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The results of simulation studies of the localization and quantum-transport characteristics of a
three-dimensional, off-diagonally disordered tight-binding model are reported. The disorder is
characteristic of a hard-sphere fluid, with an exponential transfer-matrix element. The properties
calculated include the density of states, the band-edge and mobility-edge trajectories, and the time
dependence of the averaged probability, P(t), that an excitation will be found at the site at which it
was initially located. Localization of eigenstates is inferred from a criterion based on a cutoff in the
inverse participation ratio, and an attempt is made to provide a reasoned estimate for the chosen
cutoff via time-dependent studies of P(t). Pronounced screening effects on the band-edge and
mobility-edge trajectories are found and their physical origin is discussed. The consequences of
varying the ratio of the hard-sphere diameter to the range of the exponential interaction are investi-
gated. The results obtained for the hard-sphere fluid are contrasted with those for a randomly sub-

stituted lattice at the same density.

I. INTRODUCTION

The spatial character of quantum states in disordered
materials and the disorder-induced transition between lo-
calized and extended eigenstates is a problem of funda-
mental significance which is relevant to many areas of
condensed matter science. In this paper we study by
direct simulation the localization and transport charac-
teristics of a three-dimensional system with liquidlike dis-
order within the framework of a topologically disordered
tight-binding model.

Since Anderson’s original work,! localization has been
studied most extensively via a noninteracting tight-
binding Hamiltonian on a spatially regular lattice. The
matrix element enabling the excitation of interest to
transfer from site to site is taken to be nonzero only be-
tween nearest lattice neighbors. Randomness is intro-
duced into the Hamiltonian by allowing the site excita-
tion energies to be independent random variables, thereby
mimicking the effects of inhomogeneous broadening; and
a transition from extended to localized eigenstates occurs
when this site-diagonal disorder exceeds a certain critical
value. Site-diagonal disorder is, however, somewhat re-
strictive. In materials such as liquids or amorphous
solids a major source of disorder is the randomness in site
positions. This results in off-diagonal (or lateral) disorder
in which the distance-dependent transfer matrix elements
are random variables, reflecting the spatial disorder in-
herent in the site center-of-mass distribution. When deal-
ing with off-diagonal disorder the macroscopic parameter
characterizing the disorder is the number density of ac-
tive sites p, and a transition from localized to extended
states occurs when the density exceeds a critical value.
Localization with lateral disorder is relevant to the
metal-insulator transition occurring in a wide variety of
systems ranging from doped semiconductors to liquid
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metals,2~* to the transport of triplet excitons in the im-
purity band of mixed organic crystals,>¢ and to the reso-
nant transfer of multipolar Frenkel excitons in liquids.”®
In recent years there has been increasing interest in the
study of localization in spatially disordered systems by
analytical and numerical methods and by direct simula-
tion; see, e.g., Refs. 8-22.

Early simulations of localization with lateral disorder
were carried out by Kikuchi?' and Debney,?* although
their work was limited to fairly small two-dimensional ar-
rays. According to the scaling theory of localization®?}
there is a fundamental difference between two- and
three-dimensional systems: In the former case, all states
are predicted to be localized however weak the disorder,
whereas for three-dimensional systems a transition from
localized to extended states occurs when the disorder is
less than a finite critical value. More recently Ching and
Huber?® and Blumen and co-workers'® have performed
direct simulations on a three-dimensional system
specified by a tight-binding Hamiltonian with off-
diagonal disorder. The active sites were randomly distri-
buted at low occupancy on an underlying lattice, and a
transfer-matrix  element of  exponential form
V(R)~exp(—R /ay) was investigated. Blumen et al.'?
studied a system of 100 particles (N =100) with 30
configurations (n,, =30) and with active sites randomly
distributed on a simple cubic lattice. Ching and
Huber?®® studied an N =1000 particle system with
n.,=1-2, using an underlying fcc lattice with 0.01%
occupancy; their calculations were later extended’®® to
incorporate the effects of overlap into a tight-binding
description by examination of an N =600-700 particle
system with sites distributed at random on a diamond lat-
tice and with a transfer matrix element of modified ex-
ponential form. Results were obtained!®~%° for the
ensemble-averaged density of states characteristic of the
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systems studied and for the inverse participation ratio®*
(IPR) distribution. The localization of eigenstates was in-
ferred from the IPR by choosing somewhat arbitrarily a
finite lower bound such that states of given energy with
an IPR greater (less) than the cutoff value are considered
to be localized (extended). By performing a range of
simulations with a fixed density pl3 of active sites, and by
varying the ratio a /I (where ay is the range of the ex-
ponential interaction and / the lattice constant), Ching
and Huber?®® demonstrated the existence of a mobility
edge between localized and extended eigenstates, and es-
timated the critical ay /I associated with the disappear-
ance of extended states.

In this paper we also study a three-dimensional lateral-
ly disordered tight-binding model with a simple exponen-
tial transfer-matrix element. In contrast to Refs. 18-20
we focus on a system with liquidlike disorder: the ran-
dom site distribution is generated by quenching center-
of-mass configurations characteristic of a hard-sphere
fluid at the chosen number density. Calculations are typ-
ically performed with 12 configurations of 500 particles,
although results with N up to 2000 are also reported in an
effort to investigate some system size effects. Use of a
hard-sphere system together with an exponential
transfer-matrix element produces two characteristic
length scales, o and ay, where o is the hard-sphere diam-
eter such that no two sites can be separated by a distance
less than o.

