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Strength of disordered solids
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The response of a bond-diluted elastic network, when it is subjected to an external stress, is dis-

cussed. For low-bond-dilution concentration, the statistics of lattice animals can provide a mea-

sure of the strength (fracture stress) of such a system and lead to the conventional Weibull form
for the flaw distribution function g(cr). Near the percolation threshold p, of the system, we use
the "node-link-blob" model of the percolation cluster to study the critical behavior of the strength
of such a bond-diluted elastic network. As p~p„strength goes to zero with the critical exponent
T'. A scaling relation for T' is obtained, which is exact for dimension d )6 and gives a lower
bound for d & 6. Agreement of the scaling relation with experimental results are discussed. Final-

ly we present a Monte Carlo renormalization-group (MCRG) study in a very simplistic elastic
model in d =2 dimensions, along with a straightforward Monte Carlo simulation (MCS) for the
elastic response and strength of the same model system of size 50)& 50. The elastic exponent T and
the fracture exponent T', obtained for the model either from MCRG or from MCS, are in perfect
conformity (within the limit of statistical errors) with our scaling relation.

I. INTRODUCTION

It has been known for quite a long time that defects
play a very crucial role in determining the mechanical
properties of a system. Griffith, as early as 1920, point-
ed out (see p. 5 of Ref. 1) that defects, in the form of
very narrow atomically sharp (micro) flaws, act like
stress concentrators (concentrating stresses at the sharp
notches of the flaw) and are the chief cause for the
characteristic low load-bearing capacity of brittle rnateri-
als like ceramics, glass, etc. He also gave a formula for
the variation of the strength of a system with the varia-
tion of the dimension (length) of such a sharp flaw. Ac-
cording to Griffith, the equilibrium extension of a flaw is

governed by a balance between the mechanical energy
released and surface energy gained, as the flaw propa-
gates. This energetics of flaw propagation gives the
Griffith's instability condition (see Ref. 1)
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where 0., is the maximal stress that can be sustained by
a sharp hairlike flaw of length 2c placed perpendicularly
to o, within a system having an elasticity Y and a free-
surface energy per unit area y.

In real engineering samples, the presence of a large
number of flaws with various sizes, shapes, and orienta-
tions (with respect to the applied load) makes the situa-
tion far more complex. In fact, due to these random
flaws, brittle materials generally exhibit a wide scatter of
fracture strengths, when nominally identical specimens
are tested under nominally identical loading conditions
and one generally talks of average strengths for such rna-
terials. In the case of such random flaws, the only pa-
rameter that seems to be relevant is the density (volume
fraction) of flaws within the system.

Much physical insight into the strength of disordered

systems comes from the microscopic consideration as in
McClintock's discrete lattice model, where one consid-
ers a lattice with the atoms or grains at the lattice sites
and the bonds which link them via a potential energy is
diluted with a finite probability q (=1—p). Thus there
is a chance p, that each material grain is bonded to its
neighbor and a chance q, that it is not, thereby forming
a flaw. This gives a finite probability (in terms of q) of
occurrence (due to fluctuation of average dilution) of
flaws with various shapes and sizes, and one can have
the size distribution of flaws in terms of q. In this paper
we discuss how the strength of an elastic network
changes with the concentration q of randomly diluted
bonds in the network.

At low q, the flaws are well separated and do not in-
teract with each other in the sense that the (elastic)
energy-released region of one flaw does not overlap with
that of the other. When q is very low, the statistics of
flaws is given by that of lattice animals (see Ref. 3 for
lattice animals). In Sec. II, we very briefly discuss how
the lattice-animal statistics provides a microscopic ex-
planation of the strength of disordered systems in the
limit of very weak disorder (q~0).

