than those of the reg-
ular lattice, which are about 0.6 through the frequency
region and distribute widely below P& ——0.5. The de-
crease of the values above cu =14 also reveals the
relevant feature. This means the energy concentrations
in real space and may lead to the possible existence of the
localization in the high-frequency region. The difference
in the Pz from the distinct boundary condition, as seen in

Fig. 8(b}, appears apparently in the frequency region
below co =5. The difFerence in the low-frequency region

%e consider the spatial distribution of local energy.
The local energy E (l, co&) is defined in terms of the calcu-
lated eigenvectors Iu, i j corresponding to the eigenfre-
quency co& as follows

E(l,~„)=2' &™~aX "I,i.ur, x+T~ X ul x QDPm "m, i.

(a) N=481
FREE BC

(3.1)

where 1 denotes the site number index. The sum of the
second term in Eq. (3.1}is over those atoms which are the
nearest and the second nearest neighbors of the lth site.
The factor —,

' before the parenthesis is due to the time
average. Here we introduce the participation ratio
Pi (co~} defined by the ratio of square of averaged energy
and the dispersion as follows:s
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FIG. 7. Density of states of the lattice vibrations of the Pen-
rose lattice with 1231 sites for the fifth generation with fixed
boundary condition.

FIG. 8. The participation ratio P& of the fourth-generated
Penrose lattice. (a) Free boundary condition and (b) fixed
boundary condition.
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is caused by the size effect that the lattice vibrations of
the atoms at perimeter of the finite lattice are suppressed
under the fixed boundary condition. However, above the
region, noticeable changes in magnitude are not found
between them as seen in the regular lattices.

C. The vibrational phase shift due to boundary condition

It is important to check the phase shift due to the
change of the boundary conditions when we discuss the
localization of lattice vibrations. ' Although the phase
shift is expressed in terms of the wave vector and the cor-
responding frequency in the regular lattice, ' we have to
take another parameter to describe the lattice vibrational
phase in the Penrose lattice. Microscopically there is lit-
tle difference in the lattice vibrations between the Penrose
lattice and the regular ones: The bonded atoms vibrate al-
most in phase at low frequencies and out of phase in the
very high-frequency region. Therefore we take the accu-
mulated phase difference as a parameter describing the
local vibrational phase difference between vibrating
atoms defined by

tion number z, (E(l,co&))„versus frequency for the
fourth-generated lattice in Fig. 10. Above co =8, each
case has the frequency regions where the local energy is
greater than the local energy averaged over lattice. These
regions shift toward the higher frequency range with
increasing coordination number. Comparing the
(E(l,co~) ), and the density of states, we see there is clear
correspondence between the enhancement of local energy
and the spectral peaks. So the spectral peaks may be at-
tributed to the localized vibrations of atoms associated
with coordination number z. Below co =14, the only
atoms with z =3 and 4 vibrate dominantly and contribute
to the spectrum. The atoms with z =3 and 4 occupy the
59% of the lattice. Then the participation ratio has the
values as large as those at low frequencies. However
above that region, the dominantly vibrating atoms with
higher coordination numbers, z =6 and 7, are a minority
which are only about 7'%1. Therefore the participation ra-
tios decrease at high frequencies.

From the facts that Pz is small and Iz is negative
above co =14, the atoms with definite z associated with

I~= ggu, ~uj „, (3.3)

where the summation is performed over all the bonded
atom pairs. Assuming the sinusoidal wave in the regular
periodic lattices as u; =uocos(q x;), the I& becomes

Iz —u02+ cos(q x, )[ cos[q (x, +a)]+ cos[q (x;+b)]]

(a] N=481
FREE BC

= cos(q a)+ cos(q b) (3.4)
~ ~L~L~P~,~

%P:,

where a and b are the lattice vectors. Then Iz is rewrit-
ten in terms of the phase differences q a and q b between
the nearest-neighbor atoms. I& is the multivalued func-
tion with respect to the frequency in the anisotropic sys-
tem and decreases gradually with increasing wave num-
ber. The dependence of I& on the boundary conditions
appears through the change of the wave vector q in the
whole range of frequency.

We show the numerical results of Iz for the Penrose
lattice with fourth generation in Figs. 9(a) and 9(b). Iz
decreases with increasing frequency and is not mul-
tivalued. Therefore the Penrose lattice may be rather iso-
tropic for the lattice vibrations. This is consistent with
the results by the theoretical approach by means of the
point group symmetry. Contrary to the regular lattices,
the phase shift is found quite clearly below co =8 and
above that frequency the results remain unchanged for
both boundary conditions. Since we have the same criti-
cal frequency for the third-generated lattice, this frequen-
cy will be characteristic to the Penrose lattice. Above the
critical frequency that is independent of the lattice size,
we may consider that the lattice vibrations are localized.