In Sec. IT we describe the calculational procedures em-
ployed and examine the averaged density of states for a
range of both reduced density p*=po* and the ratio
o /ay. We also discuss theoretically the form of the den-
sity of states as appropriate to low densities at or near the
upper edges of the band where pair states predominate,
and compare the predictions with our computational re-
sults. The computed density of states is also compared
with that resulting from a substitutionally disordered sys-
tem with active sites distributed at random on an under-
lying lattice.

In Sec. III we examine the localization characteristics
of the system. Localization of eigenstates is inferred from
the IPR, and in Sec. III we choose and proceed with an
IPR cutoff of 0.16 as a boundary between “localized” and
“extended” eigenstates. An attempt to justify this cutoff
via timescale arguments will be given in Sec. IV. With
the chosen IPR criterion we estimate the critical number
density required for all states in the band to become lo-
calized (the Anderson transition density). We also esti-
mate mobility-edge and band-edge trajectories for the
system, i.e., how the mobility edges and band edges in the
density of states vary with density for a given o /ay.
Strong asymmetry is observed in both. For a given densi-
ty, localized states in the upper half-band are more
strongly localized than states in the lower half-band. In
fact, states in the lower half-band are localized only
weakly at best, and the clear existence of a lower mobility
edge is difficult to ascertain, as was also observed by
Ching and Huber? and by Debney.?> We suggest in Sec.
III that this behavior may be understood, at least in part,
in terms of the notion of transfer-matrix element screen-
ing.' We also discuss briefly in this section the effective
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“radius of gyration,” R, of an eigenstate, which gives a
measure of the spatial extent of an eigenstate of given en-
ergy.

In Sec. IV we consider an ‘“‘experiment” in which an
excitation is created at time ¢t =0 on a specific site ;. The
probability P;(t), that the excitation will be found on site
i again at time ¢ can be expressed in terms of the eigenval-
ues and eigenvector coefficients of the tight-binding Ham-
iltonian calculated in Secs. II and III. The time depen-
dence of the ensemble-averaged probability P(z) can,
therefore, be calculated. A wide range of information
can be extracted from such studies. One example is given
in Sec. IV. We examine for a finite-size system the long
time contributions to P;(t) arising from eigenstates of the
system which could be considered as localized and those
which could be regarded as extended. We argue that
only the latter can effectively contribute to the observed
long time delays in P(t), and for N =500 particle systems
are thereby able to estimate an acceptable IPR cutoff
separating localized from extended eigenstates of the sys-
tem.

II. DENSITY OF STATES

For a fixed center-of-mass configuration {R;} the
quantum mechanics of the system is specified by a tight-
binding Hamiltonian,

H=3 [Deli|+3 [V, (1)
i ij
where the sum runs over all sites. In this paper we are in-

terested in pure lateral disorder. In the absence of site-
diagonal disorder €; =€, and we take e=0 without loss of

generality. We study a simple exponential transfer-
matrix element
sz—Voexp(_R,j/aH) 5 (2)

where R;=|R;,—R;|. For a given configuration
the eigenstates of # are denoted by | ¥,) with a corre-
sponding energy E,. The | ¥,)’s may be expanded as

1\I/a)=2ci,a|i>» (3a)
where

2 Ci?aci,EZSaB , (3b)

2 ClCia=8; , (3c)

as both the eigenvectors { | ¥, )} and the site basis { | i )}
form orthonormal sets.

Quenched configurations of a hard-sphere fluid at a
specified reduced density p* were generated by standard
methods. Periodic boundary conditions were employed,
consistent with which a minimum image convention was
used such that sites separated by more than half of the
basic cell length L did not interact. Unless stated to the
contrary, the results reported refer to calculations with a
basic cell containing N =500 particles. Eigenvalues and
eigenvectors of the Hamiltonian Eq. (1) were obtained by
complete diagonalization. More precisely we obtain the
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eigenvalues E,=E,/V, of the matrix M;;=(1—8,,)V,;/
Vy, so that all eigenvalues are quoted in units of V.
Most calculations were performed for the ratio
o/ay=0.9 (which will be implicit unless stated other-
wise), although the variation in our results with o/ay
will also be discussed.

The computed E, give directly the density of states
(DOS) for a given configuration. In Fig. 1 we show the
averaged DOS per site [such that [ D(E)dE=1] ob-
tained as an average over 12 configurations, and for the
three reduced densities p* =2X 1072 (pa} =2.74x1073),
1072 (pa}=1.37x10"%), and 5x107% (pa}=6.86
X 1072). The DOS is smoothed by averaging over an en-
ergy interval large enough to give adequate statistics and
small enough to preserve detail, with resultant points
fitted by a cubic spline. For sufficiently low number den-
sity the DOS is symmetric in energy about the unper-
turbed site energy E.=0, with a large central peak. As p*
is progressively increased the DOS acquires a characteris-
tic and familiar asymmetry with an increasingly long tail
in the lower half-band and with the DOS maximum shift-
ed progressively into the upper half-band.

