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Lang has extended the transfer Hamiltonian theory to obtain an expression for the tunneling
current density and used it to investigate the current distribution in the vacuum region between
pairs of jellium-adatom electrodes. In this paper, his general expression is specialized by incor-
porating Tersoff and Hamann’s model for the tip electrode. The resulting simple expression for the
tunneling current density is applied to Tersoff’s six-plane-wave model of a monolayer of graphite.
The normal component of the current density for this system takes on both positive and negative
values in a complex flow pattern and its lateral falloff away from the (projected) tip position is much
slower than expected from the extraordinary lateral resolution (~1 A) evident in the scanning-

tunneling-microscope images of graphite.

I. INTRODUCTION

The theoretical studies of the scanning tunneling mi-
croscope (STM) carried out by Tersoff and Hamann' and
by Lang?~® are both based on Bardeen’s tunneling Ham-
iltonian approximation.” Their basic approaches differ
mainly in the models used for the electrodes. Tersoff and
Hamann modeled the sharp end of the tip electrode by a
spherical potential well but placed no restrictions on the
sample electrode.? Lang, on the other hand, modeled
each of the electrodes by a jellium half-space, with an ad-
sorbed atom on the tip electrode or on both electrodes.
Tersoff and Hamann’s simple choice of tip wave function
led to the important result that, at zero temperature and
small bias, the tunneling current in the STM is propor-
tional to the local electronic density of states at the Fermi
energy. Lang’s numerical calculations® with jellium-
adatom electrodes gave strong support to this result.

Lang?~* extended Bardeen’s theory to obtain an ex-
pression for the current density within the tunneling
Hamiltonian approximation and calculated the current
distribution in the vacuum gap between his model STM
tip and a jellium electrode both with® and without** an
adsorbed atom. A disadvantage® of his adatom-on-
jellium model of a STM tip is that the contributions to
the total current due to electrons tunneling between the
jellium substrates and between the sample adatom and
the jellium substrate of the tip, when the tip and sample
adatoms are far apart laterally, are greatly enhanced over
what they would be for the usual model of a sharp STM
tip. Although Lang eliminated these unwanted contribu-
tions to a large extent by appropriate normalization, it
would be useful to investigate the distribution of tunnel-
ing current using Tersoff and Hamann’s model for the tip
electrode. (This model has its own disadvantages' but
these are largely compensated by its simplicity.) As a
basis for such a complementary study, an expression for
the tunneling current density within the Tersoff-Hamann
theory is derived from Lang’s more general expression in
Sec. II. This is applied to a jellium sample in Sec. III and
to TersofP's six-plane-wave model® for a monolayer of
graphite in Sec. IV. Concluding remarks are made in
Sec. V.

II. TUNNELING CURRENT DENSITY
IN TERSOFF AND HAMANN’S THEORY

Lang’s result’~* for the zero-temperature, small-bias,
tunneling-current density in the vacuum region not too
close to either the sample (s) or tip (¢) electrode is given
by
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where e and m are the charge and mass of the electron
and V is the applied bias voltage. For definiteness the
sign of V will always be chosen so that the current flows
from tip to sample. The surface selected for the evalua-
tion of J,, is the plane z'=const lying completely in the
vacuum region between the electrodes. The basic in-
gredients in the calculation of j are the wave functions
YS(r) and 1/1L”(r) of the isolated sample and tip elec-
trodes, calculated in the absence of an electric field and
with the actual work functions ®'*) and ®'” replaced by
the average value ® =(®'*'+®'")/2 to ensure that j(r) is
indeed independent of z'.

