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of two-dimensional tluantusss antiferromagnets
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Contrary to recent theoretical suggestions, we show that the long-wavelength action of a two-
dimensional quantum antiferromagnet on a square lattice can be mapped onto a classical (2+1)
nonlinear a model without any additional topological term.

Interest in two-dimensional quantum antiferromagnets
has considerably revived, when it was recognized theoreti-
cally' and experimentally that they might give a clue to
the understanding of the normal phase of undoped lantha-
num copper oxides. The long-wavelength action of the d-
dimensional Heisenberg antiferromagnet is known3 to be
given in the large S limit by a (d+ I)-dimensional non-
linear ts model with the following Lagrangian density

—'g '[c '(cl, n) —c(Vn) l,
where n is a three-dimensional unit vector, representing
the magnetization on one of the two sublattices for a bi-
partite lattice. In Eq. (1), c 2( +')/ JSa is the spin
wave velocity and the coupling constant g is equal to
2(d+ I)/2ad-1/S

This mapping has been extensively used for spin chains
(d 1) and has revealed striking differences between the
cases of integer or half-integer spin S . This is linked
mathematically to the appearance, for the quantum spin
problem of a topological term in the action

8Q (8/4tr) e 'n, 8 nb 8,n, dx dt, (2)

with 8 2trS. Q is the winding number on the unit sphere
of any smooth configuration n(x, t), tending to a constant
at infinity, and may take only integer values. The ex-
istence of topologically nontrivial configurations is implied
by the homotopy group trp(S ) Z. As a consequence of
this 8 term, the ground-state properties of the quantum
spin chain are believed to depend in a crucial way on the
value of the angle, 3 8 0 or 8

The extension of this mapping to two space dimensions
seems a straightforward task but it was pointed out recent-
ly that one may expect in this case the occurrence of a
new topological term

8H ( —8/2tr) A„J"d xdt . (3)

In this formula H is the so-called Hopf invariant, defined
in terms of the topological current J" (I/8tr) e""
x e' 'n, tl~btiqn, [J is associated to the conserved charge
Q of a two-dimensional slice at fixed t analogous to Eq.
(2)] and its vector potential A„(J" e"" 8„Aq). At this
stage 8 is a phenomenological quantity which should be
extracted from the underlying microscopic theory. -H is
the unique topological invariant in three dimensions, as-
suming integer values on smooth mappings S ~S or

Hopf textures. It was first introduced by Wilczek and
Zee, 5 who discussed its physical meaning in a very il-
luminating way: using the linking-number interpretation
of the Hopf invariant they showed that the extra phase in
the action i8H confers to skyrmions (i.e., configurations
possessing at a given time a nonzero topological charge
Q) a spin 8/2tr as well as corresponding exotic statistics.
In particular, for 8 tr, skyrmions become fermions and,
accordin~ to scenarios proposed by Wiegmann and co-
workers, could be identified, after condensation, with the
"spinons" of the resonating-valence-band (RVB) theory. 6

Therefore, it seems important to see whether the action
of a two-dimensional quantum antiferromagnet on a lat-
tice contains in the continuum-limit an extra term as
given in Eq. (3) and, if yes, to calculate the phenomeno-
logical angle 8. In this note, we investigate the question
for the square lattice and find 8 0. This means that to-
pological excitations around the Neel classical ground
state should be considered as bosons, irrespective of the
value of S.

In order to get our result, we adopt a coherent state
path-integral formalism for interacting quantum spins7
and follow a derivation given by Haldane for the d 1

chain. For a single spin parametrized by a unit vector
Q(S SQ), in a potential V(Q), we write the action in
such a path integral as

„dt[SA(Q ) 8, Q —V(Q )), (4)

h +JgS"S/
&i,j &

(5)

(where the summation is on pairs of nearest neighbors),

where A(r) is the singular vector potential of a magnetic
monopole of flux 4tr at the origin (V&A r/r3 or, on the
unit sphere, e' '8Ab/tlQ, Q, ). An analytic expression
of A in terms of spherical variables is given for instance
by A(r) (cos8+1)/rsin8&. We note that the quantity
JA(Q) d Q measures the area covered by the spin on the
unit sphere in function of time. It is discontinuous, chang-
ing by 4tr every time the spin crosses the singularity of A
(within our particular choice of gauge, this happens for
Q z). It can easily be checked that the action given in
Eq. (4) leads to the right classical equations of motion for
a single spin.