The ensemble averaged DOS, D(E)=D(E)/V,, is
given by

D(E)=—m"(ImG;(E)) , 4)
where G (E)=lim,_ o, G;f (E +is), and G;(z) is the di-
agonal element of the Green function

G,;=(i [(z—A)""|j) for the tight-binding Hamiltoni-
an, which from Eq. (1) satisfies

2G;(z)— zk ViGyj(2)=38 (5)

ij .
Equations (4) and (5), together with the hard-sphere dis-
tribution function, form a basis from which analytical ap-
proximations to the DOS may be developed. Most work
in this area has been concerned with a perfectly random
spatially disordered system corresponding to the o=0
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FIG. 1. The averaged density of states, from 12

configurations of 500 particles, for o /ay=0.9, and at reduced
densities of p* =pa?=0.002 (solid line), p* =0.01 (dashed line),
and p* =0.05 (dotted line).
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limit, e.g., the Matsubara-Toyozawa approximation?’ and
its modification,?¢~?® although Katz and Rice?® have
developed approximate methods for taking the hard-
sphere structure into account. The above theories, how-
ever, are not appropriate’® in the low density range over
which we expect appreciable persistence of localized
states (paj; less than ~0.01-0.03), which is the density
domain of primary interest in this paper. A description
of the DOS has been developed by Elyutin®® which is val-
id in the density range 10722 paj 2 107 for the 0 =0
case of a perfectly random system. We now discuss
briefly this approach, as there are several features of it
which are relevant both to the averaged DOS and the lo-
calization problem.

For a given realization of the system, the self-energy
S;(z) of atom i is defined through the inverse of the diago-
nal Green’s function by

Gl',‘(z)=[z '—S,'(Z)]_l . (6)

Equation (5) may be employed to generate a renormalized
perturbation series’! (RPS) for the self-energy, which
takes the form

=5 Ll
) (z —S}”)

+3 ViiVik Vii

— — 4+ - . (7a)
jizn k(e (2 =S¢z —Si™)

Here, terms such as S|" represent the self-energy of site j
in a system with site i removed and are defined by a series
analogous to Eq. (7a) but with the appropriate site(s) ex-
cluded from the sum. Truncation of the RPS at the
second-order term gives

’ l Vlj |2

S,-(Z)z 2 P YIRE (7b)
j z—S j (z)

Equation (7b) may be iterated, and leads via Egs. (4) and
(6) to an approximate result’® for D (E). At this level the
DOS is necessarily symmetric in energy about E =0:
Asymmetry in D(E) arises'®* from irreducible m > 3-
body terms in the RPS, Eq. (7a), which are neglected in
Eq. (7b). The procedure sketched is equivalent to a
resummation of all (averaged) interaction graphs contrib-
uting to D (E) which have the topology of Cayley trees
with variable connectivity;° the resultant expression for
D(E) is valid for 0 =0 in the low pa} domain. Elyutin
finds* that the band edge in the DOS is given by

E_ =1+40(pa}):0=0, paj—0 (8a)

and that in the outer edges of the band (12 E >>0) the
functional form of the DOS is

712

D(E)=2wpa§ﬂ"—|—~g—)— . (8b)
|E|

Equations (8) refer to the o =0 limit. However, we can
generalize to the case of finite o, and gain some physical
insight into the origins of (8), if we assume that at
sufficiently low density the wings of the band reflect the
distribution of bonding and antibonding interactions as-
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sociated with interacting pairs of sites. We solve Eq. (5)
trivially for an N =2 particle system and perform an en-
semble average to give

D(E)~p [ dR L[8(E +V (R))+8(E —V(R)]go(R) ,
(9a)

where g,(R) is the radial distribution function for a
hard-sphere fluid. We expect Eq. (9a) to be reasonable to-
wards the wings if indeed that region is dominated by
pair interactions. The p—0 limit of gy(R) is the step
function ©(R —o); higher-order density terms in a virial
expansion of g,(R) give a negligibly small contribution to
(9a) in the density range of interest and do not alter the
position of the predicted band edges. For the exponential
V(R), Eq. (2), together with go(R)=6(R —0), Eq. (9a)
can be simplified to

D(E)=V,D(E)

2
~2mpaj, f Ode UHXL)

[6(x —E)+8(x +E)], (9b)
where B=exp(—o /ay). This simple calculation there-
fore predicts the band edge to occur at

E, =exp(—o/ay) (10)

which for o =0 reduces precisely to the leading term in
(8a). In physical terms the diminution of E , from unity
reflects the existence of a minimum site separation o, so
that the maximum | V(R)| /¥, is reduced from 1 to

e °’°". From (9b) the DOS is also predicted to have
precisely the form  (8b)  within the band
[|E| <exp(—o/ay)]

The analysis leading to Egs. (9) and (10) is trivial, but it
gives some insight into the nature of states near the edges
of the band at low density and reveals the physical origin
of Eq. (8). It suggests that if the observed DOS near the
upper and/or lower edges of the band conforms to Eq.
(8b), then states in that region are largely due to pair
states which we would expect to be spatially localized.
This will be discussed further in the following section. In
Fig. 2 we compare Eq. (9b) with the computed D(E) (for
N =1000, n,=6) at p* =2x10"? and with o /az=0.9
[exp(—0 /ay)~0.41]. As is seen from the figure the
agreement is quite reasonable at this density for
| E | 20.07. The effect of varying o /ay is illustrated in
Fig. 3 where we plot D (E) for a fixed paj;=6.9x1073
and with o /a;=0.7, 1, and 1.3. The DOS has a degree
of asymmetry at this density, but if states towards the
upper edge of the band are due primarily to pair interac-
tions we would expect from Egs. (8a) and (10) that E
would be given by E+ =exp(—0 /ay)+cpaj, where the
coefficient ¢ depends on o and reduces to ¢ =3.78 (Ref.
30) for 0 =0. We see from Fig. 3 that in each case the
DOS in the upper-density decays to zero at a value close
to and slightly greater than exp( —o /ag).