Although we have the evidence of the localization
above co =8, the energy distribution does not necessarily
exhibit the concentrations up to co =14. In addition, I&
yields zero between 8 and 14 and starts decreasing mo-
notonously at co = 14. To make clear the discrepancy, we
plot the averaged local energy per a atom with coordina-

20 10 20

N=481
FIXED BC

memory~o ~
0

0 OO
0

o

-2
10 20

FIG. 9. The accumulated phase difference Iz vs squared fre-
quency. (a) Free boundary condition and (b) fixed boundary
condition.
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FIG. 10. Local energy spectra with definite coordination
number z vs the squared frequency. The lower line of two hor-

izontal lines for each case denotes the zero and the upper the

averaged energy over all atoms, respectively.

the spectral peaks have the maximum amplitudes and vi-

brate in antiphase against the surrounding atoms. This is
quite similar to the localized vibrations of the light im-
purities in a mass-disordered lattice. This similarity is
reasonable because the increase of the dynamical matrix
elements with respect to the coordination number z has
the same effects as the decrease of the corresponding
masses, though we set all masses to be unity in our mod-
el.

Between co =8 and co =14, I& is almost zero and the
behavior of P& is also the same as in the frequency region
below m =5. The vanishing values of Iz mean the en-
largement of the localized vibrational region. In this fre-
quency region the localization of lattice vibration may be
weaker than those in the high-frequency region. The cor-
responding local energy distributions are shown in Fig.
11.

Although below co =8, the lattice vibrations are
influenced by the boundary conditions, they are not ex-
tended states since all states are localized in infinite two-
dimensional systems. ' However, we expect that there
will be the frequency region with very long localization
length and that the concept of phonons may be applicable
to the system. If so, we should regard the lattice vibra-
tional states below co =8 as weakly localized ones.
Therefore the lowest spectral peak in the density of states
in this region may be due to van Hove singularity.

IV. SUMMARY AND DISCUSSIONS

FIG. 11. Local energy distributions for the Penrose lattice (a)
co = 10.46; (b) co =24. 11.

We have numerically studied the lattice vibrations of
two-dimensional quasicrystals modeled by Penrose tiling
decorated atoms on each vertex. The elastic properties
were investigated in the harmonic approximation where
the bond stretching and bond bending of the rhombuses
are considered to be the potential energy. We set up the
equation of motion in terms of the dynamical matrix de-
rived from the elastic potential energy. The vibrational
spectra and eigenvectors were obtained by solving the
secular equation numerically.

The density of states has several spectral peaks, which
are quite similar to those of mass-disordered solids. Since
the spectral peaks in the mass-disordered solids are due
to van Hove singularities and the localization of the lat-
tice vibrations, there is a possibility that some of the lat-
tice vibrations in the Penrose lattice may be localized. To
check the existence of the localization, we examined the
frequency spectra, the energy distributions, and the accu-
mulated phase difference under free and fixed boundary
conditions. Due to the change of boundary conditions
from free to fixed, only the lowest spectral peak shifts to
the higher-frequency region. The change in the energy
distributions appears in the frequency region below about
~ =5 where the lowest spectral peak appears. The vibra-
tional phase difference between the nearest-neighbor
atoms exhibits a critical dependence on the boundary
conditions. Below the critical frequency cu =8, the accu-
mulated phase difference I& is somewhat enhanced in the
case of fixed boundary conditions. As this frequency is
independent of the lattice size, the lattice vibrations may
be localized above the critical frequency where the I& is
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independent of the boundary conditions.
The participation ratio up to co =14 remains as large

as those at low frequencies and decreases in the high-
frequency region. The behavior of the P& with respect to
the frequency is due to the decrease of the number of
atoms associated with the localized lattice vibrations.
The vibrations at frequencies above co =14 are quite
similar to the localized ones such as the light impurities
in the mass-disordered system. Below the frequency
~ =14, a decrease of the P& is not seen, though the lat-
tice vibrations may be still localized in this region. This
is because the lattice vibrations concerned with major
atoms are localized in a wider region than those above
co =14. In the one-dimensional Fibonacci lattice, it has
been known that self-similar eigenfunctions and the spec-
tral gaps exist as characteristic features. In the two-
dimensional case, it would be very interesting if there ex-

isted evidence of the self-similarity in the lattice vibra-
tional spectra and also if the spatial variation of the
eigenfunctions would be clarified as well as the electronic
system. '

To conclude, though we expected novel features in the
lattice vibrations of Penrose lattice different from those of
regular crystals and amorphous solids, the system seems
to have the characteristic features rather close to those of
disordered systems.
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