Taking up now the case of an antiferromagnet on a
two-dimensional lattice with interaction
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S ~(—1)t'+qS(l a—L /S )'~ n+aL, (6)

where n and L are two fields defined at each site and slow-

ly varying with p and q. n is a unit vector, L a small stag-
gered fluctuation component (a

~
L

~
&&S) which we have

assumed to be perpendicular to n as it will turn out to be
true at the order considered in this paper. It will become

l

we shall restrict our attention, in the same spirit as for the
spin chain, to the low-energy modes around the classical
Neel ground state. On a square lattice of spacing a, those
are spin waves of wave vector q (0,0) or q (x/a, x/a).
Therefore, we shall write the spin at site (p, q) as

obvious in the following that L is of the same order as a
first-order derivative of n: this has to be kept in mind in
the forthcoming expansion of the action.

A brief inspection of the Hopf invariant as given in Eq.
(3) shows that it is third order in derivative of n [this is

perhaps more clearly seen in the CP' formulation of the
O(3) nonlinear a model, see Ref. 9]. Thus, in order to
seek for its presence in the action of the two-dimensional
antiferromagnet, we have to expand the Lagrangian at
least to third order in powers of space-time derivatives or
L. We first consider the kinetic term. By exploiting the
freedom that is left to us to choose either A(Q) or
A( —0) in Eq. (4), we get on each site

A[( —I)t'+qS~/S] 8,8~q ( —1)t'+qSA(n) 8,n+aL (nx8, n)+2a8, [A(n) Ll.

lq = 2 „dx8 dtA(n) 8,n 2x. (9)

Since the argument may be obviously extended to more
general configurations, it identifies lq with 2xQ(y), where
Q(y) is the winding number of the n configuration in the
(x, t ) plane for a given value of q or y.

What we have found is nothing but the topological term
for a single spin chain. But in the two-dimensional case,
we have neighboring chains with alternating signs and

This result is obtained by injecting into the left-hand side
of Eq. (7) the definition (6) and expanding around n.
Note that third-order corrections appear with the alter-
nating factor (—l)t'+q and give rise in the continuum
limit to vanishing surface terms

Q( —1)'+' —,
' „dxdy 8,',

, PV

The next corrections are fourth order and have not been
displayed here for the sake of conciseness. In the follow-

ing, we shall also discard the last term of Eq. (7) as a total
time derivative.

Special care has to be exercised about the first term in

Eq. (7). Remember that the quantity fdtA(n) 8,n mea-
sures the total area on the unit sphere swept by the spin at
site (p, q). Consider now a given row of spins along the x
direction (for a fixed value of q) and assume that a soliton
is present in the corresponding (x, t) plane. This may be
described for instance (in the continuum limit) by

n(x, t) (psinf, cosf),

where p is the two-dimensional unit radial vector in the
(x, t) plane and f[p (x2+t2)'t2] is a smooth function
varying monotonically from f(0) 0 to f(oo) x, so that
we recover at infinity the ground state n (0,0, —1). We
want to calculate the alternating sum g~ ( —1)~

x fdtA(n) 8,n lq. Starting from x —~ where spins
sweep a very small area around n (0,0, —1), and moving
along the x direction, we see that this area undergoes a
sudden jump of 4x at x 0 [where n crosses the singular
value (0,0,1)], before shrinking again to zero at x
Due to this discontinuity, we get for lq a nonzero result in
the continuum limit

I

deduce in the continuum-limit

SJ(—1)~+q„dtA(n) 8,n-xs I dy8, Q(y)

(10)

1 Z Spq
' Sp+6,q+6+1 8' +1

use the definition (6), and perform a gradient expansion
of the resulting expression. As before, third-order correc-
tions are seen to present the alternating factor ( —1)~+q
and disappear, once the continuum-limit is taken. Sub-
tracting the result from Eq. (7), we obtain the following
expression of the Lagrangian density, up to fourth-order
corrections

a 'L (nx8, n) —4JL2 —JS /2(Vn) . (11)

Extremizing the action with respect to L yields
L ( —,

' Ja)(nit8, n), which ensues the final form of L

Z-( —,', Ja')(8,n)'- JS'/2(Vn)' (12)

which is the Lagrangian of the standard nonlinear cr mod-
el, given in (1).

In conclusion, we see that the differences existing in one
dimension between half-integer and integer spina do not
appear to survive in two dimension in the ordered phase.
In particular, we have not found any Hopf invariant. It is
worth noting that we have not considered in this paper the
possibility of hedgehogs or antihedgehogs" which should
play a role in (2+1) dimensions, as endpoints of skyr-
mions. It seems unlikely that taking them into account
would invalidate the conclusions of this work. The ques-
tion of whether differences between systems of different
spin occur in a phase disordered by quantum fluctuations'
remains open, however.

nS dx8, Q(x) .

In the absence of any pointlike singularity (or hedgehog)
violating the assumption of smoothness of the field n,
Q(y) or Q(x) are conserved charges and the above in-
tegral does not contribute to the action. '0

Tuning now to the interaction term, we attribute to
each site the quantity
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