We now refer briefly to the asymmetry in the DOS ob-
served in Fig. 1 at the higher densities p* =0.01 and 0.05.
As mentioned previously the asymmetry in D (E) arises
from the irreducible m > 3-body terms in the RPS, Eq.
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FIG. 2. A comparison between the computed DOS at
p*=0.002 with 0 /a;=0.9, and the band-edge behavior calcu-
lated from Eq. (9b).

(7a). Logan and Wolynes'® have developed a simple
method of incorporating higher-order RPS terms into a
self-consistent theory of both localization and the aver-
aged DOS. Within their formulation, Eq. (7a) is replaced
by (s —0+)

| ®,(E)|?

—— an
E +is —S;(E)

S{E +is)~ Y/

J

Equation (11) is of precisely the form (7b) which results
from truncating the RPS at the second-order term, but
with the bare transfer-matrix element V;; replaced by an
energy-dependent renormalized transfer-matrix element
®,;(E). The effective transfer-matrix element takes ac-
count of the higher-order terms in the RPS in a simple
mean-field sense and, physically, reflects the screening of
the interaction between a pair of sites by the other sites in

the system. With a Yukawa transfer-matrix element

V(R)=—(V,/R)exp(—R /a) ,

D(E)

08 S0

FIG. 3. The effect of varying o /ay on the DOS at the con-
stant reduced density paj;=0.0069; o/ay=0.7 (solid line),
o /ay=1.0 (dotted line), o /ay = 1.3 (dashed line).
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Logan and Wolynes find!® that the renormalized ®(R, E)
takes the same form as the bare ¥V (R) but with a} re-
placed by an energy-dependent decay length a;(E). For
E >0 (E <0) it is found that ay(E)<a) [ay(E)>ad].
The effective transfer matrix element is thus of shorter
(longer) spatial range than the bare V' (R) for states in the
upper (lower) region of the band. As discussed in Ref. 16
it is this feature which gives rise both to asymmetric tail-
ing in the DOS and to the progressive shift of the max-
imum in D (E) as p is increased into the upper half of the
band. The parallel consequences of screening for the lo-
calization characteristics of the system will be discussed
further in the next section.

Finally, in Fig. 4 we compare the computed DOS with
that resulting from a substitutionally disordered system
in which active sites are distributed randomly on an un-
derlying fcc lattice, as studied by Ching and Huber.?*®
In each case N =1016 and n,=6. The hard-sphere di-
ameter is related to the fcc lattice constant / by o =1/V2
(the spheres touch when close packed). p*=0.01 in both
calculations, and the ratio o /a;=0.9 is also fixed. From
the figure we see that towards the upper end of the band
a noticeable structure appears in the lattice-based D (E).
This is to be expected if the region is dominated by in-
teraction between neighboring or near-neighboring sites,
as the discrete structure of the lattice will be most evident
on small length scales. In particular, the nearest-
neighbor distance for sites on an fcc lattice is 1/1/3.=0,
and nearest-neighbor pair states give rise to an (antibond-
ing) energy of exp(—o/ay)=0.406. A strong peak in
the lattice-based D (E ) at this energy is clearly evident.

III. LOCALIZATION

From the eigenvector coefficients {C;,} obtained as de-
scribed in Sec. II, we form the IPR, L, given by**

L,=3 |Cpal*. (12)
i
L, is unity for an eigenstate a localized entirely on a sin-

gle site (C; ,=§,;), and L,=n"" for a state uniformly

0.3

b](3]

0.2

0.1

)

FIG. 4. A comparison between the DOS for the hard-sphere
fluid (dashed line) and the randomly substituted fcc lattice (solid
line) for p* =0.01 and o /ay =0.9.
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spread over n sites (C; ,=n ~'/%, i =1-n). In an infinite

system, therefore, extended states have L ,=0, and local-
ized states are characterized by a finite L ,. Further, in
an infinite system localized and extended states cannot
coexist at the same energy:> The L, are distributed
such that L, is zero for states in the range E,.” <E, <E;/"
and is finite for states outside this range, where EX are
the upper and lower mobility edges. In a finite system
these distinctions are blurred, and in attempting to infer
mobility edges from the IPR there are two related prob-
lems to face. First, one must choose an appropriate
cutoff in L, to serve as a lower bound on localized states.
And second, even if one can provide a reasonable esti-
mate for the cutoff, the location of mobility edges will be
uncertain due to the distribution of L, ’s on the eigenen-
ergy axis.

As pointed out by Thouless, > close to a mobility edge
the wave function of an extended eigenstate is concentrat-
ed only on a small fraction of the sites, of order
~(r+1)73, where r is about 2 or 3. If applicable to a
finite system of N sites, this suggests'®® the cutoff value
L,=K /N, where K ~30-60. Blumen et al.'® chose a
cutoff of 0.2 (K =20). In contrast, Ching and Huber?*®
chose 6/N (with N =1000), which has been criticized by
Elyutin'®® as being somewhat low. In this work, for
N =500, we shall take a cutoff value of 0.16 (K =80):
The time-dependent work on 500- particle systems dis-
cussed in Sec. IV at least shows this to be reasonable, and
we believe 0.16 to be an adequate estimate of the cutoff.

