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A local-field method is described for determining the microscopic potential, the electrical resis-

tivity, and the electromigration driving force on an impurity in a metallic microstructure. The
method is an extension of Landauer s picture of residual-resistivity dipoles to microstructures, with

greater emphasis placed upon the details of the quantum-mechanical scattering process. Using a
microscopic, surface-impurity model for surface roughness, we apply the method to a metallic thin
film. When the film thickness is smaller than the mean free path, the surface resistivity is found to
have oscillatory behavior as a function of film thickness. The form of the oscillations depends upon
multiple scattering between the surface impurity and the film surfaces. In thicker films, the Fuchs-
Sondheimer result is recovered. The local potential set up by impurity scattering is dipolar in the
near- and far-field regions. However, unlike the case of residual-resistivity dipoles in bulk, the
effective dipole strength is generally different in the two regions. It is found that the residual-

resistivity dipole field decays less rapidly with distance in a thin film than in bulk, thus resulting in a
larger voltage drop across an impurity in a thin film. This field enhancement is expected in low-

dimensional systems.

I. INTRODUCTION

Electron transport in metallic microstructures has re-
ceived increasing theoretical and experimental attention
in the past decade. ' These microstructures typically have
at least one of their characteristic dimensions smaller
than the electron mean free path, and as a result electrons
can undergo coherent multiple scattering between inter-
faces as well as between interfaces and defects. In this
quantum interference regime, the dc transport
coefficients are expect to be very sensitive to the
configuration of defects and to the structure of the inter-
faces. A particular configuration of defects will give rise
to a characteristic 1ocal electric field and current distribu-
tion on a microscopic level.

The resitivity of a metallic rnicrostructure can be for-
mally expressed in terms of the transmission coeScient
according to the Landauer formula. This formula has
been the basis of extensive model calculations for the resi-

tivity due to a random distribution of impurities in one-
dimensional systems. Recently we described a general
local-field method for calculating the impurity resitivity
of an arbitrary metallic microstructure, and we applied
the method to a two-dimensional system, a semi-infinite
system and a thin film in which electrons occupy only
the lowest subband. This local-field method does not in-
volve the Landauer formula per se, nor its multi-channel
generalization. ' However, in common with the Lan-
dauer formula approach, the local-field method is based
on ideas contained in Landauer's seminal 1957 paper on
the spatial variation of currents and fields due to local-
ized scatterers. Essentially, the local-field method which
we employ is an extension of Landauer's picture to mi-
crostructures, with greater emphasis placed upon the de-

tails of the quantum mechanical scattering process. Such
details can be of crucial importance for microstructures,
especially when impurities are situated near interfaces.

The local-field method provides a tractable scheme for
determining the microscopic potential, the electrical resi-
tivity, and the electromigration driving force on an im-
purity in the microstructure. Electromigration is the
phenomenon of impurity migration in the presence of an
electric field and the accompanying electron current. "
Effectively, the impurities are driven by the local micro-
scopic electric field. '

According to Landauer, ' the increase in resitivity due
to an impurity is associated with a microscopic dipolar
source of electric field and current. This dipolar source is
called the residual resitivity dipole (RRD). The RRD is
not only a useful concept for the formulation of electron
transport in microstructures, but is also important for
understanding the detailed nature of the local field. An
effective RRD can also be defined when the scatterer or a
group of scatterers is in the neighborhood of interfaces of
a microstructure, provided that the size of the scatterer
group is not larger than the background mean free path l.
To understand how the RRD field is set up due to the
scatterers, we consider a scatterer group in the vicinity of
interfaces of a microstructure. The center of this scatter-
er group is at location R. When electrons are scattered
by the scatterer group and arrive at another position, say
r, there is a local pile-up of charges apd the local poten-
tial is adjusted so as to neutralize the excess space
charges. The local potential shift is the RRD field. It is
then clear that for

~

r —R
~
(1, the local potential de-

pends on the quantum mechanical scattering by the
group and interfaces. When

~

r —R
~
) I, the local poten-

tia1 depends also on the background scattering, which we
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assume is incoherent in nature. The calculation of the lo-
cal electrostatic potential is then divided into two re-

gimes, namely, the near-field regime (region close to the
scatterer group} and the far-field regime (region far from
the scatterer group). This idea of considering the local
potential in two regimes is also contained in Landauer's
paper.

The definition of the resitivity or resistance of a mi-
crostructure requires some care. The resistance as in-

ferred from a measurement of voltage depends upon the
position of the voltage probes. When the distance be-
tween probes is smaller than /, the measured voltage and
the inferred resitivity are governed by quantum rnechani-
cal interference phenomena involving defects, interfaces
and, in general, the probes themselves. This is the situa-
tion in recent experiments' '9 which have probed the
voltage drop across defects in a microstructure. On the
other hand, if the distance between probes is larger than
I, we are outside the quantum interference regime. The
measured voltage is no longer sensitive to the precise po-
sition of the probes, although particular scatterer groups
between the probes may still undergo strong multiple
scattering and exhibit quantum interference effects. In
any case, knowledge of the local potential and the probe
configuration would allow the appropriate resitivity to be
calculated.

In addition to the local field and resitivity, we also con-
sider the electrornigration force. The driving force for
electromigration in a highly conducting metal arises
largely due to the "electron wind force, " that is, the
momentum transfer by the electrons to the impurity
atom. " It turns out that the wind force, resitivity and
RRD are closely related to one another. In this paper,
we describe a local field method for calculating the wind
force, the local potential and the resitivity of an arbitrary
metallic rnicrostructure. We then apply the method to
the thin film case.

The resitivity of a thin metal film exhibits a "size
effect", or depends on film thickness d, when d is
smaller than or comparable to i. For even thinner metal
films, i.e., when A,F & d, where A,F is the de Broglie wave-
length of electrons at the Fermi level of the correspond-
ing bulk material, the "quantum size effect" becomes irn-
portant. (Actually, when d is several times A,F, quantum
interference is already important, as we shall see. ) In the
quantum size effect regime, the electron momentum is
quantized and the quantum interference phenomena are
expected to be more pronounced.

The earliest theoretical attempts to describe the size
effect in metal films were by Fuchs and Sondheimer.
They defined a specularity parameter p in order to set up
a simple boundary condition on the distribution function
f, which they then obtained by solving the Boltzmann
equation subject to their boundary condition. The value
of p ranged from p=l (totally specular reflection) to
p =0 (totally diffuse surface scattering). Soffer extended
the theory to obtain p from a statistical model for surface
roughness. His theory, however, is basically a semiclassi-
cal one which is adequate only for thicker films. For
thin films (d & i), the variation off along the thickness of
the film is somewhat ill defined, and there is doubt about

the validity of solving the Boltzmann equation with z-
dependence in f to match the boundary condition, where
z is the coordinate perpendicular to the film.

