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Statistical mechanics of Cn02 plane in the presence of localized holes
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Both La2Cu04 and YBa2Cu306 are antiferromagnetic insulators, becoming less so as holes are
introduced on individual oxygen bonds. We evaluate the free energy of a single Cu02 plane in the
Ising representation. Beyond a critical concentration xo 0.29289 holes per Cu02 cell, antifer-
romagnetism is replaced by a paramagnetic phase having short-range order only. The ground-
state entropy is 0 at x 0, 0.0697 per Cu02 cell at x xo, and 0.6931 (i.e., ln2) at x l.

La2Cu04 and YBa2Cu306 have a layered structure in

common, each containing planes of Cu02 with spins on
the Cu + ions antiferromagnetically disposed. ' Far from
being superconductors, at stoichiometry, these materials
are in fact excellent insulators. With increasing dopant
concentration (Sr or 0 vacancies in La2 „Sr,Cu04 s or
oxygens in YBa2Cu306+s) the antiferromagnetism de-
creases as the number of positive charge (hole) carriers
increases, ultimately giving way to the high-tempera-
ture superconducting phase spectacularly evinced by2

La i.ssSro. i sCu04 and' YBazCu306 9.
It is worthwhile to examine the statistical mechanics as-

sociated with the doping. Recently, Aharony et al. out-
lined all the magnetic interactions and derived therefrom
a phase diagram which agrees in many respects with ex-
perimental observations. To supplement their qualitative
analysis, I wish to show that at least one aspect of the
problem can be analyzed. Moreover, by making a simple
assumption concerning the localization of holes in the in-
sulating phases of the magnetic materials, it can be ana-
lyzed exactly.

It will be shown that in the Ising representation, with

neglect of any interplanar interactions, the statistical
mechanics is that of a "decorated" two-dimensional Ising
model. It is this model which is exhibited here, without
pretentions of modeling physical reality, both for its own
interest (it is exactly soluble) and for whatever guidance it
may ultimately provide. For completeness, we present two
models, each based on slightly diff'erent physics. In the
first, denoted the "defective-bond model" or DB model, a
fraction x/2 of the original antiferromagnetic bonds +J
are replaced by ferromagnetic bonds —Jg. Both J and g
can be computed using ordinary "supe rexch ange"
theory, which yields J an energy of the order of 0.1 eV,
and g a number typically »2. In the second "localized
hole model, " or LH model, a fraction x/2 of the original
bonds are missing; at each defect site, the spins of two
copper ions are now each connected to a third spin —that
of the hole located on the intervening oxygen ion—instead
of to each other. There are more dynamical variables in
the LH model than in the DB model, and it is a more ac-
curate representation of the physics. Indeed, in the full
Heisenberg model formulation of the problem, these two
models are quite distinct. But in the Ising formulation,
they turn out to be virtually identical.

The variables in the DB model are S;, the copper ion's

x 2&n;, )Tg, (2)

where x is the specified number of holes per Cu02 cell
(per copper site). The hole concentration can vary in the
range 0 ~ x ~ 2, with superconductivity known to replace
antiferromagnetism for x exceeding some2 x =0.05-0.1

in La2-„Sr,Cu04 (superconducting to as high as =40
K) or starting at x ~ 0.3 (the precise value depending on
somewhat ambiguous valency assignments) in YBa2Cu3-
06+„(superconducting to as high as =90 K, depending
on x). In evaluating the partition function Z, it is helpful
to perform traces over all n;J first, obtaining

Z (X —
A, ) Tr exp p, ff S;SJ (3)

i,j)
where the remaining trace is over the copper's spins (each
S; ~1), and tanhp, ff X/Z, i.e.,

p ff(T) =J ff(T)/kT 2 ln[(X+X)/(Z —X)], (4a)

where X and X are

X= [cosh(P)+e"1' cosh(gP)],

X=—[sinh(P) —e" sinh(gP)] . (4b)

We have thus found f, the free energy per Cu02 cell,

f= —kTlnZ —kTln(Z —X )+ft(J,ff) .

Here, ft(J,ff) is the free energy per cell of a reference Is-
ing model, at temperature T, in the absence of an external

spins, n;J 0 (no hole on the bond +J connecting
nearest-neighbor spins S; and SJ) and n;, 1(J —gJ in
the presence of the hole). With g and the hole concentra-
tion x as the only parameters, we shall define a function
J,ff(T) and p,ff—=J,ff/kT, with which to map the physical
system onto a reference Ising model (antiferromagnetic if
p ff is positive, ferromagnetic if negative). All thermo-
dynamic properties of the physical system at a given
P—=J/kT, g and x, can be obtained from the reference
model at p, ff.