The major problem in attempting to infer mobility
edges from studies on a finite system is the distribution of
L _’s on the energy axis: Within a given small energy
range there will be a distribution of L ,’s spreading above
and below the chosen cutoff value. This is illustrated in
Fig. 5 for p*=0.01 (and o /ay;=0.9), which shows a
scatter plot of the L, as a function of energy obtained
from six configurations of 500 particles. The figure shows
reasonable evidence for the existence of an upper mobili-
ty edge at around E } =0.07, although the situation in

0.60

1

0.50f
0.40f
0.30f
0.20f -

010

0.00 d L

E
FIG. 5. A scatter plot of the IPR of an individual eigenstate
L, vs the eigenvalue E, at p*=0.01 and o /a; =0.9. The re-
sults from six configurations of 500 particles are shown.



regard to a lower mobility edge is obscure (even if we in-
crease substantially the number of configurations). For
E 20.07 the great majority of eigenstates are localized
with an IPR greater than 0.16; similarly, for
—0.25 E 50.07 the vast majority of eigenstates have an
IPR less than 0.16 and are thus considered extended. For
E 5 —0.4, there are more than twice as many eigenstates
with L,>0.16 than with L,<L., and for
—0.3SE < —0.2 the converse is true. A value of E [
somewhere between —0.3 and —0.4 would not seem un-
reasonable, but the situation cannot be regarded as clear.

Assuming a belief of the incipient appearance of a
lower mobility edge, however, we would like to assess
qualitatively how the mobility edges vary with density
[mobility-edge trajectories (MET’s)]. We thus think it
desirable to provide at least a rough estimate of the lower
mobility edge. To this end we study the mean IPR. L,
averaged over a small energy interval AE as described in
Sec. II for the DOS. For an infinite system the mean IPR
will be finite (zero) over an interval containing exclusively
localized (extended) states; it will also be finite in an ener-
gy interval which includes a mobility edge, which is thus
smeared out by an amount of order AE. For a finite-sized
system the resultant L, will always be nonzero and will
clearly weight localized states more than those con-
sidered to be extended. Unless a given interval is heavily
dominated by states which can be considered localized,
we would expect a criterion to estimate mobility edges,
which is based upon a given cutoff L, to overestimate
somewhat the range of localized states. Inspection of
Fig. 5 suggests that we might, therefore, expect such a
criterion to provide a reasonable estimate for the upper
mobility edge and to underestimate the location of
1E .

In Fig. 6 we show the mean IPR corresponding to Fig.
S, but with a total of 12 configurations included in the

0.4

|

0.3

0.2

0.1

0.0 1 1 T | 1 ] 1 1 - ]
-08 -0.6 -0.4 -0.2 0.0 0.2 0.4

E
FIG. 6. The mean IPR (L) vs energy for p*=0.01 and
o/ay =0.9 (12 configurations of 500 particles). The horizontal
line shows the localization criterion L. and the vertical arrows
mark the mobility edge positions, according to this criterion.
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statistics. With the cutoff criterion L, =0.16 we estimate
E }=0.07 and E 7 ~ —0.35, which are compatible with
the discussion of Fig. 5, although it is clear that states in
the lower half-band with E <E [ are only very weakly
localized. Note too the rather sharp rise in the L, for
E>E [, to a value of around 1 towards the edges of the
band indicating the preponderance of antibonding pair
states, as commensurate with the remarks made in Sec. II
in connection with the DOS.

Figure 7 shows the system size dependence of the mean
IPR for fixed N X n_,, =6000 and for N =300, 500, 1000,
and 2000 particle systems. System size effects are, as one
expects, particularly pronounced towards the band center
where states are most delocalized, and are also evident,
but progressively less so, at least for energies in the range
—0.45E <o0.

To assess MET’s we have obtained data from 12
configurations of 500 particles (with o /ay =0.9) at some
15 different densities. Mobility edges at a given density
are estimated using the criterion described above. Band-
edge trajectories are also estimated by extrapolation of
the DOS onto the energy axis. As is evident from the dis-
cussion in Sec. II (see also Figs. 1 and 3), this is a reason-
able procedure for the upper band edge, and for the lower
band edge it provides a useful rough guide to where the
DOS vanishes. In Fig. 8 we plot the resultant band-edge
and mobility-edge trajectories. It is clear from the figure
that the upper band edge E_, occurs at an energy which,
over the density range studied, is only slightly greater
than exp(—o /ay)~0.41 (cf. Sec. II). The increasing
asymmetry in the DOS as p is progressively increased is
evident in the behavior of the lower band-edge trajectory.
Parallel to the band-edge asymmetry, we see a pro-
nounced asymmetry in the estimated MET’s. In fact,
Fig. 8 is qualitatively similar to Fig. 3 of Ref. 16, and the