However, as the system is diluted more and more, the
average flaw size can no longer be represented definitely
in terms of the cut bonds and flaw condensation and
their interaction becomes common. The elastic and frac-
ture behaviors (variation of elastic modulus and strength
with flaw density) cross over to the power-law regime,
and the modulus and strength vanish, at the percolation
threshold of the system, with some singularity essential-
ly because of the critical divergence of the correlation
length at this point. The singular behavior exhibited by
elastic modulus and fracture stress are characterized in
terms of the critical exponents, and in Sec. III we dis-
cuss the fracture exponent of a system near p, . Using
the "node-link-blob" picture of the percolation cluster
near p„we obtain a scaling relation for the fracture ex-

38 715 1988 The American Physical Society



716 P. RAY AND B. K. CHAKRABARTI 38

ponent T'

T') [T+(d —ds )v]/2 . (2)

)
1/a

(4)

Here, T and v are, respectively, the elasticity and corre-
lation length exponents and dz is the fractal dimen-

sionality of the percolating backbone (see Ref. 3). This
provides us with a rigorous lower-bound estimate of T'
for any dimension d less than the upper-critical dimen-
sion d, (=6), at which the equality becomes exact. In
fact, to check the validity of the scaling relation as well
as to gain insight of how the strength scales near p„we
artifice a very simple elastic model. In this model, the
bond angles are considered to be perfectly rigid and all
the neighboring sites in the backbone are assumed to be
elastically connected, irrespective of their actual connec-
tion through bonds. This model, in spite of its
oversimplification, is useful as the essential dynamic na-
ture of the elasticity problem gets reduced in this model
to a static one (like the electrical conductivity problem)
and this helps in very precise determination of the elasti-
city and strength of the system and the critical ex-
ponents associated with them near the percolation tran-
sition point. Our MCRG study of this model gives
T =0.38+0.05 and T'=0.84+0.03 which satisfy our
scaling relation. Lastly, our MCS study of elasticity and
strength of such a model gives the phase diagram for
this quantities over the entire dilution range in addition
to the exponents T and T' near p, of the system.

II. WEAK-DISORDER LIMIT (p & 1)

In the weak-disorder limit, the flaws are almost nonin-
teracting. For a system having X such noninteracting
randomly distributed flaws, each with a probability f (o )

to fail at or above the tensile stress o, the survival prob-
ability of the entire sample under stress o can be written
as (see Ref. 2)
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Figure 1 shows g(cr) versus o curves for q =0.01 and
0.001 in both the cases [Eq. (4) and Eq. (2) in Ref. 5].
The curves for the two cases are almost identical for
small q. The average strength thus obtained for small q
very well satisfies the results (see Ref. 5) obtained from
the molecular-dynamic study of the strength of a ran-
domly bond-diluted (for low dilution concentration)
square lattice with Lennard-Jones interaction between
neighboring sites and is also apparent in the experimen-
tal result of strength of a porous sheet of aluminum.
Nevertheless, the complicated phenomenon of crack nu-
cleation and its interactions with various external and
internal agents render the actual situation, one faces in
day to day engineering applications, very complicated
and almost intractable.
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if we assume the validity of Griffith's law [Eq. (1)] even
for the clusters of arbitrary shapes. However, again, this
assumption is questionable for finite q.

Perhaps a more straightforward approach is to visual-
ize a flaw as was done by McClintock, by considering
vacant bonds in successive columns between any two ad-
jacent rows. The number of vacant bonds defines the
length of the flaw and Gri%th's law is more applicable in
this case. However, for small q, g (o } turns out to be of
Weibullian form, (o /oo), with some intricate q depen-
dence of o o and m as

—:exp —f g (o )dv (3)

where g (o ) is the density of flaws which propagate un-
der a minimum stress o and the integration is over the
entire volume of the sample.