Recently, Leung and Tesanovic et al. have calcu-
lated the resistivity of metallic thin films in the quantum
interference regime. In the paper by Leung, the inter-
faces are characterized by a Gaussian distribution func-
tion and, keeping the effect of surface roughness to lead-

ing order, he finds that the resistivity of the thin film has
oscillatory behavior as a function of d. In the paper by
Tesanovic et al. , the interfaces are characterized by a
"white noise" surface profile which may describe an un-

correlated, atomically rough surface and the resitivity is
found to increase monotonically with decreasing d. Fur-
ther study is called for, both theoretical and experimen-
tal, to resolve this controversial behavior of the resitivity
in thin metal films. In this paper, we apply the local-field
method to an atomistic model of surface roughness, and
calculate the resulting resistivity of a thin metal film.

The outline of this paper is as follows. In Sec. II, we
introduce the local-field method to calculate the resistivi-
ty of arbitrary microstructures for scatterer groups near
the interfaces of these microstructures. The local poten-
tial that is set up around the localized scatterer in the
quantum mechanical asymptotic region is found. The
corresponding local potential in the far-field region, i.e.,
when the distance from the scatterer is larger than I, can
be found by solving a Boltzmann equation with a local-
ized source term. The source term, which arises from the
electrons scattered out by the impurity, can be deter-
mined from the full quantum-mechanical scattering prob-
lern. An expression for the wind force is also given. In
Sec. III, we apply the method to a continuous metal film.
The resistivity due to s-wave impurities in a film with flat
boundaries is calculated. A microscopic model for the
surface roughness is proposed by locating the impurities
near the surface of the film. The resulting surface resi-
tivity shows oscillatory behavior, similar to the result of
Leung. The oscillatory behavior is caused by discrete
jumps in the density of states and by multiple scattering
between an impurity and the film boundaries. As far as
we are aware, this is the first calculation of thin film resi-
tivity in which surface roughness is described by an
atomistic model which includes multiple scattering effects
between an impurity and the surfaces. Sec. IV presents a
discussion and conclusion.

II. GENERAL FRAMEWORK

We consider a metallic microstructure connected to
two highly conducting leads, one to the left-hand side and
the other to the right-hand side of the microstructure.
The microstructure can be a thin film, thin wire or even a
superlattice. The leads are connected to electron reser-
voirs which supply electrons to, and drain electrons from,
the microstructure. For simplicity we assume that the
leads are made of the same material as the microstructure
(i.e., they have the same electron density and the same
mean free path due to background scattering). The mi-
crostructure itself contains additional impurities. The
quantity of interest here is the additional resitivity, hp,
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due to these impurities.
For the present, consider the case of a microstructure

containing only a single impurity cluster, or scatterer
group, whose size is characterized by the length L, where
L &1. The electrons incident upon the scatterer group
are described by a shifted Fermi distribution which is set
up by the background scattering that occurs in the leads
and in the region of the microstructure far from the
scatterer group. Assuming a free-electron-like bulk ma-
terial, the part of the incident distribution that is out of
static equilibrium is

gt 7 8vg '805(EQ EF )

where ~ is the electronic relaxation time associated with
background scattering processes, Co is the uniform mac-
roscopic electric field in the absence of the scatterer
group, vz ——A'k/m is the electron velocity, sz ——A k /2m
is the electron energy, EF is the Fermi energy, m is the
electron mass and e is the magnitude of the charge of the
electron. The net particle current arising from the distri-
bution in Eq. (l) is given by Jo—— noes@—o/m, where no
is the average density of conduction electrons in the mi-
crostructure. The net current consists of an excess of
electrons moving antiparallel to Co and a deficit of elec-
trons flowing parallel to Co, with each component con-
tributing an amount —,

' Jo to the current density.
Each of the electron states k within the incident distri-

bution g& represents an incident electron wave that will

be scattered by the scatterer group. We shall determine
the scattered waves by solving the appropriate quantum
mechanical scattering problem. From the scattered
waves we then obtain the charge density and the local po-
tential field.

Thus far we have considered a single localized scatterer
group within a microstructure. If there are neighboring
groups we shall assume that they are suSciently separat-
ed so that they scatter electrons independently. Thus the
electron distribution that is incident upon any group,
after scattering by background incoherent scattering pro-
cesses and by neighboring groups, is assumed to have
recovered to the form given in Eq. (I). Effectively, the
scatterer groups are being considered in the dilute limit.

We now turn to the calculation of the local potential
and the electromigration driving force associated with a
scatterer group in the microstructure. As mentioned in
Sec. I, the calculation can be separated into two regimes:
namely, the near-field regime r &1 and the far-field regime
r g 1, where r is the distance measured from the center of
the scatterer group. The former case requires a full
quantum-mechanical scattering treatment. The latter
case defines a Boltzmann-type transport problem. Since
the electromigration force depends only on the local
scattering environment, the electromigration driving
force can be found from consideration of the r &1 regime.

A. Near-field region

In the near-field region, the general method is the fol-
lowing: First, we calculate the scattered wave function

PI,
+ '(r) for each electron incident in the plane-wave state

Pt(r) within the microstructure. Second, we compute the

perturbed electron density, 5n (r), due to the electron
current (or "electron wind"). It is given by ' ' '

Third, we determine the corresponding self-consistent
electrostatic potential 54(r) from the screening rela-
tion ' '

5n (r)
54(r) =-

e (dn IdE) (3)

Ak~F = fJ„(r)r CodA, (4)

where d A is the infinitesimal element of area perpendicu-
lar to the radial direction. (The dimensionality of d A de-
pends on the geometry of the microstructure. ) Here, J„r
is the radial scattered particle current density in the vi-
cinity of the scatterer group and emanating from the
scatterer group. It is given by

——.P„'(r) g„(r)
i Br

The radial scattered current dominates the current that is
scattered in other directions in the quantum-mechanical
asymptotic region where r &&1/kz and r is larger than
size of scatterer group. If the scatterer group becomes
only one scatterer, which is the dilute impurity limit,
then expression (4) gives the correct F on that impurity.
We note our convention is that a positive F indicates a
force in the direction opposite to Co, i.e., along the direc-
tion of the electron wind.

The local electrostatic potential will be perturbed, in
general, when voltage microprobes are attached along the
microstructure because of quantum interference. ' In
this case, we should include the microprobes as addition-
al scatterers and solve the problem again following the
procedures outlined in this section.

where dn/dE is the electronic density of states at E~ in
the desired region of space. We remark that the self-
consistent electron density is not 5n, but is 5n +5n„
where 5n, is the induced screening charge which at-
tempts to locally neutralize 5n Alt. hough 54 in Eq. (3)
is expressed in terms of 5n, it actually arises from 5n
and 5n, . The microscopic electric field, 58(r), which ac-
companies the transport process is determined from the
potential through the usual relation, 5@(r)=—V54(r).
Linear response is assumed throughout, i.e., only the
response linear in Co is considered.