0.0 1 1 1 1 1 1 1 1 1 1 J

-0.6 -0.4 -02 0.0 0.2 0.4

FIG. 7. The system size dependence of the mean IPR at
p*=0.01 and o /ay =0.9, the vertical lines show the mobility
edges inferred from the 500-particle runs (Fig. 6). The solid line
shows the results for 2000 particles (3 configurations); dashed
line—1000 (6 configurations); dotted line—500 (12
configurations); dash-dotted— 300 (20 configurations).
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observed asymmetry in the MET’s may also be under-
stood physically in terms of screening, as introduced in
Ref. 16 and described in Sec. II in relation to the DOS.
Since for E >0 (E <0) the renormalized transfer-matrix
element ®,;(E) [see Eq. (11)] is of shorter (longer) spatial
range than the bare transfer-matrix element V;;, we ex-
pect that for a given |E| the critical density above
which upper half-band states of energy +E become ex-
tended will be greater than that for which lower half-
band states at —E become extended. This behavior is
indeed apparent in Fig. 8. The existence of spatial an-
tiscreening in the lower half-band implies that states in
this region are much more susceptible to delocalization
with decreasing disorder than are states in the upper
half-band. We believe this to be a major factor responsi-
ble for the difficulty in locating accurately a lower mobili-
ty edge from finite-sized simulations.
In passing we would add that Puri and Odagaki'*?
and Fertis et al.!* have also calculated band-edge and
mobility-edge trajectories for a three-dimensional topo-
logically disordered system with a (modified) exponential
transfer-matrix element. The spatially disordered system
was replaced by a pair of sites embedded in an effective
medium, a homomorphic cluster coherent potential ap-
proximation was used to calculate the averaged Green’s
function for the system, and the localization of eigen-
states was inferred from the L (E) criterion.>’ In neither
case was asymmetry observed in the MET’s. This, how-
ever, is inevitable by construct: The effective medium is
assumed to be a crystal lattice, and if the unperturbed
Green’s function for the arbitrarily chosen lattice is sym-
metric in E (as in Refs. 12 and 14) then asymmetry in the
band-edge and mobility-edge trajectories is precluded.
From Fig. 8 we see that the Anderson transition densi-
ty (at which the mobility edges coalesce) corresponds to
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p'ay ~0.18 (0 /ay=0.9). As discussed previously we

expect this to be an overestimate. It is in reasonable
agreement with Ref. 15(a) (p!/%a;=0.14 for
o0/ay=0.9), and with the work of Elyutin!®®
(p{?ay=0.171£0.02 for o =0), although it is consider-
ably lower than p!/3a; =0.3710.08 found for =0 by
Ching and Huber.?”® Elyutin'®® points out, however,
that Ching and Huber’s results are in fact compatible
with p'/%a;; ~0.17 if a higher L, cutoff is applied to their
IPR distributions. We have also investigated the effects
of varying o /ay over the range 0.5-1.3. The effect on
the band-edge trajectories is quite pronounced as is evi-
dent from the discussion of Sec. II, but the MET’s in gen-
eral, and the Anderson transition density in particular,
are altered only to a minor extent. This is compatible
with the analytical results of Ref. 15(a), where p!/3ay is
only weakly dependent on o /ay for o/ay <1.5, and
with the numerical calculations of Puri and Odagaki in
Ref. 12(b) over the o /ay range studied here.
We now discuss briefly a measure of the spatial extent
of the eigenstates. Following Yonezawa!’ we define an
effective “radius of gyration,” R ,, of an eigenstate a, by

R.=4R,,+R%,+R}), (13)
where R2, =x?—x 2, etc. and
x1=3 | Cia| Ry =Ry Voin
(14)

X = 2 I Ci,a [ 2(R:‘J‘_Rax )min .

Here, R; denotes the x coordinate of site i and site o is

the site with maximum amplitude in the given eigenstate;
a subscript min implies that a minimum image conven-
tion was applied to all distances. In Fig. 9 we show a
scatter plot of (R,/L)? against E,, where L is the cell
length, for a reduced density p*=0.01 and for a single
configuration of a 500-particle system. States in the vi-

0.030(
oo i : cinity of the band center E =0 typically have R, >L
" ! and therefore occupy an appreciable fraction of the
) volume of the system as is compatible with the behavior
o of extended states. As we move progressively away from
0.020F |
-
| q 1
: . R, /L
L ! )
[y .’ < -1 ’
~o 0.012F ¢ 10 !
| .o
\e L e
\ 1
|
A\ I 1072
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L } 103
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FIG. 8. Band-edge and mobility-edge (using L, =0.16) tra-
jectories for 0 /ay=0.9. The lines are simply aids to the eye,
the solid one shows the band edge and the dashed the mobility

edge.

FIG. 9. A scatter plot of the radius of gyration, i.e., R, /L, vs
eigenvalue E, for a single configuration of 500 particles at

p*=0.01and o /ay =0.9.



the band center, R, /L clearly drops off. The drop is
most pronounced in the upper half-band: For E > 0.07,
R, /L declines rapidly from a value of ~0.2 at E ~0.07
to a typical value of ~0.03 at E=0.2 and to values as
low as R, /L ~0.01 at the upper edge of the band. There
is clearly evidence for the dominance of states which
could be considered as localized in the upper half of the
band, in agreement with the preceding discussion. There
is also an evident diminuation in R, /L as one moves to
the lower edge of the band, but the drop is less pro-
nounced than in the upper portion, and the scatter rather
wide: This is compatible with our previous remarks on
the difficulty of locating a lower mobility edge.

In a finite-size system, the spatial extent of states con-
sidered as extended will clearly be controlled by the size
of the simulation cell. For the fixed density
p"'=N(a/L)3=O.01, we have, therefore, examined the
system size dependence of R ,, the mean value of R, for
eigenstates a with energies in the small interval from
E =0to E=0.01, for fixed Nn_,, =6000 and for N =100,
200, 300, 500, and 1000 particle systems. As N (and thus
L) is progressively increased, we find as expected that R,
increases. For p*=0.01, significant system size effects
are evident for N =100-300. It appears, however, that
R o saturates to a value of ~0.42L for N in excess of 500,
and thus that R, « L as L — o0, as one might expect for
truly extended eigenstates.