When q is very low and close to zero, different
configurations of the vacancy clusters are given by the
statistics of "lattice animals. " Thus, typically, the num-
ber n, of s clusters (formed by s adjoining vacant bonds)
for large s is given by n, -exp[ —

~

in(Aq}
~
s] apart from

some less-important contributing factor. Here A, is a
lattice-dependent constant (e.g., A, =4.06 for a square lat-
tice). The clusters would be of different shapes and sizes,
but the average radius R, of the s-clusters behaves as s ~

for large s, where P is a critical exponent (for example,
=0.64 in two dimensions). The density distribution
g (cr ) of flaws is readily obtained as

g(a )

0.1-

0.0
0 10 12 14

FIG. 1. g(o) vs o. curves for q =0.01 and 0.001. The
dashed curves are obtained using Eq. (4) with A, =4.06 and
/=0. 641. The solid curves are obtained using Eq. (2) in Ref. 5
with k =1.
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III. STRONG DISORDER
OR PERCOLATION REGIME (p =p, )

As the concentration of the bond dilution increases,
the elasticity as well as strength of a system gets
lowered. This is schematically shown by the curve
AB'C' in Fig. 2. The elasticity as given by the slope
AB' is much less than the elasticity obtained from the
slope AB before dilution. Similarly the strength given
by the breaking stress o,' is much less than its previous
value cr, . It is to be noticed that the curve AB'C' is
drawn much straighter than ABC to imply that, along
with the elasticity and strength, the plastic region, where
the stress-strain relation is nonlinear, is also affected by
dilution and shrinks (see Ref. 7). When the bond-
dilution concentration q is very large, so that the bond
occupation concentration p =(1—q} is less than the per-
colation threshold p, of the system, the system is no
longer connected. For p &p„ the system would have
finite elasticity and strength and, as p ~p, from above,
the curve AB'C' (in Fig. 2} merges with the strain axis
and each of the above quantities goes to zero with a cri-
ticality. For example, the dependence of the effective
elastic constant Y on p, near p„ is given by
Y- p —p, ~, where T is the elasticity exponent. Simi-
larly, breaking stress also exhibits criticality at p, and is
characterized by the exponent T'. These singular behav-
iors are essentially caused due to the divergence of the
correlation length g-

~ p —p, ~

" and depend on the
percolation geometry of the network. The elasticity ex-
ponent T also depends on the elastic Hamiltonian con-
cerned; it differs from a central-force system to a bond-
bending-force system. The disappearance of elasticity at
p, actually corresponds to the tortuosity and stringiness
of the connecting paths in the backbone of the infinite
cluster. Such paths certainly would have' vanishing
force constants.

On the other hand, the stress concentration on the
stringy percolating structure and how that scales and

(d —dB ]+T/v
Es =ops-o g (6)

To determine the fracture stress, we assume each bond
to remain elastic up to the point of its breaking, and
equate Ez to its limiting value EF, beyond which the
bond ruptures. It may be mentioned that one could
have calculated the average strain of a bond and equat-
ed it to a limiting strain at rupture. However, near p„
as the connecting paths become extremely tortuous,
there would be enormous apparent strain without any
real cost of elastic energy and the later calculation would
lead to a gross underestimation of strength o„except
when the bond-bending force is fairly high. Thus, for
equilibrium propagation of fracture E~ =EF and using
Eq. (6) we get

makes the strength vanish at p, with some criticality is
not that apparent. One may argue, ' " very naively,
that the most vulnerable flaw, at least in two dimensions,
can be considered to be of the order of correlation length
g and the effect of other flaws can be ignored. It is then
just the Griffith system with a single crack of length
c =g-

~ p —p, ~

in a medium whose effective elastici-
ty is Y-

~ p —p, ~

. These values, in conjunction with
Eq. (1), can provide ' a measure for the fracture ex-
ponent T' [=(T+v)/2]. However, the argument has
some drawbacks and moreover, it is not applicable to
higher dimensions.