Besides giving the local field, this general method also
allows us to calculate the average electron wind force on
an impurity inside the scatterer group. This force equals
the momentum transfer per second from the electrons to
the scatterer group divided by the total number of
scatterers N, in the group. The average wind force F
becomes
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B. Far-Seld region the substitution

The electrons incident upon the microstructure, or
upon a scatterer group in the microstructure, undergo
quantum mechanical multiple scattering and then leave
the scatterer group before they encounter appreciable in-
coherent scattering or inelastic scattering. What happens
thereafter is well described by a Boltzrnann-type trans-
port equation. Therefore the general method to calculate
local electric fields and the resulting resitivity in this re-
gion is to write down the correct form of the Boltzmann
equation, in accordance with the geometry of the micros-
tructure, and to include a particle source term. The
physical reason for including a source term is that parti-
cles scattered away from the scatterer group cannot be
neglected for a correct description of the far-field effects
of these scat terers.

The dynamic electron distribution gk satisfies the
transport equation. For purposes of illustration, we con-
sider the transport equation for the bulk case. Extension
of the method to various rnicrostructures of different
geometry is straightforward and is presented for the case
of a thin film in Sec. III. In the latter case the dynamic
electron distribution is g„z rather than gz, where n is the
subband index and k becomes a wave vector parallel to
the film. The transport equation for the bulk case is

gi, =gt+g(k, r)5(&q —Ep) .

The long-range (r & I) perturbed electron density
5n (r) follows from

5n (r)= —g(gz —g~),=1 0

k

(10)

and the long-range electrostatic potential 54(r) is given
by the neutralization condition in Eq. (3). The resulting
54(r) is dipolar in the region r ~~/. For the case of a sin-
gle impurity, 54(r) is calculated in Appendix A. The re-
sult is the usual Landauer RRD field.

The resistance of the microstructure is equal to the
average potential drop across the sample divided by the
transmitted current. In general, one must carefully speci-
fy the geometry and location of the probes in order to
determine the appropriate potential drop. This will be-
come clear in the remainder of the paper where we apply
the general method to thin metal films. We notice that
the electric field Co and ~ do not enter the final result for
the impurity resistivity because both the average poten-
tial drop and the transmitted current are linear in Co and
v. Therefore, the choice of relaxation time ~ in Eq. (1) for
g k is irrelevant as far as the resistivity due to impurities is
concerned.

vz V,g„+vi, e@05(e„E~}=—— +Si,(r), (6)
III. TRANSPORT IN A THIN METAL FILM

where g„=(1/4~)f dQ&gz is the local average to which

the electrons relax. ' The source term Sq(r) in Eq. (6)
can be written in the form

Sz(r) =5(r)5(e&—E~)S(k), (7)

f dk k fdr Si,(r)EQ& .
(2m. )

But the rate can also be expressed in terms of J„as
J„(r)r b, Q, ~, &. Therefore, S(k) in Eq. (7) becomes

4~ AS(k)= J„(r)r
mkF

and the transport equation in Eq. (6) can be solved, using

where the center of the scatterer group is chosen to be
the origin of our coordinate system. The spatial delta
function 5(r} in Eq. (7) implies that the particle source is
a point source, since the typical length scale, I, in Eq. (6)
is considerably larger than the dimension of the scatterer
group. We note that, in contrast to the conventional
transport equation, the source term has retained the in-
forrnation about the location of the scatterer group
whereas conventional transport equation uses only the
ensemble averaged transition probability in the collision
term. We emphasize that the local potential 54(r) does
not appear as a driving field in the transport Eq. (6).
Rather the effects of 54(r) are properly accounted for via
Eq. (3). This point was made by Landauer.

To obtain the explicit expression for the source term in
Eq. (6},we note that the rate of particles being emitted by
the source within solid angle b Qk is given by

where n, a positive integer, signifies a subband solution.
Here k = (k„,k ) and 0= Ad is the film volume.

The scattering solution g'„i, ' which evolves from g„i, is
readily determined in our model by noting that the in-
cident wave function in Eq. (11)can be written as

iK„+ .r+inn/2 iK„~ r —inn/2
„i, r= (e —e

&2n
(12)

where K'„—+'=k+(no. /d)z. The wave function in Eq. (12)
is a superposition of two plane waves. The solution for

The general method outlined in Sec. II is applied to the
case of a thin metal film. The film thickness d we consid-
er is for the regime d &~1, in which the size effect and
quantum size effect are expected to be important (I is the
bulk mean free path for the electron). For the thin film,
we choose a coordinate system in which the origin is at
the center of the film. The electrons can move along the
xy plane and are confined along the z direction within

~

z
~

&d/2. The position vector is denoted by r=p+zz
where p is the radial distance from origin on the xy-plane
and P is the azimuthal angle. An infinite wall is assumed
for the confining potential, and an impurity is taken to lie
at a distance b inside the upper surface, i.e., at
z =d/2 —b. The impurity potential is assumed to be
spherically symmetric and confined within a small
muSn-tin radius (smaller than b). The electrons incident
upon the impurity are described by the wave functions
P„&, which have the form

(r) = &2/0 sin z+ — e'0 P1% d ik
nk d 2
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AK
2t?l 2w

(13a)

where E =
I

K'„*'
I
. At the Fermi energy Ez, Eq. (13a)

becomes

fi K
F 2m 2m

2
nm 2+kF„ (13b)

for all occupied subbands n, i.e., for all n values such that
EF & (A' /2tn )( n m/d )

.. Here, kF„ is the effective Fermi
wave vector on the k„,k plane. Upon counting the oc-
cupied states of all subbands, one can readily obtain the
relation

the incident wave function scattered by the impurity in
the confined film is electively the same as the solution for
the two superposed propagating waves incident upon an
image-potential array in otherwise empty space. Of
course, we use the image problem solutions only within
the physical region

I

z
I

&d/2. The locations of the im-
age potentials are given by RI„=[(2j + —,

' )d +vb Jz,
where j is an integer and v=+1. The image-potential ar-
ray can be grouped into unit cells, labeled by j, with two
image potentials per unit cell, denoted by v. The lattice
spacing of the array is 2d (see Fig. 1).

The energy of an incident electron in state Q„I, is given

by

In this section, we first derive an expression for the
scattering state iI'I'„i,

' in the confined thin film and then,
following the method in Sec. II, we calculate the local po-
tential arising from impurities in the film, the wind force
on impurities, and the additional resistivity due to these
impurities. Numerical examples are given also, in this
section, for the d dependence of the surface resistivity of
the thin film. A random distribution of impurities locat-
ed near the surface of the film is used as a microscopic
model for the surface roughness that leads to surface
resistivity.