In Tersoff and Hamann’s theory' of the scanning tun-
neling microscope the wave function of the tip electrode
is modeled after the / =0 component of the wave func-
tion of a spherical potential well with center r,, radius
Ry, and depth Vy=Ep+®, i.e.,

e —k|r,—r]|
() — e
Y, (r)=c(Ry) KT, —r]
where k=[2m(V,—E)]"/?/# and c(Ry)
=c,Q;"’kR, exp(kR,) with Q, the volume of the tip
and ¢, of order unity. For the wave function of the sam-
ple electrode they used a completely general expression®

(|r—r,| >Ry, (5)
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for a two-dimensionally periodic system in the region of
negligible potential far enough from the surface, i.e.,
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G
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ag(G)=[kK*+(G+K)?]'2. (7)

Here G and K are a two-dimensional reciprocal-lattice
vector and Bloch wave vector, respectively. When (5)
and (6) are substituted into (2) and (3) the following sur-

(z>0), (6) face integrals, which have been evaluated by Tersoff and
where ] Hamann,! appear:
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Substituting (2) and (3) into (1) using (8) and (9) finally
leads to the desired expression for the tunneling current
density within the Tersoff and Hamann theory:
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where D'?(E) is the Fermi-surface electronic density of
states of the isolated tip electrode. The basic quantity
describing the isolated sample electrode is the nonlocal
spectral density [dv8(E,—Ep )¢\ (r,)* ¢\ (r).

The total current is calculated by integrating the z
component of Eq. (10) over any plane z =const lying in
the vacuum region 0 <z <z, —R,. Using Egs. (6) and (7)
for the sample wave function and (8) and (9) for the sur-
face integrals I,(G+K;z) and J.(G+K;z), the
Tersoff-Hamann expression for the current is readily ob-
tained:

™= [ dx [ dyjTr)
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where N'(r; Ef) is the local electronic density of states

of the sample at the Fermi energy.
|
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Equation (10) is applied to two idealized samples in the
next two sections.

III. JELLIUM SAMPLE

It is useful, as a basis of comparison, to know jTH(r)
for the simplest model of the sample electrode, namely a
half-space (z <0) of jellium. The electron wave function
in the vacuum region outside the isolated jellium elec-
trode is given by (6) with { G} =G,=0 because of the la-
teral homogeneity:

. —agl(0)z ;g.
212k ¢ KOGk R

Q[ ag(0)—ik, ]

YEk(n)= (z>0), (11)

where E =#(K2+k2)/2m and ag(0)=(k*+K?)!"? with
kK*=2m(V,—E)/#. The coefficient agx(0) was ob-
tained by matching (6) onto the interior (z <0) wave
function

Y k(r)=[ 4 explik,z)+ B exp( —ik,z)]exp(iK-R)

in the usual way and normalizing the wave function to
unity over a volume Q,=L* of sufficiently large size
[L >>k; ag(0)~!']. [The wave function (11) is much
simpler than the corresponding one in Lang’s papers be-
cause it does not include the effect of self-consistent redis-
tribution of charge via simultaneous solutions of the
Schrodinger and Poisson equations.] The required nonlo-
cal spectral density is
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Evaluation of the partial derivative of the spectral density
with respect to z is trivial, as are those with respect to x
and y [using dJy(u)/du=—J,(u)].

Figures 1(a) and 1(b) are vector plots for the projection
of the tunneling current density j™(r) onto the planes
x =x, and z =z, /2, respectively, with the length of each
arrow scaled by [ | jTH(r) | /| j™H(r) | pax)? with p=0.3.
Figures 1(c) and 1(d) are contour plots of j H(x,,y,z) and
jTH(x,y,z,/2), respectively. The position of the tip, r,, is
indicated by a solid circle. All the plots are for the same
values of ky (1.7 A™!) and work function ®=V,—Ey
(4.2 eV) as used in the next section for a monolayer of
graphite and for z,=20a, (a, is the Bohr radius). Re-
sults are shown only for 2a, <z < 18a, reflecting (in a to-
ken way) the fact that the transfer Hamiltonian approxi-

o
e A BN
- = N
£ o EEEEERIE
S = AEERRRNE
¢ 4 LI
25 AERRERRS
EQ" NN
L S S T TR T T T
L T 2 R T T T
Lo EEEREEEEE
2 - SEEEREEERE
N o AR SR SR
N :-<¢l164$0[‘ibh\’~-..-
560  -75 0.0 75 16.0
(a) y (atomic units)
L]
o
[e 0]
= N \
e °
c S
=3
o
-gg—-
Lo
8 ©
N o
N I 1 1
50  -75 0.0 7.5 16.0
(c) y (atomic units)

7359

mation is not valid near the edges of the tunneling barrier
and also that z must be less than z, —R,. The z cutoffs
used here are probably too liberal so that qualitative be-
havior is understood in the suspect regions near the top
and bottom edges of Figs. 1(a) and 1(c) [and also Figs.
3(a), 3(c), 4(a), and 4(c) of Sec. IV].