IV. TIME-DEPENDENT BEHAVIOR

Consider a given realization of the system, and suppose
that at time ¢t =0 an excitation is created on a specific site
i. The subsequent time evolution of the excitation is de-
scribed by the Schrodinger equation

m%zwn):ﬁwu» , (15)

where # is given by Eq. (1). The time-dependent wave
function can be expanded in terms of the site basis { | j )}

[W()=aj)|j), (16)
J

where a }(t) is the probability amplitude that the excita-
tion will be found on site j at time ¢ given that it was lo-
cated on i at t =0 [a}(0)=8j,-]. The wave function may
also be expanded as

W)= b, Wy 1)),

where

| Wo(2)) =exp(—iE t /%) | ¥,(0))
is a stationary state of the tight-binding Hamiltonian
with energy E,. It follows from Egs. (3a) and (16) that
b, =(W,(1) | ¥(0))=C?, so that

|W(1))=3 C* | ¥, )exp(—iE t /#) (17)

and
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aj(t)=3 C; ,C*,exp(—iE 1 /#) . (18)
a

The probability P, (t)= | a/(t)|? that the excitation will
be found on site i at time ¢, given that it was located there
at t =0, is thus given by

Pi()=3 | Cio|?| C;pl2cos(AE 57) . (19)
a,B

AE g=E,—Eg and 7=Vt /# are a dimensionless ener-
gy difference and time, respectively. The ensemble-
averaged probability that an excitation will be found at
time ¢ on the same site which it is located at ¢ =0 is given
by:

P(z):(% ;P,.,.<t)> . 20)

From a calculation of the eigenvalues and eigenvector
coeficients of the tight-binding Hamiltonian, as described
in the preceding sections, we can thus calculate P;;(¢) and
P(t). A good deal of information can be extracted from
such studies, but we focus here on the behavior of P;(t)
and P(¢) in relation to the localized or extended nature of
the eigenstates of the system.

In Fig. 10 we show the calculated P(7) as a function of
time 7, obtained from data on two configurations of
N =500 particles. The upper curve is for a reduced den-
sity p* =0.01 (paj; ~0.014) and the lower is for p* =0.05
(paj; ~0.069). Note that P(7) decays much more rapidly
at short times as density as increased, but that both
curves continue to exhibit decay over a much longer
timescale than that characteristic of the initial drop. The
short time decay of P;(7) reflects the ability of an excita-
tion to explore its immediate local environment. It is
determined mainly by the energetic range of the eigen-
states which overlap spatially the initial site and is not
greatly affected by the localized or extended nature of
these states. This can be seen by noting that the
coefficient of 72 in a short time expansion of

Pi(r)=1—y+0(*)

Plt)

2x10°!

—2'- 1 1
Sx10 0 100

200 300 %00
FIG. 10. P(7) vs 7, the lower curve is for a density of
po*=0.01 and the upper for po*=0.05. The data are obtained

from two configurations of 500 particles with o /ay =0.9.
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is given by

and

N{(E)

l

E | Ci,a i 28(E_Eoz)

is the local density of states which overlap with site i, the
ensemble average of which is D(E). The increasingly
rapid short time decay of P(7) with increasing density is
thus primarily due to the effects of band broadening.

In contrast, it is evident that the long time decays in
P(t) reflect the existence of eigenstates overlapping the
initial site which occupy an appreciable volume of the
system and which can, therefore, be considered as extend-
ed. An excitation created at t =0 on site / has a finite
probability | C; | [see Eq. (17)] of being initially in any
eigenstate which overlaps the site. The overall time evo-
lution of P;(7) thus ultimately reflects the ability of the
excitation to explore the regions of space associated with
these eigenstates. We would expect the contribution to
P;(r) arising from eigenstates which occupy a small
volume of space to decay rapidly to the infinite time con-
tribution to P; arising from such states. And we would
expect the contributions to P;(r) arising from extended
eigenstates to decay more slowly to its infinite-time value,
reflecting the greater time required for an excitation in
such states to explore the volume occupied by them. To
point this up we first separate P;;(t) as

Pi)=T [ Cpol*+ > Cial 2 Cigl ZCOS(AEaﬁT) )
a a,B

2n

where a prime denotes S4a. The first term on the right-
hand side of Eq. (21) is simply the infinite time value,
P; (), of P;(1), see, e.g., Refs. 15(b) and 32 [note too
that P(o0) is simply an ensemble average of the mean
IPR of the entire band]. In the limit of an infinite system,
P; (0 )=0 if no localized eigenstates overlap site / and is
nonzero if (any) localized states overlap with the site. In
contrast, P;( o) is inevitably nonzero for a finite-size sys-
tem. However the function 8P;(7)=P;(7)—P (o),
given by

8P, (t)="|C; || C;p|%cos(AE 457) (22)
a,B

describes the decay of P;(¢) to its infinite time value, and
vanishes as 7— o by definition. The separation AE
between energetically adjacent eigenstates of the system
is of order AE;, ~B /V,N, where B is the bandwidth of
D (E) at the chosen density. The maximum time scale 7,
over which we might expect to observe decay in 8P;(7)
[or P(7)] is of order 1/AE,;,. For our N =500 particle
systems we see from Fig. 8 that B /V;~1-2 for densities
in the range of interest; thus 7,, ~250-500, and decays in
P(7) over such long times are evident in Fig. 10 (see also
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Figs. 11-13). We would, however, argue that localized
eigenstates cannot contribute to these long decays. This
is essentially because localized states can coexist in a very
narrow energy interval only if they are spatially well
separated. In consequence, if the coefficient C; , of atom i
in eigenstate a is appreciable, the coefficient C; 5 of the
same atom in a localized eigenstate B with energy very
close to that of a is exponentially smaller than C, ,.