A. Quantum-mechanical scattering problem

The scattering of a plane wave by the image-potential
array is readily determined by standard techniques in
low-energy electron difFraction (LEED) theory. i3 Steps
to obtain g'„+i,

' are outlined in this section. We first con-
sider the incident wave

iK'+'r
(();„,=e (14)

Since the image-potential is spherically symmetric, it is
convenient to expand the wave in spherical harmonics.
The expansion of the incident wave P;„, with respect to
Rj isgivenby

= g aim(j &)JI(lt'
I
r —RJ~ I

)~Im(fl(r —R,„)), (15)
l, m

M

y k,'„=2~nod, (13c) where

dn Mrn

~'d (13d)

n=1

where M is the number of occupied subbands and no is
the density of conduction in the film. The electron densi-
ty of states (per unit volume) is easily found to be

a0 (j v) 4~(+i)nin +lan (K+)ekinttvb/d (16)

and the (+) sign corresponds to K'„' of the incident
wave. Since ai (j,v) is independent of j, then from sym-
metry arguments, we deduce that after multiple scatter-
ing between the potentials, the renormalized incident am-
plitude ai (j,v) is also independent of j. To simplify no-
tation, we define ai (j,v)—:a, (v). The following self-
consistency condition is readily derived:

ai (v)= aII I(&)

j', v' I', m'

X Gi ~, (b(v —v')z —2j'dz), (17)

0
~rrrrrrrrrrrrrrrrrrrrrrrrrr rrrr rr rrrrrr rrr rrrrrrr rrrrrr'rrrr rr

0
(j

~ ~

2

where the term which corresponds to j'=0 and v= v' is
not included in the summation. 5I is the impurity
scattering phase shift, and Gi. ~ I (x) is defined by

G (x) y 4 (i)(I —I —I )( 1)m+m"

0

0

FIG. 1. Schematic diagram of a thin film of thickness d, an

impurity inside the thin film and an array of image potentials.

where hl'" is the spherical Hankel function of the first
kind. The second term on the right-hand side of Eq.
(17) is the wave incident on one image potential due to
the scattered wave from all other image potentials.

To obtain an analytic expression, we further simplify
the model by restricting the scatterer to be a purely s-
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(18)

wave scatterer. The matrix equation (17) then becomes a
scalar equation for aoo(v). We rename aco(v) as a (v). It
can be shown that Goo 00(x) equals hz" (Kx). The a(v)
can be easily determined from the simplified Eq. (17).
The total scattered wave is given by

sin5 e0 e
iX

)
r —R..)

&'")&K(r R,.(

and

exp(2~iaj)

i=1 I

exp(2m. ia
~ j b—/d

~
)

lj b/d —
I

(20a)

(20b)

where

a(1) 1 1 —X(1,1) X(1,—1) a (1)
a ( —1) g X(1,—1) 1 —X(1,1) gc( 1)

(19a)

and

b, =[1—X(1,1)] —[X(1,—1)] (19b)

In Eq. (19), X(1,1)= sin50e Ao and X(1,—1)
i50= sin50 e 80, where

with KF am/——d. Since only electrons around the Fermi
surface are involved in the scattering, we take EC to be
KF.

It is more convenient to convert the sum over unit cells
in Eq. (18) into sum over the subband index. The conver-
sion is done by applying the Poisson sum formula,
which is stated as follows: An infinite sum,

„f (2n'm ), equals another infinite sum,
(1/2m) g„" „F(n), where F(n)= f f(r)e '"'dr.
The total scattered wave which corresponds to the in-

iX'+'r
cident wave e " is found to be

—i 50

P„,(r) =(+i )"
F s111 o

—30+80

X i cos(nab/d)HO'"(KFp)+2i cos(nlrb/d) g c os(n'n b/d)c so[(n'mid)(z —d/2)]
n'=1

X HO" (p[K —(n'vr/d ) ]' )

+ 2 sin( n n b /d ) g sin( n 'nbd ) sin[( n 'm /1 )(z —d /2 ) ]Ho
' (p[KF (n 'n. /d ) )

'—~ )
n'=1

(21)

where Ho" is the Hankel function of the first kind.
The scattered state P'+' is equal to P;„,+P~,. For an incident wave of the form in Eq. (12},which is the linear super-

position of two plane waves, the scattered state P'„+&
' is obtained from Eqs. (12), (14), and (21) to give

—i 50

1t'„+q'(r}=g„„(r)+ 2/0
EFd Sin50

—Ao+Bo sin(nm. b/d)

X g ( —1)"+" sin(n'mb/d) sin[(n'm/d)(z+d/2)]HO' '(p[KF (n'm/d) ]'~ )—. .
n'=1

(22)

The second term of Eq. (22) is the scattered wave and, be-
cause of the rotational symmetry of the image potential
array about the z axis, is independent of the azimuthal
angle P, for the case of an s-wave scatterer. The infinite
sum in Eq. (22) can be interpreted as the amplitude
of the incoming state lt„& being scattered into states
of subband index n'. If the electrons occupy M sub-
bands, then for n'&M, we have KF &(n'm/d) and the
Hankel function Ho" (p[K~ —(n'n/d ) ]' ) becom. es
( 2n/i ) K( o[(pn'n /d) Kz]' ), which—is an exponential-
ly decaying function for large argument. In general, the
Fermi surface is not extremely close to a subband bottom,
where the subband energy is (fi /2m}(n'n. /d) . Hence
the contribution from all n' & M terms in the infinite sum
of Eq. (22) is small when p & d in the quantum-

I

mechanical asymptotic region. The closer the observa-
tion region is to the scatterer, the more of these evanes-
cent waves are needed in the infinite sum for the scattered
state. These evanescent waves can be interpreted as vir-
tual transition processes that do not conserve energy.
The quantum-mechanical asymptotic form of the scat-
tered state f'„+z ' obtained from Eq. (22) is given by

g'„+z'(r) =V2/0 sin[(n m. /d)(z +d /2)]e'" ~

M ik,p+V2/Qp g f„„.e " sin[n'~/d(z+d/2)],
n'=1

(23)
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where
—iso2 e

KFd sin5p
—A0+B0

1/2
2&l

kF„

propriately modified form of Eq. (5), namely,

n

X sin(nlrb/d) sin(n'nb/d)( —1)"+" (24)

We remark that the denominator of Eq. (24) involves Ap
and B0, which are sums over the positions of all image
potentials [see Eq. (20)]. Thus this denominator has in-

cluded the effects of all possible multiple scattering be-
tween these image potentials. Using the expression for
g'„+„', we apply the general method outlined in Sec. II to
calculate the resistivity of thin metal films in the follow-

ing subsections.

——.1('„'„(r) yp„„(r)
l Qp

(27)

—re8p p Cp
X (28)

Jz(z) can be evaluated by substituting Eq. (23) into Eq.
(27}, and after the result is averaged over film thickness,
the averaged scattered current density becomes

' 1/2

Re(f„„e' ) .

B. Near-field potential and wind force

As discussed in Sec. I, the local potential setup near a
scatterer in the region p & l is determined predominately
by quantum-mechanical scattering occurring in the same
region. In this subsection, we consider a current passing
through a thin metal film and find the local potential in
the vicinity of a scatterer as well as the electron wind
force on the scatterer. The incident electron distribution
is taken to be a shifted Fermi circle, for each occupied
subband n, given by

4Te Apf1
Im KF

sin5p
—A0+B0

We note that the sum in Eq. (28} corresponds to
summing over the scattered radial current density in each
occupied subband. The wind force on the scatterer along—8p is related to J through the multiply occupied sub-
band version of Eq. (4), with N =1 in the present case.
The wind force on a scatterer is found to be

g„„= ~ev„Cp5—(e„„E,), —0 (25)
X g kF„sin (nab/d),

n=1
(29)

PQM

g sin (nlrb/d)
4~@0fi „

77l8 M

where e„z——(fi /2m)[k +(nn. /d) ] and the electric field

Cp lies in the (x,y} plane. This distribution has the
correct bulk limit in which case the quantized nm/d be-
comes a quasicontinuous wave vector k, .