The results in Fig. 1 are in good qualitative agreement
with those of Lang when one allows for the fact that
jIH(r) approaches zero for large values of |R,—R|
rather than leveling off at a nonzero value, reflecting the
very different lateral structure of the respective model
tips. The current distribution of Fig. 1 will be contrasted
with the corresponding ones for a monolayer of graphite
in the next section.
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FIG. 1. Distribution of the tunneling current for a jellium sample. Vector plots for the projection of j™(r) onto the planes (a)
x =x, and (b) z =z, /2, with the length of each arrow scaled by [ | j7(r) | /| j77(r) | max]? With p=0.3. Contour plots of the z com-

TH

ponent of the tunneling current density, j, "(r), for the planes (c) x =x, and (d) z =z, /2, with each successive contour, proceeding

away from the tip, depicting a factor-of-2 decrease in | jT7 |.

The position of the model tip is indicated by a solid circle.
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IV. MONOLAYER OF GRAPHITE

STM images of graphite!®~'* are remarkable in several

respects: the lateral resolution is such that individual
carbon atoms only 1.4 A apart are clearly resolved; the
STM constant-current corrugations measured under
clean conditions are much larger (~0.9 A) than the cor-
rugations in the total charge density (~0.2 A) expected
from helium-atom scattermg experiments’>  and
electronic-structure calculations;'® very much larger cor-
rugatlons (up to tens of angstroms) have been ob-
served!*!* under nonideal conditions and attributed to
tip-induced deformation of the graphite surface!>!417:18
mediated by a contamination layer.!>!’

Recently, Tersoff® investigated the problem of the
anomalously large corrugations observed under clean
conditions. He neglected the very weak interlayer cou-
pling and calculated the STM constant-current image for
a monolayer of graphite. Within a six-plane-wave ap-
proximation, it is a zero-band-gap semiconductor with a
Fermi surface consisting of only two distinct points at op-
posite corners of the hexagonal surface Brillouin zone
[see Fig. 2(b)]. Far enough into the vacuum region
(z>0), a three-plane-wave model for each of the two
Fermi-surface wave functions is adequate and the local
densny of electronic states at the Fermi energy is given
by’

N'(1;Ep) « |sin? +sin?

v V73 —
——3—KFy —4§KF(\/3x —y)

2

5| V3 = -
+sin? -%KF(\/3x+y) e T (13)

where Kp=4m/3a, with a the lattice constant, is the
length of the two-dimensional Fermi wave vector and
ar=(2m®/#+K})!""? with ® the graphite work func-

(a) (b)

FIG. 2. Real-space and reciprocal-space unit cells for a
monolayer of graphite. (a) Hexagonal unit cell in real space.
The lattice constant a is 2.46 A. There is a carbon atom at each
corner of the hexagon. Each of the two distinct Fermi surface
wave functions has a nodal line passing through the center of
the hexagon and through three of the six corners. The nodes of
one are indicated by O and of the other by @. (b) Hexagonal
first Brillouin zone. The two distinct sets of three equivalent
(modulo a reciprocal-lattice vector G) Fermi wave vectors, K,
are indicated by solid and dashed arrows terminating at corners.
The six shortest nonzero reciprocal-lattice vectors are shown by
the long arrows.
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tion. (13) has a hexagonal array of nodal lines, {x
=ma/2, y=nV3a/2: mn=...,-2,—1,0,1,2,...;
m —n even}, passing through the centers of the carbon
hexagons [see Fig. 2(a)]. Since I™ <« N*X(r,;Ey), the tun-
neling current is zero when the center of the model tip
lies along one of these lines and hence the constant-
current image has a corresponding hexagonal array of
singular dips. In actual graphite these singularities will
be smoothed out by various effects’ such as corrections to
the model-tip wave function, nonideal instrumental
response, and tunneling to states with K not exactly
equal to K because of finite bias and/or finite Fermi sur-
face arising from the effect of additional plane waves and
weak coupling between the layers. It has recently been
shown!® that the relative motion of the tip and graphite
atoms due to thermal lattice vibrations can readily pro-
vide enough smoothing to account for the finite but
anomalously large corrugation of ~0.9 A observed at
room temperature.

