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Dynamical crossover to dipolar behavior in isotropic ferromagnets at and above T,

C. Aberger and R. Folk
Institut fur Theoretische Physik, Universitat Linz, A 4040-Linz, Austria

(Received 7 April 1988)

Apparent discrepancies between neutron spin echo and neutron scattering experiments in the
paramagnetic phase of isotropic ferromagnets are explained. Dipolar forces play an important
role in the scaling region and cause, especially at T„a crossover in the shape function of the
dynamical correlation from a non-Lorentzian shape (nonexponential in time) at large values of
the wave vector to a Lorentzian shape (exponential) at small values, even in a region where the
effective critical exponent of the energy linewidth is given by z,z 2.5. This explains the experi-
mental situation in EuO. For T& T„ the inclusion of the shape crossover improves the agree-
ment between the theoretical and the measured linewidth in Fe. Predictions are made for the
longitudinal relaxation function at T,.

Recent neutron scattering experiments' provided evi-
dence of a non-Lorentzian shape function for the dynami-
cal correlation function in isotropic Heisenberg ferromag-
nets. Agreement with dynamical critical theory was es-
tablished. s However, in neutron spin-echo measure-
ments in EuO (Ref. 9) a Lorentzian line shape was found,
and explanations by as mptotic theories within the
Heisenberg model failed. ' On the other hand, the energy
width I a of both experiments turned out to be in agree-
ment with the prediction of renormalization-group (RG)
theory for isotropic Heisenberg ferromagnets
(I q25) 49

Though the exchange interaction is much stronger in

isotropic ferromagnets, dipolar interactions are also
present, and RG theory predicts that, in the presence of
those interactions, the true asymptotics are described by
the dipolar fixed point rather than by the isotropic Heisen-
berg fixed point. ' This would mean that the asymptotic
dynamics is that of a relaxation model with a noncon-
served order parameter with the critical exponent z 2
(we neglect ri-0.05 in the following), instead of a model
with mode-coupling terms and a conserved order parame-
ter with z 2.5. At T„ for decreasing wave vector q, a
dynamical crossover between these two cases had been ex-
pected at the wave vector q4 where the static crossover
takes place. This was not found in experiments. Recent-
ly, mode-coupling theory was applied to this problem'
and the linewidth was calculated, assuming a Lorentzian
shape, leading to the result that the dynamic crossover in
the linewidth sets in at wave vectors one order of magni-
tude smaller than expected and in agreement with experi-
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where the arguments are wave vector, inverse correlation
length, dipolar strength, and time. Introducing scaling
variables u tAq~l2, x x/q, and y Jg/q we find for
F'(l, x,y, u) f'(x,y, u)

f'(x,y, u) — I du'k'(x, y, u —u')f'(x,y, u') . (3)

The kernel k'(x, y, u ) reads

ments. It is the aim of this paper to show that the cross-
over in the line shape sets in a larger q values (of the or-
der of the static value) for which the linewidth I a still
behaves like q 5. For that purpose we solve the mode-
coupling equations without the Lorentzian approximation.
We also consider the situation at temperatures above T, .

We start from the mode coupling equations for a fer-
romagnet described by the Hamiltonian

S g JaS Sf+Pd. (1)
l,J,O

The short-range interaction part is given by the exchange
couplings J;J, and the sum runs over the sites i,j of the
spins S; and a 1,2, 3. '1fd contains the isotropic dipolar
interaction of the spins. The Fourier-transformed spin Se
is decomposed into a longitudinal and a transverse part
with respect to the wave vector q. Then by standard tech-
niques the equations for the longitudinal and transverse
relaxation functions F r have been derived. '2 In the
asymptotic region these functions satisfy the scaling laws
with A, arbitrary
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2
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and the scaled static susceptibilities X'(x,y). The
nonuniversal time scale A is related to the exchange cou-
plings. Within the spirit of the asymptotic theory it may
be determined by comparison with, say, the energy width
at some q vector (e.g., the large-q region). In the case of
EuO, it turns out that it suffices to take the value A 1.3
meV A s known from measured exchange couplings in or-
der to reach satisfactory agreement. Choosing a value for
8 that fits I z to the experimental linewidth alters 8 by
about 10%. The constant g is determined by the ratio of
dipolar to exchange interaction. [g 0.59 (EuO), 0.02
(Fe); q and x are measured in lattice units a 5.14 A
(EuO), 2.87 A (Fe); and the temperature dependence of x
is taken from experiment. ] Equations (3) have already
been solved, approximating the shape of f ' (x,y, u) by
an exponential, leading to a set of self-consistent equa-
tions for the relaxation rates y ' (x,y). In Ref. 13, an
approximate solution of the mode-coupling equations was
suggested, by using exp( —u/y~ ) with the self-
consistently determined y on the right-hand side and
performing the time integrations. This amounts to the
first iteration of Eqs. (3). The deviation in the shape from
an exponential (Lorentzian) is overestimated by this ap-
proximation. Therefore, we have iterated Eqs. (3) until
self-consistency was achieved.