The electron density due to the electron current (or
"electron wind") is given by the appropriate extension of
Eq. (2), namely, 5n (r)= g„&g„& ~

g'„&'(r)
~

. The
quantum-mechanical asymptotic form of g'„+z' in Eq. (23)
and the expression for g„z in Eq. (25) are used to calculate
5n (r) After a. veraging over the film thickness, the elec-
tron density 5n (r) becomes 5n (p) Introducin. g the
self-consistent Thomas-Fermi screening condition of Eq.
(3) with Eq. (13d), we find that the resulting local electro-
static potential near a scatterer has the form

5@'(P) = —PgM
cosP

(26a)
p

where cosP =p 4'p. Here, 54(p} is in the form of a two-
dimensional dipole field, with the effective 2D dipole mo-
ment given by

where we have substituted Eq. (24) for f„„ in Eq. (28).
We notice that p&M and F can be related to one another
by comparing Eqs. (26b) and (29). The relation is particu-
larly simple for the case of one occupied subband (i.e.,
M = 1 case), which yields

F =ekF1 PQM
2 (30)

This relation is consistent with our previous results for a
2D electron gas.

C. Far-iield potential and resistivity

The potential set up by a scatterer in the far-field re-
gion p & l is determined by both the quantum-mechanical
scattering and the incoherent background scattering.
Since the quantum-mechanical scattering occurs only
within a region of size much smaller than l around the
scatterer, we can separate the problem into two parts.
The first part is to define a source term that includes the
quantum-mechanical scattering effects, and the second
part is to solve the Boltzmann equation with the source
term. This approach was outlined in Sec. II.

The Boltzmann equation for electrons in a thin film is
written as

—iso

XIm KF '

sin60
—A0+B0 (26b) vt, &g„~(p)+e@'p v&5(e„g EF-)—

= g W„q. „qg 'q'(P) X W„g „'g'g tc(P)+$ g(p)

The subscript QM is a reminder that we are in the
quantum-mechanical, or near-field, regime, where p & l.

We next find the electron wind force on the scatterer.
The scattered current density is obtained from the ap- where

n', k' n', k'

(31)
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W„ i,. „i,——(2ir limni) %05(e„.i, —e„i,)

is the transition rate from state
~

n', k') to state
~
n, k)

due to background scattering in the thin film, and 8'o de-
pends only on the energy of the electrons, which, in this
case, is the Fermi energy EF. The form of the transition
rate is chosen such that it is isotropic on the k„k plane
and is also independent of the subband index. This as-
sumed type of background scattering will become isotro-
pic scattering in the bulk limit, for large d. In Eq. (31),
the source term S„i,(p) and the dynamic distribution
function g„i,(p } represent quantities that have been aver-
aged over the film thickness. Since all particles involved
have energies around EF, the source term S„i,(p) for a
scatterer can be written in the following form

q Bo 8mreh"Ofi, eG(q)= —i Im K, '
end

F sin bo

M

g sin (nirb/d)I„(q)
n=1

X

g I„(q)
n=1

where the integral I„(q}is defined as

l„q (k q)i
I„(q)= dip2irM 1+/iqi(k q)2

1—1 1

(1+/2 2)1/2

—Ao+Bo

(37)

(38)

S„i,(p) =S (n, k)5(p)5(e„k —EF), (32)

where the scatterer is located at p=0. It is also con-
venient to express g„& in the form

(39)

Here /„=fikF„r/m is the mean free path for electrons in
subband n Th. e limiting forms of I„(q) are

/„q /2M for /„q «1,I„q)=
1/M for /„q »1 .

g.i,(p) =g.'i, +G(n, k;p}5(e.g —~F ) . (33) It is now straightforward to find the perturbed electron
density, given by

1
vi, .V G(n, k;p)= —[G(p) —G(n, k;p)]+S(n, k)5(p) .

P

Here, ~= AmMWo/A is the relaxation time, and

(34a)

Using Eqs. (32), (33), and the form of W„i, „i, in the
collision integral, we can simplify the Boltzmann equa-
tion (31) to

M

(p)= g f dk f dq 'eqGi(n', k;q)5( „e„—EF }
(2ir)" „

f dqe'qi'G(q) .
Mm

(40)
4m fi

We apply the neutralization condition, as given in Eq. (3},
to find the local electrostatic potential 54(p) set up by
the scatterer. The result is

G(p) = g f dgq, G (n', k', p), (34b)
54(p) = — f dq e'q'i'G(q),d

4m e
(41)

is the local average to which the electrons relax.
The expression for the source term S(n, k) is obtained,

following an argument similar to that in Sec. II. The rate
of particles being emitted by the source into subband n
and solid angle LQ& is given by

where we have used Eq. (13d).
In the case when p » l„, for all occupied subbands n,

the integral in Eq. (41) is determined by the region
l„q « 1. Therefore, using the small-q (l„q «1) approxi-
mation of I„(q), given by Eq. (39), and substituting Eqs.
(37) into (41), we find:

f dk k fdpS„i,(p)AQ-„.
(2m. )

However, the rate can also be expressed in terms of the
radial scattered current density in subband n from Eq.
(28). Upon equating the two rate expressions, we deduce
that

2

S(n, k) = — —k.R'0(8irk~„)'~ Re(f„„e' ) .I

cosP
5@(P)= —PRRD

p

where

4r @oui
pRRD Im KF . —A o+~o

—1

md sin5o

M
sin k~„sin (nm. b/d)

n =1
X

(42)

(43)

(35)

To solve the Boltzmann equation, we first Fourier
transform Eq. (34a), using the convention

f(q)= fdpe 'qi'f(p) . (36)

After some algebra, we arrive at the expression of G(q)

n=1

Eq. (42) shows that after averaging over the film thick-
ness, the long-range potential has the form of a 2D dipole
field, with pRRD being the 2D dipole moment.

%e can also consider the small-p limit, i.e., p « I„ for
all occupied subbands n, of Eq. (41). This limit is easily
obtained by taking ~ large, so that the condition p && I„ is
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satisfied for any finite p. Using Eqs. (37), (41), and the
large 1 q limit of I (q) in Eq. (39), we get
54(p) = —

p&M cosglp, which is identical to the local po-
tential we obtain in Eq. (26a) using the full quantum
mechanical approach. Hence, the local potential 54(p)
for arbitrary p, is given by

hp 3 & (u —u )(1—p)[1—exp( —~/u)]=1— du
p 2K 0 1 —p exp( —~/u)

where a =d /l. In the thick-film regime this yields

(47a)

2~@OR
54(p)= Im KF ' . —Ao+Bo

7Tmd sin50

iq Ro
X f dqe'q I''

q
M

1
sin (nlrb/d) 1—

n=1 ( 1 +12' 2 )1/2

M

n=1
1— 1

( 1+i2q 2)1/2

(44)

