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We have measured the low-temperature specific heat in a single crystal of PdPb; in the normal
and superconducting states. The normal-state data allow us to determine the coefficient of the
electronic specific term y=1.2 mJ/g-at. K2, and the Debye temperature ©p =147 K. The elec-

tronic specific heat

in the superconducting state follows exponential behavior Ce/yT.

=11.53exp(—1.427./T) in the temperature range investigated. The data suggest that PdPb, is
a weak-coupling superconductor with a high value of the pairing potential.

PdPb, is a body-ccntered-tctragonal compound with a
CuAl, structure.” A number of compounds with this
structure are superconducting®’ with PdPb, being one of
them. Havinga, Damsma, and Kanis? studied a number
of alloys involving PdPb, by measuring the superconduct-
ing transition temperature 7., room-temperature magnet-
ic susceptibility, and thermoelectric power. The authors
found that all of these quantities show oscillatory behavior
when plotted against the electron to atom ratio. This re-
sult was attributed to the electron density-of-states varia-
tion at the Fermi surface. In order to confirm this suppo-
sition it is necessary to perform low-temperature heat-
capacity measurements in these alloys. To start with we
have measured the low-temperature heat capacity of
PdPb; partially to check the assertion of Havinga, Dams-
ma, and Kanis® and partially to determine the nature of
superconductivity in this material. For various reasons*’
the possibility of superconductivity in palladium metal
and its alloys has interested researchers. Low-temper-
ature heat capacity in this structure has been measured in
two borides,® W,B and Ta;B, though not much attention
was given to the results in the superconducting state.

The sample in the present measurement was a single
crystal of PdPb; weighing 123 mg. The measurement was
performed with a standard heat-pulse method. The sam-
ple holder consisted of a sapphire substrate (weighing 40
mg) supported by 50-um thin Constantan leads, with a
Nichrome film deposited on one side serving as the heater.
The thermometer was a bare Ge resistor supported from
the substrate by thin gold wires. The sample was attached
to the substrate with a very thin layer (a few micrograms)
of Apiezon-N grease. The heat capacity of the sample
holder was measured separately and constituted roughly
10% of the total. The resistance of the thermometer was
measured by an ac bridge utilizing a lock-in technique.
Below the superconducting transition temperature T,
which is found to be 3.02 K, the normal-state specific heat
was measured in a magnetic field of 200 G. This field was
found sufficient to turn the sample normal even at the
lowest temperature. The accuracy of these measurements
were better than 5%.

Figure 1 shows the measured specific heat C as a func-
tion of temperature up to 4 K in the normal and supercon-
ducting states. The width of the transition at 3.02 K is
about 50 mK. The jump in specific heat C at the transi-
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tion temperature is 6.5 mJ/g-at. K.

Figure 2 shows a plot of C/T vs T'? where T is the tem-
perature. This plot shows two distinct slopes, one at tem-
peratures below 4.5 K and the other at higher tempera-
tures. This kind of behavior is not uncommon in the heat
capacity of metals and alloys.’

The normal-state specific heat at low temperatures in
metals is given by

C=yT+BT3. (1)

The first term yT gives the electronic contribution and the
second term BT gives the lattice contribution to specific
heat. The values of y and B have been evaluated from Fig.
3, which is plotted as C/T against 7' below 4.5 K. From
the straight-line fit we find

y=1.2mJ/g-at. K2,
B=0.615mJ/g-at. K*.

From the value of B we have evaluated the Debye temper-
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FIG. 1. Specific heat C vs temperature 7 in the normal and
superconducting states.
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FIG. 2. C/T vs T?in the temperature range 1.7-10 K.

ature of the compound by the formula
B=234Nk/6} ,

where N is the Avogadro number, k the Boltzmann con-
stant, and ©p the Debye temperature. The value of the
Debye temperature is found to be 147 K. Previous deter-
minations® of the Debye temperature were found to be
159 K from the room-temperature elastic constant mea-
surements and 120 K from the low-temperature resistance

measurements.

The value of y for PdPb,, it may be noted, is consider-

FIG. 4. The electronic specific heat in the superconducting
state C is plotted against T./T in a semilog plot. The curve
shows the exponential dependence of Ces on T./T.

surements as a function of electron to atom ratio in PdPb;
while studying Rh; - ,Pd,Pb; and Pd, - yAu,Pb; alloy sys-
tems.

The value of the specific-heat jump AC at T, as stated
earlier, is 6.5 mJ/g-at. K. This gives us AC/yT, =1.8 for
PdPb;, which can be compared with the Bardeen-
Cooper-Schrieffer (BCS) value of 1.43 for weak-coupling
superconductors. For strong-coupling superconductors
the value of AC/yT, is generally greater than 2.

T. and y are related to the density of states for elec-
trons n(0) at the Fermi surface by

6))

ably smaller than those of the elements (y=9.42 and 2.98
mJ/g-at. K? for Pd and Pb, respectively). However, it is
not possible to discuss the value of y for PdPb; in terms of
the values for the elements as the compound and the ele-
ments have entirely different crystal structures. The small

(3)
(4)

T.=1.146pexpi—1/[n(0)V]},
y=(2/3)x%k*n(0) .

value of y is also surprising since Havinga, Damsa, and
Kanis® found a peak in the magnetic susceptibility mea-
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Equation (3) is based on the assumption of weak coupling
where V is the BCS pairing potential. Using values
T.=3.02 K and 8p =147 K, we obtain

n(0)V =0.249.

Usually the value of n(0)V < % is considered to be an in-
dication of a weak-coupling superconductor. From Egq.
(4) we obtain

-1
n(0) =0.255 —=—— .
atom spin
Therefore PdPb; is a material with low electron density of
states at the Fermi surface and relatively high pairing po-
tential.

In the superconducting state, the electronic specific heat
C.s, which is the difference between the total measured
specific heat and the lattice specific heat, follows an ex-
ponential form as shown in Fig. 4. The curve gives the ex-

T2 (K?)

pression
Ce/yT.=11.53exp(1.42 T./T) . (5)

FIG. 3. C/T vs T? in the temperature range 1.7-4.5 K. The

constants y and $ have been evaluated from this graph.

The exponential dependence of specific heat Ces is an
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indication of energy gap. If the gap is independent of
temperature then the value of the energy gap is 2A(0)
=)x1.42kT,=2.84kT.. This can be compared to the
BCS weak coupling value 2A(0) =3.52kT,. This compar-
ison, however, is not valid since the gap changes rapidly
near the transition tcmgcrature. For weak-coupling su-
perconductor BCS gives

Ceos/ YT, =8.5exp(1.44T./T) (6)

for 2<(T./T) <7. In our measurement the maximum
value of T./T is 2. Experimentally most of the weak-
coupling superconductors give the exponential in the
specific-heat measurements as from exp(—1.4T./T) to
exp(—1.5T./T) (Refs. 10-12) in the range of tempera-
ture 1.5 < (T./T) <5.

We therefore conclude that PdPb; is a weak-coupling
superconductor with a high value for the pairing potential.
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