The neutron scattering cross section in general contains
both the longitudinal and the transverse relaxation func-
tion. Under the condition of unpolarized incoming neu-
trons and scattering near the reciprocal lattice vector r 0
only the transverse fluctuations are measured. This is the
case in the experiments in EuO or Fe mentioned above.
The scattering cross section is given by

ST(q, x,g, rn) -XT(q, x,g)F~(q, x,g, rn), (6)

where, for the static transverse susceptibility X, we use
the Ornstein-Zernike form XT (x2+qz)

Let us first consider the case T T, . In Fig. 1,fT(0,y, s) is shown for various values of the scaling vari-
able y. For small values of y (large q or small g) the criti-

cal shape of the isotropic ferromagnet with short-range in-

teraction is recovered. ' With increasing y, the shape
crosses over to a pure exponential as one expects from RG
theory considerations. However, this crossover takes
place at y values of the order of unity (well within the ex-
perimentally accessible region in EuO and similar to the
statics). In remarkable contrast to the shape, the r0 line-
width

Iq -Ay (0)q"n (y), n (y)-y (y)/y (0)

changes its behavior from a constant Q(y) (that means
I z -q ' ) to an 0 T(y) -y behavior (that means
I z~-q ) at y values an order of magnitude smaller than
in the statics; this was first noticed in Ref. 12. So far,
those small y values have not been reached experitnental-
ly. This explains why at large-q vectors in EuO a non-
Lorentzian shape has been measured, 4 but in spin-echo
experiment at small q vectors an exponential has been
found, while both experiments found the same effective
critical exponent z,lr 2.5 for the ro width and the relaxa-
tion rate, respectively. In Fig. 2, we show the result of our
calculation for EuO. Agreement with both width and re-
laxation function is achieved.

Just as in the pure short-range interaction case, ' the
deviation from the pure exponential is accompanied by the
development of a strongly damped oscillation in the relax-
ation function. Whether this is a real effect or an artifact
of the mode-coupling theory cannot be decided. In the
case of pure short-range interactions the corresponding
function calculated in RG theory does not show this oscil-
lation.

It has turned out that constant energy scans in neutron
scattering are a very sensitive tool to investigate the shape
of the dynamical correlation functions. The position of
the peak qo and the width of the maximum in the scatter-
ing intensity depend strongly on the shape of the correla-
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FIG. 1. The transverse spin-relaxation function f (y, u) at T,
in scaled time u Aq 5r and inverse wave vector y g /q,
showing the shape crossover to a pure exponential decay for
y & 1.

FIG. 2. Comparison between the transverse relaxation func-
tion calculated from Eqs. (3) and measurements of Mezei in
EuO at T, (Ref. 9). The nonuniversal parameter A 1.3
meV A . The inset shows the linewidth of quasielastic
scattering (dots, Ref. 9; circles, Ref. 4).
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tion function. ' In the pure short-range interaction case
for any finite energy ro, the peak position qo is finite and
nonzero because the scattering intensity vanishes for q
tending to zero. s' When one includes dipolar forces, the
intensity stays finite at q 0 and is proportional to ro

Therefore, the peak position qo moves to zero for small
but finite ro (we do not consider the position and the width
of the peak as a well-defined quantity in this crossover en-

ergy region). In Fig. 3, we show some typical constant co

scans (the nonuniversal parameters are those of EuO).
The shape of these curves for large wave vectors is the
same as in the case of a pure short-range interaction, and
they decay like q ', because of the scaling law for the
relaxation function, Eq. (2), and because f (O, ee,s 0) is
finite. In the region where the peak is well defined, no
substantial changes in the relaxation between qo and co, in
comparison to the case without dipolar forces, appear.

We now turn to the results for T & T,. There, two scal-
ing variables, x tr/q and y, have to be considered. It
turns out, by inspection of Eqs. (3)-(5) that the natural
variables '2 in that case are y/x g /xtgp . and
(x +y ) . r. The iteration of Eqs. (3) can be done for
fixed p, i.e., separately for each temperature T & T, . For
p different from x/2, one may display the results as func-
tions of x only, since one has x r(1+tg p) '. Howev-
er, one has to keep in mind that the physical quantities,
considered as functions of x alone, do not scale in x. In
Fig. 4 we compare the normalized ro linewidth QT(x,y)
with the measurements in Fe. 's An improvement is ob-
tained with respect to the theoretical results of Ref. 12
(compare with Fig. 3 there), but especially for large
values of the temperature, deviations remain. Those may
be due to background effects or other forces not included
in our theory.