The resistivity due to the scatterer can be defined by
applying two electrodes, one at the left-hand end and the
other at the right-hand end of the thin film. Assuming
that the left-to-right direction is x, we allow these elec-
trodes to extend over the entire cross section of the thin
film, with the cross-sectional area parallel to the yz plane.
The average potential difference between these two elec-
trodes is given by 2mpRRD/L», where L„ is the length
and L is the width of the film. We have used the long-
range potential in Eq. (41) and have assumed L„&L».
The average electric field 58 is equal to 2np„RD/L„L .
The additional resistivity for one scatterer is 58/Jo,
where Jo noe r6'o!——m, and no is the electron density in
the film. Assuming a dilute density of n; independent im-
purities per unit area of the film, the additional resistivity
due to these impurities is given by

hp, I=—,'(1—p) —.
p d

(47b)

2~$ RRD

J0L„L
(48)

We note that pRRD is the effective RRD, which is a 2D
dipole in film geometry. The relation between wind force
and resistivity is obtained by comparing Eqs. (29) and
(45), which yields

F
5p=

n0e J0L„L d
(49)

The close relationship between Sp, p„„D,and F is clear-
ly demonstrated by Eqs. (48} and (49). We remark that
the relation (49} can be cast into the form of the well-
known wind-force expression for dilute impurities in a
3D electron gas, namely, "

Both Eqs. (46} and (47b) are in agreement as far as their
linear dependence on l /d is concerned.

We have derived the electron wind force [Eq. (29}],the
local potential [Eq. (44)], the small-p limit of the local po-
tential [Eq. (26a)], the long-range limit of the local poten-
tial [Eq. (42)], and the resistivity due to a layer of scatter-
ers in thin metal film with fiat surfaces [Eq. (45}]. We
now look at the relationship between these quantities for
the one-scatterer case. The resistivity of one scatterer,
which we denote by 5p, can be obtained from Eq. (45) by
setting n; equal to 1/L„L„Comp. arison of Eqs. (43) and
(45) yields the relation between p„aD and Sp, which is

T

5p = Im KF
e 2 n 2d2 sin50

—A0+80
F = — noe@o

hp

P
(50)

M

X g kF„sin
n n.b

n=1
(45)

where N; is the number of impurities per unit volume and

po is the background resistivity. Equation (50) follows
upon substituting Jo=@o/po and Sp=bp/N, L„L d in

Eq. (49).

5p ni l=4m —Im
p k2d

—i 50
e
sin60

—Ao+.B)

3j,(2kFb)

2kFb
(46)

where p„ is the bulk resistivity and k+ is the bulk Fermi
wave vector.

The Fuchs-Sondheimer ' " theory gives the following
expression for hp/p of a film of finite thickness:

where we have used Eq. (13c) in Eq. (43).
The expression for hp in Eq. (45) is shown to be valid

even for the thick film regime (d &1) in Appendix B.
Therefore, in this regime we have

D. Numerical results

For numerical examples, we consider the resistivity
due to scatterers located near the film surface, and plot
the resistivity against film thickness, using Eq. (45}. As
this arrangement of scatterers can be used as a micro-
scopic model for surface roughness, the numerical results
give the resistivity due to surface roughness in a thin film.
We choose b =3m. /8kF so that the scatterers are on the
jellium edge in the case of thick films. For the thin-film
case, even though the jellium edge is not so sharply
defined, we still keep the same b value since it is small
enough to serve the purpose of a reasonable model for
surface roughness.

In Fig. 2, we present the plot of the normalized surface
resistivity hp/p„versus the logarithm of the film thick-
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ness d for representative choices of parameters k I 6Os

and n; . The mean free path I is introduced into the
infinite sums Ao and 80 in Eq. (45) by giving KF an imag-
inary part equal to 1/l. (This gives rise to the usual
damping factor in the electron propagator. ) The electron
density no is fixed at the bulk value for the material of in-
terest, which is parametrized in terms of the bulk Fermi

F
—— 7Tno . e c oosewave vector kF where k =(3m n )' . W

F ——0.415 a.u. , which corresponds to the electron densi-
ty for CoSiz. (Epitaxial single-crystal films of metalliclike
CoSiz films grown on Si have recently been prepared. )

We also performed calculations for a Sn film (kF ——0.8642
a.u. ), and found that the essential features of the thick-
ness dependence of hp/po are the same as for a CoSiz

5.0- (a) 5.0—

4 ~ p 4.0—

8 3.0

g

3.0—

2.0 2.0—

1.0— 1.0—

0.0 )1

1.0 1.2 1.4 1.8 2.0 2.2
o Q i I i2

1.0 1 ~ 2
3[
1.4

IW l6l71i
1.6 1.8 2.0 2. 2

log (d) log (d)

5.0— d)

4.0-

8 3.p 3.0-

2.0 2.0

1.0 1.0

O. 0 1.0 1.2 1.4 1.6 1.8 2. 0 2. 2 0.0 1.0 1.2 1.6 1.8 2.0 2-2

log (d) log 0(d)

FIG. 2. Resistivit (5 /y p/p„) due to impurities in a thin film is plotted as a function of loog&()(d). The physical parameters are
a =, n;= . 2X10 a.u. ; (b) 5=60', n;=0.918&10 ' a.u

The Born-approximation result is sh (d). Th
a.u. ; (c) 5=90, n; =0.926' 10 a.u.

is s own &n ( ). The number of occupied subbands is indic
chosen to give the asymptotic Fuchs-Sondheim

p u an s is indicated up to M =7. The parameters are
o ic uc s- on eimer result for@ =0.9. The latter isindicat db d t-d h de y o - as e curvesin(a), (b), and(c).



7270 C. S. CHU AND R. S. SORBELLO 38

film. The bulk mean free path I is chosen to be 200 A.
The phase shift 50 is chosen to be 30', 60', and 90', re-
spectively, in (a), (b), and (c) of Fig. 2. For easier compar-
ison, all the graphs are scaled so that they approach the
Fuchs-Sondheimer theory, for p =0.9, in the thick-film
region. [This requires n; to depend on the choice of
phase shift. In Fig. 2, the n; values are 0.412X10
0.918)&10,and 0.926 X 10, a.u. in (a), (b), and (c), re-
spectively. Since bplp„ is proportional to n;, the values
of bp/p„ for any n, can be obtained for each 50 by a sim-

ple scaling. ] In Fig. 2(d) we show the result in the weak-
scattering limit, i.e., in the Born approximation. The
latter is obtained by expanding expression (45) to second
order in 50. This results in the replacement of

—i50

Im KF
e

sinfio
—Ao+Bo

by

2m 50
g sin (vnbld)

KFd „
(51)

in Eq. (45).
The surface resistivity graphs in Fig. 2 exhibit a series

of peaks, with larger height in the region of smaller d.
The overall trend of the graphs is that the resistivity in-

creases as the thickness decreases. The resistivity is in-

creasing faster than the asymptotic Fuchs-Sondheimer re-
sult [given by Eq. (47b)], which is shown by the dot-
dashed curve in the figures. We remark that the asymp-
totic Fuchs-Sondheimer result is greater than the exact
Fuchs-Sondheimer result [given by Eq. (47a)] in the
small-d regime. '

The resistivity changes most rapidly in the immediate
vicinity of the d values where the Fermi level lies at a
subband bottom. (The location of these particular d
values and the number of occupied subbands are indicat-
ed up to M =7 in Fig. 2.) As d increases, EF changes
continuously [EF is determined self-consistently from
Eqs. 13(b) and 13(c) by requiring that the electron density
in the film is kept fixed at no]. However, dnldE, given

by Eq. 13(d), undergoes a discontinuous upward jump as
d increases through the critical d values, since M in-
creases by unity at these d values. The resistivity also
tends to exhibit a sudden increase at these d values be-
cause a new channel for scattering appears. This effect is
seen clearly in the Born-approximation curve, Fig. 2(d),
the precise form of which depends upon matrix element
effects which can be traced to the explicit b dependence
of the terms in Eq. (45) and expression (51).