To see what crucial aspects of the percolation
geometry govern the strength of a dilute network at
p =p„we consider the node-link-blobs (NLB) model' of
the percolating backbone, which describes the backbone
on length scale l. »g, as a network of "elements" of
mean size g- p —p, ~

". Each such element consists
of regions of multiply connected bonds linked by chains
of singly connected bonds. The force constant E& of
such a typical element is related' to g by
E&-g' ' ". If cr denotes the macroscopic stress ap-
plied on the system, then the stress on each element be-
comes o&-ogd ', and the corresponding strain is

S& cr&/-K&-o'g' + ' ". It is, in fact, the total strain
op

" shared by I/g number of strings or "elements. "
Since, typically, there are g (ds being the fractal
dimensionality of the backbone) bonds in an "element"
of length g, the average strain of a bond, constituting the
superlattice element, comes out to be Ss-S&g and
the average strain energy of such bonds becomes

Stress

Strain

C

(d —d& )+ T/v
EF ——o,

This gives

+'"—a' ) 'a, -EF
I p p

FIG. 2. Schematic diagram of the stress-strain curve com-
monly observed for solids. ABC represents the stress-strain
curve when the solid is not disordered, whereas AB'C'
represents the stress-strain curve after the solid has been disor-
dered. AB and AB' represent the Hooke's region, whereas 0.,
and cr,

' represent the fracture stresses for the two cases, respec-
tively.

where

T'=[T+(d —ds )v]/2 .

Since in an actual case the strain would be higher for
singly connected bonds than for multiply connected
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Pq(o, )-b P(o, Ib ") (8)

ones, the average strain per bond that we calculate is less
than the actual strain for a singly connected bond. Thus
the fracture stress of the network that we estimate is al-
ways higher than the actual one, and the expression (2)
we obtained for T' is a lower bound on T'. It is only for
d )6, when the elements of the superlattice network
would be made up' totally of singly connected bonds,
that the equality relation (2) becomes exact. For a
bond-bending-force system, ' v= —,', d~ =2, and T =4 for
d &6; we obtain T'=3 at and above the upper critical
dimension (see also Ref. 7). For such systems in two di-
mensions, T=3.96 (see Zabolitzky et al. in Ref. 8). To-
gether with the estimate' da =1.60, our scaling relation
leads to T'&2.26. This result is consistent with the ex-
perimental results' T'=2. 5 for a porous sheet of alumi-
num and copper. For the central-force system, however,
the situation is not very clear. The problem appears to
belong to a different universality class altogether with
the elasticity exponent T-1.4 and correlation length ex-
ponent v-1.05 (see Ref. 15). The value of ds, fractal
dimension of the backbone, is not known. The value of
the fracture exponent T' obtained' from the molecular-
dynamic simulation study of fracture in a two-
dimensional Lennard-Jones system is nearly equal to uni-

ty, and this indicates that d~ for central-force system
might be less than that for ordinary percolation back-
bone.

An idea of how the fracture stress o, scales down to
zero at p, is obtained from the Monte Carlo renormal-
ization determination of T'. To simplify the problem we
consider a rigid bond-angle system and assume that all
the neighboring sites in the backbone are elastically con-
nected, irrespective of the presence of bonds between
them. Strain can then only take place along the lattice
edges so that the lattice symmetries are preserved, ex-
cept for the elongation of the cells. We use the H-type
cell' for the square lattice and for a certain scale factor
b, the bonds are first filled up with probability

p =p, =0.50 by means of a random-number generator.
The cluster that connects the top to the bottom end of
the cell is determined, and the backbone is extracted by
removing the dangling ends. For each such realization,
the fracture stress cr, as well as the elasticity modulus F
are evaluated. In this model the layers of bonds normal
to the applied force always remain so, and the bonds
along the force are only stressed. The response of the
system to a tensile stress is thus identical to that of a
series of springs of different force constants between the
neighboring layers normal to the force; the number of
(parallel) bonds between any two layers determine the
force constant of the corresponding spring between those
layers. Elasticity is given by the series combination of
such springs and the fracture stress is given by the weak-
est of them. The probability distributions P&(o, ) and
P„(Y) are obtained by repeated sampling (20000—30000
realizations). The entire process is repeated for different
b (b =2—13). At p„Pb(o, ) is expected to approach a
scale-invariant form
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FIG. 3. X ' vs b t', in logarithmic scale) for Monte Carlo
RSRG in our model system, where X=(o, )b, ((o', )b)'~,
( Y)b, and (( Y2)~)'~2. The corresponding points are marked

