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Simulation of dielectric failure by means of resistor-diode random lattices
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It is possible to obtain an experimental simulation of electrical failures in studying the onset
voltage of the nonlinearity of a two-dimensional random lattice of resistors and diodes. If there
are more diodes than resistors, the onset voltage Vb is identical to the breakdown voltage of an in-

sulator made of resistors and insulating elements which can be broken. Near p„Vb goes to zero
with an exponent equal to 1.1 0.3 in agreement with computer simulation. If now there are
more resistors than diodes, the onset voltage VNL is similar to the "fusing" current of a conductor
made of conductive parts that behave like fuses and insulating parts (fuse model). Near p„VNL
goes to zero with an exponent equal to 0.5 ~0.2 and it is sho~n to be larger than the exponent of
the fuse model equal to v —1 0.33 in two dimensions.

The problems of electric failure are of great technologi-
cal importance. Recently, these problems were the sub-

ject of intensive theoretical work. ' 9 In this paper, I want
to show that it is possible to simulate them by means of a
network of resistors and diodes as nonlinear components.

As is well known, two main approaches have been pro-
posed for possible electric failures. In the dielectric mod-
el s the system to be studied is a metal-loaded insulator.
The discrete version of this model is a lattice of resistors
and insulator elements distributed at random at the lattice
bonds. An insulator element cannot stand a voltage larger
than Vth, otherwise there is a breakdown, i.e., the insula-
tor becomes conducting. The problem is to find the break-
down voltage Vb of the whole lattice as a function of p, the
resistor concentration. In the fuse model, ' the system is
an insulator-loaded metal. The lattice version is a random
mixture of insulator elements and resistors which can be
fused (i.e., the resistor becomes an insulator) if a current
larger than ith flows through one of them. The problem is
to find the whole current flowing through the system for
which it is fused, for various p.

In the dielectric model, the insulator elements form a
continuous path whereas it is the inverse in the fuse mod-
el. In two dimensions (2D), these two situations corre-
spond to the two sides of the percolation threshold p„with
different conditions. In the dielectric model (p & p, ) the
insulator elements can be broken and in the fuse model

(p )p, ) the resistors can be fused.

I. THE DIELECTRIC MODEL

In the dielectric model it is assumed that once an insu-
lator element is broken it becomes a conductor. One can
imagine two possibilities for this insulator-conductor
transformation. In the first possibility, the conductor ob-
tained from a broken down insulator is identical to a resis-
tor. After the breakdown of the first element, a complete
breakdown occurs through a cascade phenomenon. In the
second possibility, the insulator becomes a superconductor
with the voltage kept constant and equal to the threshold
Vth. Once one element is broken, it is necessary to in-

crease the external voltage until a continuous path of bro-
ken elements is formed. The solution of this problem,
Vb(p), is identical to that of the "shortest path"'o or the
"minimum insulator gap,

"7 i.e., the minimum number of
bonds to be added to get a continuous path. Near p„ the
breakdown voltage of these two possibilities goes to zero
as (p, —p)" where v is the correlation length g exponent,
but with different amplitudes.

In my experiment, I simulated the second possibility in

taking as insulator elements light emitting diodes. At low

voltage (V& Vth), the resistance of one diode is much
larger —1070 than that of one resistor (300 0) such that
the voltage distribution is almost identical to that given by
elements with an infinite resistance. At the threshold

(Vth 1.15 V) there is a sudden and very large increase of
the current, from 10 ~ to 10 3 A, when the voltage is
changes from Vth to Vth+0. 1 V. Thus up to 10 A, a
diode represents very well the behavior of the insulator
elements in the second possibility.

A square lattice of 20X20 was built and resistors and
diodes were randomly distributed in the lattice bonds.
The experiment consists in measuring the curve IIV) of
the whole lattice for p &p, and in determining the voltage
Vb for which there is a sudden increase in the current. At
the same time, since the diodes emit light, it is possible to
observe the breakdown path. In Figs. I and 2, Vb is
presented as a function of p, in a regular plot (Fig. 1) and
in a log-log plot (Fig. 2).

Near p 0, it is possible to show that the mean break-
down voltage is given by Vb Vb(0)(1 —p). In the case
of the most probable state, the mean number of resistors
in a lattice of size L in one column (i.e., in the current
direction) is n/2L if n is the absolute number of resistors
in the lattice. (There are also n/2 resistors distributed in
the L rows, but they do not influence the breakdown volt-

age in this dilute limit. ) The breakdown voltage in

Vb Vth(L n/2L) -VthL(—l —n/2L ). Recalling that
VthL Vb (0) and p -n/2L, one gets Vb =Vb (0)(1 —p).