In addition to the aforementioned density-of-states and
matrix-element effects, there is another effect due to rnul-

tiple scattering between the impurity and the surfaces.
This effect is contained in the factor containing the sums
A 0 and Bo in Eq. (45), and appears when that factor is
evaluated beyond the lowest-order term (51). The extent
to which Figs. 2(a) —2(c) deviate from Fig. 2(d) is a mani-
festation of the multiple-scattering effect. As expected,
the deviation is most pronounced for the strongest
scatterer, i.e., in Fig. 2(c). As is apparent from Fig. 2(c),

the multiple-scattering effect tends to depress the resis-
tivity in the immediate vicinity of the onset of a new sub-
band. We remark that if the mean free path were
effectively infinite, the hp/p„curves would exhibit ex-
tremely narrow downward spikes extending all the way to
zero at the critical d values marking the onset of a new
subband. These downward spikes do not persist unless I
is very large, however, and are essentially washed away
for I =200 A. The distinct dips in Fig. 2(c) are a remnant
of this multiple-scattering transparency effect.

IV. DISCUSSION

The RRD is the source of the long-range microscopic
field associated with electron scattering by impurities and
interfaces in metallic microstructures. For a single im-
purity in bulk, the residual resistivity fip and the elec-
tromigration wind force F are directly related to the
RRD strength, which thus provides a link between 5p
and F . Using the local-field method, we have general-
ized the above relationships to systems consisting of im-
purities in thin metal films. The results are given in Eqs.
(48)—(50). For the case of an impurity in a thin metal
film, the near-field potential and the far-field potential are
dipolar and are characterized by dipolar strength pQM
and pRRo respectively, as given in Eqs. (26b) and (43).
The near-field region does not include the immediate sur-
roundings of the impurities because we have used the
asymptotic scattering state expression in Eq. (23). The
exact scattering state, given by Eq. (22), has evanescent
wave components which, in general, can be neglected in
the region where p & d. However, for thicker films
(kFd && I and d & I), Eq. (23) is shown in Appendix B to
become the correct asymptotic scattering state for an irn-

purity near the surface of a semi-infinite medium. There-
fore, Eq. (23) is a good approximation to Eq. (22) when

p g d in thin films and when kFp g 1 in thick films. In the
immediate surroundings of the impurity, i.e., for even
smaller p, the evanescent waves cannot be neglected, and
Eq. (22) has to be used to calculate the electron density
and the electrostatic potential in this region, following
the local-field method.

The two dipolar strengths pQM and pR~~ are equal
only in the 2D limit, in which case there is one occupied
subband. In general pQM and pRR& are different from
one another. This is in contrast to the 3D case ' and the
pure 2D case, where the dipole for the near field is the
same as the dipole for the far field. The different values
of pQM and pR„~ are due to different values for the mean
free path l„ in each subband, which causes the electrons
in different subbands to scatter and pileup according to
different length scales l„. Indeed, if we let all l„be the
same in Eq. (44) for the local potential, we see that the
near-field dipole would be the same as the far-field dipole
and both would equal pQM. We also point out that the
field of the dipole in a thin film falls off more slowly with
distance than the field of a 3D dipole. Therefore, the po-
tential drop across an impurity is larger in a thin film
than in bulk metal, assuming that the voltage probes are
equivalently positioned in the two cases and that the di-
pole strengths are comparable. In Appendix B, we have
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also shown that the resistivity expression in Eq. (45) is
valid for all d.

We calculated the surface resistivity of a thin film by
assuming a microscopic model in which surface rough-
ness arises from a random distribution of impurities near
the surface. When plotted against film thickness, the sur-
face resistivity exhibits oscillatory features, which are re-
lated to discrete jumps in the density of states and to mul-
tiple scattering between an impurity and the film sur-
faces. In thicker films (d ~1), the variation of the surface
resistivity with film thickness equals that of the Fuchs-
Sondheirner results for an appropriate choice ofp. In the
thin film limit, the surface resistivity, as given by Eq. (45),
deviates from, and is generally greater than, the Fuchs-
Sondheimer result. For the parameters chosen here, the
deviations are not so large as those found by Tesanovic
et al. or, most recently, by Trivedi and Ashcroft. 9

The local-field method focuses attention on microscop-
ic charge distributions arising from scattered wave func-
tions and on the resulting potential field that is self-
consistently generated. In principle, this potential field
can be measured by noninvasive probes at the surface of
the sample. Calculations performed within the frame-
work of the local-field method also give insight into the

importance of sample geometry, impurity configuration,
and electrode placement in a voltage measurement.

In applying the method it was necessary to specify the
form of the nonequilibrium distribution g& which is in-

cident on an impurity scatterer group. For the case of a
short microstructure placed between reservoirs, g & can be
regarded as established by the reservoirs. In that case, all
multiple scattering processes within the microstructure
are to be taken into account. This is the usual picture en-
visioned in application of the (multichannel) Landauer
formula. For the case of a very long microstructure, such
as the thin-film system considered in this work, where the
film length is assumed to be very much larger than the
background mean free path and the average distance be-
tween impurities, it is not practical to solve the complete
multiple-scattering problem. Consequently, we assumed
that well into the microstructure there exists a g& that de-
scribes an incoherent beam of electrons incident on a typ-
ical scatterer group. We further assumed that g& has the
form of a shifted Fermi distribution corresponding to a
current carrying state in the presence of uniform in-
coherent background scattering. These assumptions are
certainly justifiable if the background resistivity, po, is
much larger than the impurity resistivity 6 . Stated in a
perhaps less restrictive way, our calculation scheme
correctly determines the linear coefficient a in the follow-
ing expansion of the total resistivity in powers of the im-
purity density:

uniform background scattering. In this case, surface-
impurity scattering and the background scattering would
enter the Boltzmann equation in the usual way via
ensemble-averaged translational probabilities in the col-
lision integral. The resulting g& solution could then be
used in the calculations described in Secs. II and III for
the microscopic charge distribution and local potential
near an impurity. We have performed a resistivity calcu-
lation based upon such a model and have found that the
corrections to the bp/p„curves of Fig. 2 are relatively
minor. We conclude that the approximation we have
made in choosing g& is acceptable here.