An important physical quantity, showing new interest-
ing features, is the longitudinal relaxation function. At

0, it is equal to the transverse relaxation function, and
crosses over to a Lorentzian (exponential) as x is in-
creased, and one enters the hydrodynamical region. A
different crossover in shape is expected at T, (p rr/2).

FIG. 4. Comparison of the normalized transverse width with
measurements at different tentperatures by Mezei in Fe (Ref.
16). Ar(x) y (x,y)/yr(0, 0). The symbols are at T, +51',
T,+21.6', T, +20.1, T, +5.8', T, +5.5', T,+ 1.4, and
T, +1.1'. The curve at T T, is calculated without dipolar
forces (Ref. 14).

For small values of y (large q, short-range case) again
transverse and longitudinal relaxation are equal. Howev-
er, as one increases y (lowers q) the shape of the longitu-
dinal relaxation function does not cross over to a Lorentzi-
an (exponential), but remains similar to the one in the
short-range case (see Fig. 5). We remark that at T, and
for q 0 the longitudinal components of the spin become
uncritical secondary variables with a constant relaxation
rate. This crossover is also seen in the linewidth 1 ~. The
q

2 5 behavior at small y crosses over to the q-independent
behavior at larger y values, as expected from statics, and
is qualitatively similar to the results of Ref. 12.

A semiphenomenological model that does not take into
account dipolar forces has been suggested in Ref. 17, in
order to explain the spin-echo experiments in EuQ. We
have applied mode-coupling theory including dipolar
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FIG. 3. Typical constant energy scans showing the transver-
sal scattering intensity as function of wave vector q for different
scaled energies. The value of 8 is that for EuO.

FIG. 5. The longitudinal spin-relaxation function F (y, u) at
T, calculated from Eqs. (3). Variables are the same as in Fig. l.
No crossover to an exponential for large y is seen.



7210 C. ABERGER AND R. FOLK

forces' to neutron scattering experiments, and found an
explanation for apparent contradictions' regarding the
shape of the dynamical correlations. These can be under-
stood as asymptotic crossover phenomena between the
conserved Heisenberg dynamics and the nonconserved di-
polar dynamics. However, an important point is to recog-
nize that different physical quantities (e.g. , linewidth and
shape) may have different crossover points.

Note added in proof: The shape crossover at T, was
also considered in a recent paper by Frey, Schwabl, and
Thoma [Phys. Lett. A 129, 343 (1988)].

We thank H. Iro and U. Titulaer for critically reading
the manuscript. This work was supported by the Fonds
zur Forderung der wissenschaftlichen Forschung.

J. P. Wicksted, P. Boni, and G. Shirane, Phys. Rev. B 30, 3655
(1984).

zL. Pintchovius, Phys. Rev. B 35, 5175 (1987).
G. Shirane, P. Boni, and J. L. Martinez, Phys. Rev. B 36, 881

(1987).
4P. Boni, M. E. Chen, and G. Shirane, Phys. Rev. B 35, 8449

(1987).
P. Boni, G. Shirane, H. G. Bohn, and W. Zinn, J. Appl. Phys.

63, 3089 (1988).
sR. Folk and H. Iro, Phys. Rev. B 32, 1880 (1985).
7H. Iro, Z. Phys. B 6$, 485 (1987).
sH. Iro, J. Magn. Magn. Mater. (to be published).
sF. Mezei, Physica B 136, 417 (1986).
' S. W. Lovesey and R. D. Williams, J. Phys. C 19, L523

(1986).

"A. Aharony and M. E. Fisher, Phys. Rev. B 8, 3323 (1973).
' E. Frey, Diploma thesis, Technische Universitat Miinchen,

1986 (unpublished); E. Frey and F. Schwabl, Phys. Lett. A
123, 49 (1987).

'sW. Finger, J. Phys. C 2, 1977 (1977).
'4C. Aberger and R. Folk, Phys. Rev. B (to be published).
'sR. Folk and H. Iro, Phys. Rev. B 34, 6571 (1986).
'sF. Mezei, Phys. Rev. Lett. 49, 1096 (1982).
' U. Balucani, M. G. Pini, P. Carra, S. W. Lovesey, and V. Tog-

netti, J. Phys. C 20, 3953 (1987).
' F. Mezei, in Magnetic Excitations and Fluctuations II,

Springer Proceedings in Physics, Vol. 23, edited by U. Balu-
cani, S. W. Lovesey, M. Rasetti, and V. Tognetti (Springer-
Verlag, Berlin, 1987).


