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Cluster-expansion method for the infinite-range quantum transverse Ising spin-glass model
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The infinite-range quantum Ising spin-glass model in a transverse field I is studied within the
cluster-expansion method formulated originally for spin systems by Morita and Tanaka. With use

of the pair approximation, the mean-field equation and condition for critical values of I, and T,. are
obtained including the case T, ~0.

The quantum transverse Ising spin-glass model has re-
ceived much attention recently. ' Most of the studies
have been on the effect of a transverse field I on the
spin-glass freezing temperature T, using the static ' and
dynamic approximation within the replica theory as well
as the quantum version of the Thouless, Anderson, and
Palmer (TAP) method.

Our model is described by the following Hamiltonian:

where

and

H(i)= —I cr h, o';—

H ( i,j ) = —I ( o ", + tr ) ) h—o'; h~'t7' ——J; o';t7,'

are the effective Hamiltonians of the one- and two-site
clusters, respectively, h, , h,', h' denote the effective fields
defined as

where o';, 0'; are the Pauli matrices referred to the ith site
of the lattice and the random exchange J, obey the fol-
lowing Gaussian probability distribution

(8)

p(J; )=(Z/2~J )' exp( —ZJ, /2J ), (2) and

p( i) = exp I P[f (i ) H(i ) ]I—
p(i j ) = exp|P[f (i,j ) H(i j )]I, —

(3)

(4)

with a variance J /Z. Here Z denotes the number of
neighbors of each spin satisfying the relation N Z &&1,
where N is the total number of spins in the system. The
exchange J, is assumed to be of the order Z ' which
ensures a sensible thermodynamic limit.

In the classical case (I =0) our model reduces to the
one considered by Sherrington and Kirkpatrick.

The TAP approach to the classical model can be inter-
pretated in terms of the cluster-expansion method, where
the pair approximation leads to the TAP mean-field equa-
tion, ' whereas the clusters consisting of three, four, and
more spins correspond to the ring diagrams of the order
N/Z. " The same interpretation is valid for the quantum
case (1).

In this paper we report calculations on the mean-field
equation and phase diagram of the infinite-range trans-
verse Ising spin-glass model using the pair approxima-
tion, which is based on the cluster variation method for-
mulated originally for spin systems by Morita and Tana-
ka." Following this procedure we introduce the one- and
two-lattice site density matrices denoted by p(i) and
p(i,j ), respectively, defined as follows:

and A, , is the variational parameter which is calculated
from the following condition:

af(l) af(l, j)
ah, ah,

' (10}

f (i)= — — ln Tre
1

ln2 1
ln cosh[P(h, '+ I ')'r ]

and

f (l j )=— ln Tr exp[ PH(i,j )] . —1

Our next step is to evaluate f (i,j ), Eq. (12). For this
purpose we find the eigenvectors of the effective pair
Hamiltonian 0(i,j) Eq. (6). After some calculations one
obtains the following equation:

The normalization factors f(i} and f (i,j ) have the fol-
lowing forms:

(e+J, +h,-'+h')(e+ J,- —h,
' —h')(e —J, —h,'+h')(e —J,, +h,-' —h') —4e r'=O, (13)
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where the solutions e =e„(i,j ) are the eigenenergies of
H(i,j ), Eq. (6}. However, J,"—Z '~, and according to
the TAP idea it is sufficient to resolve Eq. (13) up to the
second order in J; . In the result we get

e„(ij ) =e'„'(i j )+e'„''(i j )J, +e'"(i,j }J, +O"(J,"), (14)

e', '(i,j ) =E,'+E,',
e4 '(i,j ) =E,

' E—,',
with

[(h )2+ f 2]l/2

(18)

(19)
where

(E,j)= —E, —Ej, (&5)

I I

e'„"(i,j ) =( —1)"
I J

(20)

e', '(i,j )= E+—E,', (16)

p2
e'„'(i, ')=, }(E,') '(E') ' —( —1)"[(E ) +(E,') —I ][(E ) +(E') ](E ) (E))

+[(E )'+(E,')' —I '](E ) '(E,') (21)

Hence, using the thermodynamic perturbation method we calculate (i,j) with the accuracy to J;,.
In order to obtain A, ; we note that

h,'=h(m, }—A, ;, ,

where m, is the mean spin on the ith site defined as follows:

m;=m(h, }=— " =h;(h +I )
' tanh[/3(h +I )' ]

af(o
1

(22)

(23)

and h (m;) denotes the inverse function to m (h;) Eq. (23). The variational condition (10) for 1; transforms now into
the following condition:

Bf(i j;m;, A, ; )

M,
(~

1 8 1ng;
z zg(m, , mj)= — m m;XJ P—m;m +PI—X, 'h (m;)h (m )E (m;)E (m. )

2h (m, )X; 1r2 h 2(mi)m; h 2(m, )mJ+
[h (m;) —h (mj)] h (m;)E (m;) h~(m )E~(m )

h (m&) X,. 'm; 2h (m )X, 'm,

h (m;) —h (mj) h(m;)E (m;) h(m;} E4(m, )

2X, 'h(m;)m

h(m. )E (m )

Here 7,- denotes the single-site susceptibility defined as

Taking into account Eq. (24) and the explicit form of m; we obtain finally for A, ; the following equation:

A, ; =J;,m, —Jig(m;, m )+O(JJ),
where

(24)

(25)

(26)

X =X(m )= Bm, =E '(m;)tanh[PE(m, }]—h (m, )E '(m, )tanh[PE(m, )]+Ph '(m; )E (m-, ) f 1 —tanh [PE(m, )]t,
(27)

with

E(m, )=[h (m, )+ I'-]'~~ (28)

h(m, )= g J, m —g J, g(m, , m ) .
j j

(29)

Taking into account Eqs. (7) and (25) we get the self-
consistent equation for m;,

It is easy to see that for the classical Ising spin-glass mod-
el (I =0) Eq. (29) takes the TAP form:
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1+m,1
ln

2P 1 —m,
= g J,,m, —/3g J;,m;(1 —m, ) .

J I

1,0

The condition for the critical field I, and temperature
T, can be obtained frotn linear terms (with the respect of
the single-site magnetization) of Eq. (29). Using the max-
imum eigenvalue (J&),„=2J of the Gaussian-random
matrix

~~ J; ~~, we get
0.5-

BJXO—J XO —1=, —(JYO —1) =0, (31)
SPIN 6L

where

Xt) ——lim X(m, ) = I t thPI
m. ~0

l

(32)

I', tanh '( I, /T, ) =J . (33)
I

O5

Contrary to the Ishii and Yamamoto result, ' Eq. (33)
gives a correct value of I, if the freezing temperature
T, ~O. Namely, for T, =O we obtain l, (T, =O)=J in

the accordance with previous calculations performed
within the replica method. In the classical case (I, =0),
Eq. (33) yields the known result. " In Fig. 1 the phase dia-
gram obtained from Eq. (33) in the plane T, /J and I, /J
is presented.

FIG. 1. The phase diagram caluclated from Eq. (33) for the
infinite-range transverse Ising spin-glass model in the plane
r, /J, T, /J
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