For Tersoff’s six-plane-wave description of a mono-
layer of graphite it is easy to construct the nonlocal spec-
tral density entering Eq. (10) for j™H(r). The two distinct
Fermi-surface wave functions are

Kpx | L i2ns3, —i(Kp/2)(x~V )

+e

i4n/3, ~i(Kp/2)x+V3p)

¥k (r)=N(e
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e )(r):N(e—iKFx+e,-2ﬂ,/3ei(KF/2)(x—1/3y)

F
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4773, i(Kp/2)x +V3p) —apz

+e Je (15)
These wave functions were each constructed from the
three plane waves, exp(iKg-R), having equivalent
(modulo a reciprocal-lattice vector G) Fermi wave vec-
tors, for example, Kp=K;X, Kp(—%+V'3§)/2, and
—Kp(R+V3§)/2 for (14) [see Fig. 2(b)]. Each of the
wave functions (14) and (15) has nodal lines running
through the center and through every other corner of
each carbon hexagon, with the corner nodes of (14) alter-
nating with those of (15) so that only the nodal lines
through the centers are common to both, [see Fig. 2(a)].
It is clear from Eq. (10) that when the tip lies directly
above the center of a carbon hexagon the tunneling
current density j™H(r) is zero everywhere. To make con-
tact with actual graphite, smoothing is introduced!® by
allowing the tip atom to fluctuate about its equilibrium
position with root-mean-square displacements in the x, y,
and z directions of 0.1 A (a rectangular fluctuation distri-
bution function is assumed for each direction). The effect
of this smoothing is to reduce the singular corrugation in
the constant-current image® to 0.9 A (Ref. 19) while pro-
ducing a more realistic current-density map for the situa-
tion in which the tip lies directly above the center of a
carbon ring. The smoothing has no appreciable effect
when the tip is directly above a carbon atom. (In actual
graphite, neighboring carbon atoms in the hexagonal ring
are inequivalent because one is directly above an atom in
the second layer while the other is not.)
Before presenting numerical current distributions for a
monolayer of graphite it is instructive to look at the func-
tional form of j,; H(r)=j™(r)-2. Substituting the wave



functions (14) and (15) into (10) immediately leads to
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It readily follows, using Kp=1.7 A~ !'and ar=2.0 A‘l,
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because z, —z is already required to be larger than R, and
it is hard to conceive of R being any smaller than the ra-
dius of the single atom believed to lie at the very end of a
high-resolution STM tip. Moreover the transfer Hamil-
tonian approach is suspect for such a small value of z, —z.
Hence, over the practical range of z the magnitude of
jIH(r) at fixed r, and R=(x,y) decreases with increasing
z, i.e., increases towards the graphite sample. Since the
current flow must spread out laterally in going from a
sharp tip to an extended sample, conservation of current
requires that j%(r) must take on both positive and nega-
tive values over any plane z=const (0<z <z, —R,).
This surprising prediction is borne out by the numerical
calculations.