Further possible improvements are difficult to obtain
within a conventional Boltzmann equation approach.
However, within Landauer's picture a further correction,
which is formally higher order in impurity concentration,
can be considered. This is the so-called Lorentz correc-
tion, ' which is a renormalization effect arising from
current rerouting from one impurity to another. This
causes the incident current upon an impurity to be larger
than the average current in the medium, resulting in a
larger RRD strength and larger hp. Formally such
corrections are of order n;, and do not appear to
significantly modify our numerical results, even for the
larger n;-values considered in Fig. 2.

The major limitation of the thin-film resistivity calcula-
tion is in the model itself rather than in the approxima-
tions made in obtaining Eq. (45). We have modeled the
film as a free-electron gas confined between infinite bar-
riers which define perfectly Hat surfaces. The underlying
crystal structure of the material as well as large-scale sur-
face irregularities are lost in this jellium model. Only
small-scale, surface-impurity scattering effects were treat-
ed, and this was done only for the case of s like scatterers.
Despite these limitations, our results for the d depen-
dence of hp/p„should be qualitatively valid, giving the
same overall trend as would be obtained in a more realis-
tic model. For example, long-range departures of the film
surface from perfect fatness would, in the first approxi-
mation, be equivalent to averaging our bp/p„curves
over a small window of d values. This would result in a
slight smoothing of the curves, but the overall trend
would remain.

Finally, we remark that we have not considered local-
field contributions arising from the polarization of elec-
trons brought in by the impurity in the presence of the
electric field 4'o. Such effects enter the so-called "direct
force" in electromigration theory, " ' ' and have been
described by Landauer in terms of carrier density modu-
lation. Formally, such effects are of order 1/(k~1)
times the electron-wind effects considered here, and thus
can be neglected for free-electron-like metals.

p=po+an, +O(n; ), (52) ACKNOWLEDGMENT

where po is finite (nonzero) and we envision n;~0. Our

Ap calculation would then be valid so long as we remain
in the linear regime of Eq. (52). In the more general case,
a better approximation scheme is to choose g& as the
solution of the conventional Boltzmann equation for ran-
dom surface impurities in a medium characterized by

This work was supported by the Rome Air Develop-
ment Center, United States Air Force.

APPENDIX A: LOCAL FIELD METHOD
FOR AN IMPURITY IN BULK

The bulk impurity is described by a spherically sym-
metric muffin-tin potential. For an incident plane wave
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state gk, the scattering state (((ii(,
+ ' in the quantum-

mechanical asymptotic region (kr » 1) is given by
f(q)= fdre 'q'f(r) . (A5)

y(+ )(r) ik r+. f ikrf (8)
V f1 r

(Al)
After some algebraic manipulations, we obtain

G(g)= . q Co,
ilq

(A6)

where

f (8)=—g (21 + 1)Pi( cos8)e sin5i,
1 i6(

k I

Pi is the Legendre polynomial, 5i is the impurity scatter-
ing phase shift and 0 is the volume of the bulk metal.
We apply the local-field method outlined in Sec. II to cal-
culate the far-field potential.

Using Eq. (5), we find the radial scattered particle
current density:

3SoIo r CoJ (r)= r, (A2)4a r2

where So ——f dQ f(8)
i

(1—cos8) is the dynamic

scattering cross section, and Io erkF@o——/3n m is the
particle current density far from the impurity. The
source term in the Boltzmann equation is obtained from
Eq. (8). The result is

S(k}=1k Co, (A3}

where 4:—(3m A' /mkF)SoIo. After substituting Eqs. (7)
and (9) into Eq. (6), the Boltzmann equation becomes

vi, V,G(k, r)= ——[G(k, r) —G(r)]+4k ( o5(r), (A4)

where

G(r)= f dQ&G(k, r) .4'
To solve the Boltzmann equation, we first Fourier trans-
form (A4), using the convention

where 1 =Piker/m is the mean free path.
The perturbed electron density 5n (r) due to the

current density is given by Eq. (10}:

5n„(r)=
3 f dk

3 fdqe'q'G(k, q)5(e& —EF)
(2m )' (2pi )'

mkF fdqe'q'G(q)s~'e'

mkF rg, , qdqe'q'
g~s~' il q

(A7)

Using the integral result

f e'""x dx = in 5—'(k) 1/k—
0

we calculate the integral in Eq. (A7):

(A8)

q @o,r @ofdqe"' =i2~'
r

(A9)

5n„can be obtained by substituting Eqs. (A9} into (A7}.
The far-field potential 54(r) is then calculated, from Eq.
(3},to give

( )
pcos8

r 2 (A 10)

where cos8=r Ro and p=3+ASoIo/4kFe is the RRD
moment. We have used the fact that the density of states
in bulk is dn ldE=mkF/(M)2

APPENDIX B: RESISTIVITY OF THICK FILMS

We first show that, in the thick film limit (d &1), the scattered state g(„+1,
' in Eq. (23) becomes the scattered wave in

the region k~r &&1 for the case of an impurity near the surface of a semi-infinite medium. Since d & 1, only the j=0
term in Ao and Bo is kept, and the scattered wave i(i(„+1,

' becomes

(r, )'/~ kFd sin5o

m

X sin(kgb) g, , sin(kjb) sin(kjz)e
(1 )1/2

(Bl)

where kj:—nn. /d, ki =n'm/d, kt =—(kF —ki ).'/, KF kF, r((—=(x +y )——', kz Mm/d, an——d we .have now chosen the
origin to lie on the upper surface of the film, so that the location of the impurity is —bz.

In Eq. (Bl), for b «d and z «d, the sum over n' can be replaced by an integral:

M . (k d)'/
sin(kI b ) sin(k jz )e '( = f d 8'v' sin8'e' '

I cos[k~(z b) cos8'] cos—[kz(z —+b) cos8'] I(k & )1/2 2% 0
' 1/2

sin8
ld

2&r
/4 EkF I'

e ' e sin( kzzb /r), (B2)
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+ih ~o" (2kFb)
sin50

where
r t

/r = sin8. Upon substituting Eqs. (B2) into (Bl), the expression for tt'„+&
' becomes

P'„+z'(r) =( —1)"&2/0 sin(kiz)e 1 ' —2i( —1}"&2/0sin(kgb) sin(kFzb/r)

—i50
—1 ikFr

e
X

kFr
(B3)

Expression (B3) is the scattered state which was displayed in Ref. 6 for the case of an impurity near the metal surface of
a semi-infinite medium in the quantum-mechanical asymptotic regime, where kFr &&1.

We show that the resistivity for thin films, given by Eq. (45}, can be extended to thick film case by the same trick:
changing all the discrete sums into integrals. The sum in Eq. (45) becomes

g sin (mbn/d)kF„= J cos8sin (k~b sin8)cos 8d82 e/2

'r 0n=1

kFd 3j,(2kFb)1—
3tr 2k~b

(B4)

Again, only the j =0 term is kept in Ap and B0. The resulting resistivity is given by

e ' . „3jt(2kFb)
+ih(')')(2kFb) 1—

sin50 2kF b

fi 12mhp= Im
kF4 d

which was obtained in Ref. 6 for impurities near the surface of a semi-infinite medium.
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