However, I do not get this result whereas it is found by
Manna and Chakrabarty. The difference between my
measurements and their results is that in their computer
simulation they took the mean value after 1000
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FIG. 1. Variations of the threshold voltages giving the onset of the nonlinearity, V& and VNL vs p, in the random resistor-diode lat-
tice.

configurations. The measurements have been repeated
only 5 times. This means that each configuration was far
from the mean one. This result emphasizes the observa-
tion made by Duxbury, Leath, and Beale5 that the break-
down is controlled by the "most extreme configurations. "

Near p„ the exponent of Vb is found to be equal to
1.1+ 0.3 and it is near the exact value of v —', (in 2D).
Values near -', were obtained by Manna and Chakrabar-
ty6 and by Beale and Duxbury9 by means of computer
simulation on a sample of size L 100. Thus, one can ex-
plain the lower value found here of 1.1 by the smaller size
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of the sample. This is supported by the results of Manna
and Chakrabarty who found an exponent of I + 0.05 in a
25X 25 sample. It is important to note that the same ex-
ponent is found, although in the measurements directed
elements were used. It is because the breakdown path is
not very tortuous (see Fig. 3.) (at least not too near to p„
as in such a small sample) but branched, such that paths
with backward direction are not very likely.
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FIG. 2. The threshold voltage Vb vs (p, —p) (p ~p, ).
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FIG. 3. Breakdown path and broken insulator elements for
p 0.15. The nonbroken elements are not shown. The circles
are the broken elements given by the computer simulation and
the crosses form the breakdown path experimentally determined
from the light emitting diodes.
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Computer simulations of our system were made in cal-
culating the voltage distribution of a 20X 20 square lattice
with two types of resistors. Those which simulate the
resistors of the experiment have a low resistance and those
which simulate the diodes a much larger resistance (ratio
of the resistance 10 ). One looks for the first insulator
with a voltage of 1 V and this voltage is kept constant in

the subsequent steps. The voltage is now increased until a
second insulator with a voltage equal to 1 V appears and
this voltage is kept constant and so on. The calculation is
stopped when a continuous path of broken elements (i.e.,
with the voltage across them kept constant) is formed be-
tween the two electrodes. In Fig. 3, the results of the com-
puter simulation and those of the measurements are given.
One remarks that all the crosses (results of the measure-
ments) coincide with the circles (results of the simula-
tion). But there are many other broken elements given by
the simulation that it is not possible to observe visually.
This is because the current flowing in these diodes is too
low for the diode to emit light. However, this observation
explains why for a single diode the curve I(V) is perfectly
linear for V& Vth but not for the whole lattice for
V, $ & Vb. The computer simulation gives, in the case of
Fig. 3 (p 0.15), Vb 13 V since there are 13 diodes in

the shortest path and this is in agreement with the mea-
surement of Vb 15.3 V=1.15&13.

II. THE FUSE MODEL

Now, consider the situation for p &p, where the system
is conducting and we shall see that the results are very
similar to those of the fuse model. Here also the measure-
ment consists of measuring I(V) of the whole lattice. The
beginning of this curve is linear up to VNL. Above VNL a
departure from linearity is observed. In Figs. 1 and 4,
VNL as a function of p is given in a regular plot and in

log-log plot. The behavior of VNL is very different from
that of Vt„ in particular, VNL goes to zero with an ex-

ponent smaller than 1. The estimate of this exponent is
0.5~0.2. For p 1, VNL/L is equal to 0.75 V or
0.65 Vth.

One can easily explain this last value of VNL/L if one
considers the resistor lattice less one bond AB in the direc-
tion of the current and asking for the external voltage for
which Vga is equal to Vth. At this voltage, the nonlineari-
ty begins. Since for V & Vth the resistance of a diode is
much larger than that of a resistor, it is safe to admit in
this calculation that a diode resistance is infinite. The
voltage and the current distribution can be calculated, as
proposed by Duxbury er al. ,

s in considering our problem
as the superposition of two problems. The first consists of
the lattice without any defects (i.e., diodes) and the
current in the bond AB is i and the voltage
Vqs Ri V,„JL. The second problem is that of the lat-
tice where the bond AB is replaced by a voltage source
giving a current —i in AB In .this second problem the
voltage across AB is Ri/2, since the equivalent resistance
of the lattice between AB is R/2. Thus, in the real prob-
lem the voltage across AB is Ri +Ri/2 or V~s

3Ri/2 3V,„J2L. If Vgs Vth, V,„JL 2Vth/3 in ex-
cellent agreement with the measurement.

To explain the value of the exponent, it is possible to use
the node-blob-link (NBL) model of the backbone. The
important point is that the voltage distribution in the sam-
ple is controlled by the current distribution in the back-
bone. The largest voltage is found where the current is
the largest, in the singly connected bonds (SCB's). We
assume that the first diode reaching the voltage Vth is that
very near a SCB. The voltage across a link of length g is
Vg-gV, „$ (V,„t is the voltage applied to the whole lat-
tice). If we call V~ the voltage across a SCB, one has
Vt L~ V~, where L~ is the mean number of SCB in a link.
Recall that L ~

—(p —p, ) '. Thus, one has

Vext.I. i

Because a diode cannot be directly in parallel on a SCB
one has V(diode) & V~. When V(diode) Vth, one can
write

IO-

or

~th & ~extI.)

V,„t VNL & Vth- (p —p, ) )+
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F16.4. The threshold voltage VNL vs (p —p, ) (p ~ p, ).

Thus the exponent of VNL is larger than v —
1 0.33 in

agreement with the measurements.
The results VNL(p 1) —', Vth and the exponent

slightly larger than 0.33 are reminiscent to those concern-
ing the threshold current in the fuse model. If (p 1),
If z/4ith (If is the current necessary to fuse the whole
lattice in the fuse model) and the exponent is exactly
v —1 0.33 in 2D. The difference stands in that the diode
which is broken is not directly in parallel with the bond
with the largest current but separated by horizontal resis-
tors. Thus, If/ith & VNL/Vth at p 1 and near p„VNL
& (p —p, )" '. Nevertheless, the qualitative behavior of

the resistor diode system is the same as that of the fuse
model.
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