Figures 3(a) and 3(b) are vector plots for the projec-
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FIG. 3. Distribution of the tunneling current for a graphite monolayer sample when the tip (@) is positioned directly above a car-
bon atom. Vector plots for the projection of jTH(r) onto the planes (a) x =x, and (b) z =z, /2, with the length of each arrow scaled by
[1i™(r)| /| j™(r)max | P with p=0.2. Contour plots of the z component of the tunneling current density, jH(r), for the planes (c)
x =x, and (d) z =z, /2, with contours of negative jI indicated by solid lines and positive by dashed lines. Adjacent contours corre-
spond to a factor-of-2 change in | j™| with the positive and negative contours treated separately. In (c) | j/" | increases towards
the sample along any line perpendicular to the sample. In (d) the amplitude of the oscillations in j " increases towards the projected

tip position.
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tions of jTH(r) onto the planes x =x, and z =z, /2, re-
spectively, scaled by [|j™(r)|/|j™(r)]| a]? with
p=0.2; Figs. 3(c) and 3(d) are contour plots of
jM(x,,y,z) and j H(x,y,z,/2), respectively, all for
z,=20a, with the (stationary) model tip directly above a
carbon atom. Figures 4(a) to 4(d) pertain to the case
where the (vibrating) tip is directly above the center of a
carbon hexagon [with a stationary tip j™H(r)=0 for all r].
It is instructive to compare these plots with the corre-
sponding ones for jellium.

Figure 1(a) is a scaled (p =0.3) vector plot of the pro-
jection of jTH(r) onto the plane x =x, for the special case
of a thick jellium slab as the sample electrode. The ar-
rows fan out from the tip (indicated by @) with jH(r) al-
ways negative and with | (x,,y,z)| decreasing to-
wards the sample along lines of constant y in the impor-
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tant region of small |y —y,|. The corresponding scaled
(p =0.2) vector plots for a monolayer of graphite with
the tip directly above a carbon atom, Fig. 3(a), or directly
above the center of a carbon ring, Fig. 4(a), are qualita-
tively different: j(x,,y,z) oscillates in sign along any
line z=const (0<z<z,—R,) and |j™M(x,,»,z)| in-
creases towards the sample along any line y =const.
These differences are shown more graphically in Figs.
1(c), 3(c), and 4(c) for the corresponding contours of con-
stant j H(x,,y,z), with solid lines indicating negative
(j™ <0) contours and the dashed lines positive (j,; > 0)
contours. Figures 1(b), 3(b), and 4(b) are scaled vector
plots of the projection of j™H(r) onto the plane z =z, /2.
For the monolayer of graphite, Figs. 3(b) and 4(b), the ar-
rows are superimposed on a hexagonal lattice to indicate
the positions of the carbon atoms. For jellium, Fig. 1(b),
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FIG. 4. Distribution of the tunneling current for a graphite monolayer sample when the (vibrating) tip is positioned (on average)
directly above the center of a ring of six carbon atoms. The tip is vibrated in all three dimensions with root-mean-square displace-

ment (82, .)'"?

=0.1 A. Fora stationary tip directly above the center j™(r)=0 for all r. See the caption of Fig. 3 for details.
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the flow of current is, of course, radially outward from
the (projected) tip position (@). For graphite, Figs. 3(b)
and 4(b), the flow is inward (for z not too near z,) in the
immediate vicinity of (x =x,,y=y,). Further out the
flow pattern becomes quite complex as current is fun-
neled laterally through the vertical boundaries separating
regions of negative jI™ from the adjacent positive re-
gions. Such boundaries are obvious in Figs. 3(d) and 4(d)
which show contours of constant j(x,y,z,/2), with
solid lines indicating negative contours and dashed lines
positive contours. For the case in which the tip is direct-
ly above a carbon atom the negative regions consist of
disjoint vertical tubes embedded in a single interconnect-
ed positive region. When the (vibrating) tip is directly
above the center of a carbon ring the central negative re-
gion is surrounded by corrugated cylindrical rings of al-
ternating positive and negative jf. The contours of
Figs. 3(d) and 4(d) are in marked contrast to the mono-
tonic circularly symmetric contours of j(x,y,z, /2) for
jellium shown in 1(d).

