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It is analytically shown that the gap which produces the fractal structure of the attractor of the

dynamical system vanishes linearly if the exchange reaches a critical value in contrast to the 7

5

power law claimed to be observed numerically by Satija [Phys. Rev. B 35, 6877 (1987)]. Several
other statements of this paper are critically discussed.

We show analytically that the gap which generates the
fractal structure of the attractor vanishes linearly if the
exchange reaches a critical value. The fixed point of Eq.
(3) inRef. 1, x* =h+ + g(x*), is given by

2x* =h+arcsinhle ¥sinh(h)] . (¢))

The first gap closes, A=2(2h —x*) =0, if the exchange
is23 2J9=Inlsinh(3h)/sinh(h)]. Near the critical ex-
change we find

x*(T—J) =2n+(J—Jtanh(3h) . )

Thus the linear dependence of the gap, A(J— JO
=—2(J—J)tanh(3h), is a simple fact resulting from
the analytic form of the recursion around the fixed point
x* in contrast to the 3 power law claimed to be observed
numerically in Ref. 1.

The frustrated region was defined in Ref. 3 by the con-
dition that the probability density of the local magnetiza-
tion m =(s,) is nonzero at m =0 and not by the condition
that the gap closes as stated in Ref. 1. Thus Jy
= L In[2cosh(k)]1#=J2. For T =0 the correct threshold is
found: For h/J=<h/J;=2 the residual entropy is
nonzero.

For nonzero temperature the attractor constitutes a
multifractal which is more complex than a simple Cantor
set due to the nonlinear character of the map, only for a
linear approximation of g(x) it is self-similar at every
scale.** It is possible to encode all the points of this set,
and its bands and gaps at the corresponding level of the
hierarchy in an unique way by symbolic dynamics.* ¢ In
the nth iteration of the Chapman-Kolmogorov equation
[Eq. (5) in Ref. 1] the measure consists of 2” bands la-
beled by sequences of n signs * characterizing its histo-
ry.® For n— o we have a continuous number of bands.
Therefore, statements like ‘“the number of bands jump by
unity” make no sense without a reference to a relevant
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length scale [e.g., one sees in Fig. 3(a) of Ref. 1 four or
eight bands or even more depending on the reference
lengthl.

For high temperatures it is justified to replace g(x) by
2x(x* —h)/x* which gives a self-similar Cantor set, the
first gap of which has the exact value.* The fractal di-
mension is dF 2" =1n2/Inlx*/(x* —h)] if A= 0 and one
otherwise. Also the Lyapunov exponent can be calculated
analytically®

stantor m(lnlg'(x)/2) =Inl(x* —h)/x*]. 3)
Near the critical exchange we find, inserting Eq. (2),
sGMor(J— JO) = —In2+ (J —J))tanh(3n)/(2h) . (4)

The Lyapunov exponent reaches the value —In2 if NN
bands overlap in a linear way in contrast to Eq. (11) in
Ref.1 (note also the misprint in the definition of 81,). For
A=0 we can write Sy = —ln2/d]C‘"“°r which eluci-
dates that —8fy““‘°' increases as the attractor decreases.
To characterize fractal properties avoiding this approxi-
mation one needs more sophisticated methods.’

To discuss zero-temperature properties it is more ap-
propriate to study the map which results dividing Eq. (3)
of Ref. 1 by B and renaming J— BJ, x— Bx, and
h— Bh.* The thus obtained map is for T =0 piecewise
linear,

Xp=hy+A(x,—1)
(5)
+J ifx=2tJ,
ACI=1y i |x| <.

and generates only a finite number of possible values. The
corresponding fractal dimension is zero. The measure
consists of weighted & functions located at these possible
values and is not smooth. To calculate the Lyapunov ex-
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ponent we observe that A'=1 for | x| <J and A4'=0 oth-
erwise, and that the measure reaches from —h—J to
h+J. Thus .,(T=0) = —oo and not zero as stated in
Ref. 1. For T=0 the finite number of states jumps at
some critical values of the parameters and causes, for a
field with nonzero mean, a discontinuous behavior of mag-
netization and residual entropy.® For T=0 these discon-
tinuities are expected to be smoothed.

In Ref. 1 it was claimed that the NNN bands overlap at
J=J! determined by x*(J!) = 3 h. We show that this is
only true for 7=0. The overlap condition for NNN
bands leads to A+ 3 glh+ $g(—x*)1=—h+ $ g(x*).
Injecting the definition of the fixed point yields 2x*
—6h=g(2h —x*), resulting in

2x* =5h +arcsinhle “#sinh(h)] . (6)
Obviously, x*=3%h would mean for 70, J— o or

h =0 in contrast to the observed finite values (cf. Fig. 1 in
Ref. 1). For T— 0, however, ¢ ~¥sinh(h)— 0 if 2J > h
so that with x*(7=0) =h+J from (1) we find in this
case the correct result J! = 3 h. 5

In a similar way it can be shown that Eq. (8) in Ref. 1

defines for zero temperature the critical values

"= (n+2)h, n=0,1,2, ..., for which the number of
states jumps by two, at J,= + h this number jumps by
Sour (cf. Fig. 2 in Ref. 5). For J; as well as for the J7 the
residual entropy exhibits spikes.

We agree with Satija that for d; =1 where the measure
constitutes a fat fractal, generalized scaling exponents®”’
are of interest. The explicit representation of the measure
in the nth iteration of the Chapman-Kolmogorov equation
obtained in Ref. 6 could be useful to characterize the mul-
tifractal and to calculate the spectrum of singularities
avoiding previous simplifications. '°
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