.by 0, 0, 6, and A, respectively. The limiting slopes give
T =0.38%0.05 and T'=0.84+0.03.

for large b [the same is true for Pb( Y), with T' replaced
by ?]. Similar scaled probability distribution for other
quantities have been studied before. ' The mean and
root-mean-square fracture stress are

&o, ),=c,b

(( 2) )I/2 c 6 —T'IV (9)

where c, =f xP(x)dx and c2= f x P(x)dx. Figure 3
shows the plots (in logarithmic scale) of (o, )b [and also
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FlG 4 X vs p {~,X = (o, ); O, X = ( Y) ) for the Monte
Carlo simulation in our model system of size 50X50. The in-

set shows a logX vs log{p —p, ) plot, giving T =0.42%0.07 and
T' =0.85+0.05.
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of ((o, )b )' ] against b. Similar curves for the elastici-
ty Y are also shown in the figure. From the limiting
slope (for bazoo ) of the curves we find T'=0.84+0.03
and T=0.38+0.05 in two dimensions (with v= 4 }.

Since only the bonds of the backbone, which are along
the applied force, are only stressed, the chemical length
1, of the stressed bonds for b «g (in the fractal regime)
satisfies I, -b: the fractal dimension dz of the stressed
bonds of the backbone turns out to be unity in this mod-
el. We find that the T and T' we obtain for our model
satisfy the scaling relation very well.

Finally, in the same model and in a 50)& 50-site lattice,
we find fracture stress and elasticity for various values of
p above p, . The bonds are occupied randomly at some
concentration p by means of a random-number generator
and the backbone is sorted out as before. The average
fracture stress ( tr, ) and elasticity ( Y ) are determined
for 15—20 realizations at each p and the entire process is
repeated for different values of p. The variations of
(ct, ) and ( Y) with p are shown in Fig. 4. Both are
found to approach zero at p =p, =0.5 with exponents
T'=0.85+0.05 and T =0.42+0.07, respectively.

IV. SUMMARY

We consider a bond- (or site) diluted lattice model for
disordered solids containing random voids or flaws. The
variation of the strength of such solids with lattice dilu-
tion concentration ( 1 —p ) is studied. In the low-
concentration limit (p &1}, the average strength of the
specimen is justified using animal statistics for the flaws
or the vacancy clusters (Sec. II). Near the percolation
point (p ~p, ; with fixed specimen volume V), the node-

link-blob model of the percolation cluster is used to
derive the relation

T') [T+(d —ds)v]/2

for the average fracture stress exponent T' (Sec. III).
Reported agreement of the experimental results' ' ' [see
also Ref. 14(a)] with the above scaling relation (from an
unpublished version of this paper) is discussed. It is also
checked in a very simple elastic network, for which T
and T' are obtained straightforwardly using Monte Car-
lo and Monte Carlo RSRG.

Note added in proof In .Eq. (2), an upper bound of T'
can also be obtained easily by considering only the
singly-connected bonds in the links constituting the su-
perlat tice network. For the singly-connected bonds
ds = 1/v (see Ref. 12) and the fracture exponent, T' is
then given by (T+dv —1)/2) T') [T+(d —dz)v]/2.
For d)6, the two bounds coincide and give T'=3 ex-
actly for bond-bending force systems. For such systems
in two dimensions the above relation predicts
2.81)T') 2.26 which agrees with the experimental re-
sult T'=2. 5+0.4. ' For the central-force system the re-
lation gives (with' v=1.05 and T=1.4) T'&1.3 which
again agrees with T'=1.0, obtained' from molecular
dynamic simulation.
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