The calculated current distributions were checked for
both jellium and graphite (for both tip positions) by com-
puting the total current by integration of j (r) over
various z planes between tip and sample. The computed
values were independent of the plane chosen to high ac-
curacy. In addition, [V-j™(r)]/|j™(r)/a | was com-
puted at a large number of points for each system to
confirm that V-jTH(r)=0 was well satisfied.

Also of interest is the convergence as the z component
of the current density is integrated outwards from the
(projected) tip position on a plane of constant z to obtain
the current. Figure 5 shows the 50% and 90% radii, p s
and pg 4, as functions of z, —z for jellium and a graphite
monolayer when the tip is directly above a carbon atom.
The rate of increase of both p, s and p, ¢ is much greater
for graphite than for jellium. For z=z,/2=10a,, pg s
and pg ¢ for graphite are greater than the corresponding
quantities for jellium by factors of 25 and 2, respectively.
The relatively slow lateral decay of jI* for a monolayer
of graphite is at first sight surprising in view of the re-
markable lateral resolution apparent in experimental
STM images of actual graphite. There is no paradox,
however, because a very narrow current filament is a
sufficient but not necessary condition for high lateral
resolution. The lateral resolution is determined by the
sensitivity of the fotal tunneling current to the lateral po-
sition (x,,y,) of the tip at constant z,. Because of its
peculiar electronic structure, with only two distinct states
at the Fermi surface, a graphite monolayer is an example
of a system in which the total tunneling current changes
significantly with lateral tip position on a much shorter
length scale than that characteristic of the lateral decay
of the tunneling current density for fixed tip position.

V. CONCLUDING DISCUSSION

In this paper a simple expression for the tunneling
current density within the STM theory of Tersoff and
Hamann' was derived from the more general expression
due to Lang.2~* It was used to investigate the current
distribution in the vacuum region between a monolayer
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FIG. 5. Dependence on z, —z of the convergence of the tun-
neling current as j H(x,y,z) is integrated outwards from the
projected tip position on a plane of constant z. The 50% and
90% radii, py s and pg o, for a jellium sample are indicated by O
and O, respectively. The same quantities for a monolayer of
graphite with the tip located directly above a carbon atom are
indicated by B and @, respectively.

of graphite and the model STM tip. The current distribu-
tion is qualitatively different than that for jellium: for
fixed r, and R=(x,y), | j7H(r)| increases monotonically
towards the sample; j H(r) takes on both positive and
negative values in a complicated flow pattern; and the la-
teral falloff of the current density away from the (project-
ed) tip position is much slower than one might intuitively
expect from the remarkable lateral resolution (~1 A) ob-
tained for graphite using the STM. The results for a
monolayer of graphite show that a sharp peak in the tun-
neling current density directly under the tip is not a
necessary condition for high lateral resolution with the
STM. Ironically, it is graphite, which exhibits the best
lateral resolution of any system studied to date, that pro-
vides the best example to illustrate this point.

Although the position-momentum uncertainty rela-
tions forbid direct measurement of the STM tunneling
current density it is an important quantity in the under-
standing of certain phenomena such as local heating of
the sample surface and selective excitation of individual
adatoms by the tunneling current. Since such phenome-
na involve the tunneling current density in the immediate
vicinity of the sample surface there is a definite need to
go beyond the transfer-Hamiltonian approach which
breaks down in this region. When a better theory is
available it will be interesting to see to what extent the re-
markable properties presented here for a monolayer of
graphite are modified.

Note added in proof. Stoll et al.?® investigated the
current distribution between two periodically corrugated
free-electron-metal electrodes separated by a constant po-
tential barrier. The two-dimensional periodicity for the
array of tips was a large integral multiple of that for the
sample surface so that the current density associated with
a supercell approximated the current density in the vicin-
ity of a single isolated tip on an otherwise planar probe
electrode. For a single K component of the current
density they found that current loops close to the sample
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surface were possible due to strong interference between
the incoming and reflected electron waves. Since the Fer-
mi surfaces of both metals were of typical finite extent
these loops disappeared when the contributions of all Ky
were summed.
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