To see this, suppose we have localized eigenstate a
with energy E,, centered with maximum amplitude on
site i, and with a wave function of form
WV (r)~exp(—r/E), where £ is a localization length.
Consider another exponentially localized eigenstate S
with energy Eg~E,+AE,;, centered on a site a dis-
tance R away from site i. We ask for | C;z| 2 the squared
coefficient of site i/ in the eigenstate 5. Following Mott
and Kaveh,** we argue that the magnitude of the transfer
integral between these two states must be less than about
+AE i, if the splitting is not to take them out of the
range AE . . This, however, imposes a minimum spatial
separation, R, between states a and B, and | C;z|*
will be exponentially smaller than | C; , | 2 by a factor less
than ~exp(—2R,;,/&). We take the transfer integral to
be3* — Vyexp(—R /&), and with (AE )~ ~250-500 as
above, it follows than R, ;, /EX6-7. | C,g|? is thus ex-
ponentially smaller than |C;,|2 by a factor less than
e Localized states give an exponentially
small contribution to 8P;(7) on timescales of the order of
Tm- The long time decays in P(7) are, as intuition would
suggest, due to states which can be considered as extend-
ed and which are able to coexist in a region which is
small both energetically and spatially.

The question we wish to address here is what value of
L, constitutes an acceptable cutoff between localized and
extended states in our finite-size simulations? To investi-
gate this we define

PP(t)= 3 |Ci,|*| Cipl*cos(AE j57) ,

a,B
L>L,

~

e—12_

(23a)

T TrTTm

Plr)

10"

1

0 700 200 300 %00 : 500 500

2 1

2x10—2 1

FIG. 11. P*(7) and P "**(r) vs time 7 [Eqgs. (23a) and (23b)]
using the cutoff criterion L.=0.16. Results from two
configurations of 500 particles with pa*=0.01 and o /ag=0.9

are shown.
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FIG. 12. P! is shown further resolved into separate contri-
butions from the upper (P ) and lower (P_ ) half-bands togeth-
er with P, For p*=0.01 and o /ay =0.9 (paj,=0.014), data
from 12 configurations of 500 particles are shown.

P)= 3 |Cial?|Cipl2cos(AE p47) ,

a,B
L<L,

(23b)

where the sums are restricted to L > L, or L <L, as ap-
propriate. Note that, by construct, P;(7)5£P\°(r)
+P5*(1) except as 7— . We search for that value of
L, such that if a close but lower cutoff is used in each of
the sums in Eq. (23), then both P () and P '°°(r) exhib-
it decays over a timescale of order r,, indicating that
states which we would consider as extended are included
in both functions.

By investigation of this problem over a wide range of
densities in our 500 particle simulations, we find that
L_.=0.16 constitutes an appropriate cutoff. As an initial
illustration we show in Fig. 11 P®*(7) and P'°°(7) as a
function of time 7 for the density paj; ~0.014 (p* =0.01),
and with the cutoff L,=0.16. The long time decay in
P (1) is clear; in contrast, although oscillating in nature
as discussed below, P!°°(r) decays to its infinite time
value on a much shorter timescale. If a cutoff
significantly lower than L.=0.16 is employed, we find
that markedly long time decays appear in P '°°(r): This is
certainly the case with a cutoff in L less than
~0.14-0.15. The oscillatory behavior of P!°%(7) is
mainly due to interference between localized states in the
upper half-band and localized states in the lower portion
of the band. To demonstrate this we further define
P'°(7) and P'°°(r), where +(—) denotes that the eigen-
states @ and B in the sum (23a) are further restricted to
E, and E, greater (less) then zero, in addition to the
L > L =0.16 constraint. Interference effects between lo-
calized states in the upper and lower regions of the band
are thus excluded. In Fig. 12 we plot the resultant
P'%°(7) and P *(7), for the same density as in Fig. 11.
The oscillatory behavior apparent in Fig. 11 for P 1°°(r) is
now absent, and both P '%°(7) and P °°(7) decay very rap-
idly to their infinite time values [which satisfy

r
r (a)
Px) |
2x10°7'+
ﬁl‘oc
E ﬁexf
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FIG. 13. As Fig. 12 but for densities of paj; =0.08 and 0.024
[Egs. (13a) and (13b), respectively].

PY(w0)4+P(0)=P"(0)]. P"(r) decays on a
timescale 7 of order 10, and P '9°(7) decays on an even
shorter timescale which is not resolved on the scale of the
figure. We find again that if a cutoff significantly lower
than L.=0.16 is employed, markedly long time decays
appear in P! and P'°(7). Finally, to demonstrate that
the above behavior is not peculiar to paj =0.014, we plot
in Fig. 13 the functions P '%°(+) and P **(7) for a higher
density (paj; =0.024) and a lower density (paj, =0.008).
In both cases the time decay patterns are similar in char-
acter to those associated with the intermediate density
studied in Figs. 11 and 12.

We believe the above results show that for 500-particle
systems a cutoff of L,=0.16 is at least a reasonable
boundary between localized and extended states, al-
though the problem of locating mobility edges is obvious-
ly not ameliorated for the reasons described in Sec. III.
In subsequent work we shall discuss additional informa-
tion which can be extracted from time-dependent studies.
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