The DB Hamiltonian for N Cu02 cells (1 site, 2 bonds
per cell) is

H J [(1—
n;J ) gnti]S—;St —p g n;J, (1)

(i~)
'

with (i,j) signifying nearest-neighbor pairs, and p adjust-
ed to yield
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wt (p,ff) coth(2p, ff) [1+(2/n) k2K(k ~ )l, (7b)

where k~ 2sinh(2p, ff)/cosh (2p,ff), k2 [2tanh (2p, ff)—1], and K(k) is the complete elliptic integral K(k)
fg de(1 —k sin 8)
We eliminate p in Eq. (6) by the use of (4):

e" " sinh(P —P&ff)/sinh(Pg+Peff), (8)

with P&0 and e"tk"&0 translating into requirements
p& p, ff (if p,ff&0) and p& ~ p,ff~/g(if p,ff&0). Then,

x [1+wt(peff)/2)F++ [1 —wt(/3, ff)/2]F, (9)

where

F~ [1+e—t' '+s sinh(pg+ peff)/sinh(p —p,ff)]

This formula contains the complete solution of the stated
problem, and is our principal result. It can be used in
several ways. If we fix p (or T) it determines p, ff for given

g,x and allows the evaluation of the free energy [Eq. (5)],
of p [Eq. (8)], and of all related thermodynamic functions
such as ground-state entropy.

To locate the critical points PN 1/kT~, and Pp
I/kTr (if any), we set p,ff +p, in (10), the critical

point in the reference Ising antiferromagnet. We know

tanhP, J2 —1, i.e., P, 0.44069. . . , wt(P, ) J2, and

[ awt/ap. ff ],-
The following flows immediately from Eq. (9): Starting

from TN T, at x 0, Ttv decreases with increasing x, ul-
timately vanishing at—and beyond —a concentration
xo 1 —1/J2 (independent of g). The behavior is rela-
tively insensitive to g for g»1. In this physically impor-
tant and illustrative limit, Eq. (9) reduces to the simple
formula

x-x, (1 —e '"" ")
i.e.,

Tiv/T, [1 —(1/2P, )ln(1 —x/xo) ]

with xo 0.292 89 and 1/2P, 1.1346.
The critical point in the reference ferromagnetic (F)

model lies at p, ff
—p, [in Eq. (10)],with wt(p, ) —J2

[in Eq. (9)]. After these slight modifications, Eq. (9)
yields a maximum TF gT, at x 2, decreasing to TF 0
as x is decreased to xo 1+1/J2-1.7071 (once again,
independent of g).

The critical point xo could have been guessed from
mean-field arguments, upon noting that each hole affects

field, on an homogeneous square lattice having all bonds
J,ff(T). Equation (2) is equivalent to

x - —8f/8p

kT [8[in(X —k )]/8p+ w (p,ff)8(p,ff)/8p], (6)

where wz(p, ff) is related to the internal energy per site of
the reference model ut(p, ff),

wt(8.ff) - - (J.ff) 'ut(P. ff) .

Now making use of Onsager's formula for ut we obtain

7 bonds in its immediate neighborhood. Thus, when
x & —', 0.2857, we expect antiferromagnetism (AF) to
be squelched, which is within 3% of the exact Ising result.
Studies' ' of YBa2Cu306+Y have found the tetragonal
phase and antiferromagnetism' to persist only for
y ~ 0.31. This supplies experimental confirmation of our
results, if oxygen ions have valency —2 and are supplied
solely to the basal plane, and if antiferromagnetism al-
ways persists in the tetragonal phase. As the resulting
holes are presumably shared by the two Cu02 planes of
the triplet "sandwich" structure, this scenario implies
x y; hence, xo 0 31.

For concentrations intermediate between xo(AF)
0.29289 andxo(F) 1.7071, ~p, ff~ remains &p, at all

T and there is no phase transition. There, the DB model
maps only onto the high-temperature, paramagnetic
(disordered) phase of the reference Ising model and never
acquires long-range order.

The optimum antiferromagnetic short-range correlation
function G(R) here is always that of nearest-neighbor
spins S~,S2. It is G(R~2) (S~S2)0 —1 at T 0 and
x 0. Increasing x to xo(AF) causes the correlation to
become less antiferromagnetic and G(R~2) to rise to
—I/K2 —0.7071. Increasing x further causes the
ground-state correlation G(R&2) to vanish at precisely
x 1, independent of g. For x&1, the correlations are
ferromagnetic, G(R~2)~0. The point x 1 (half the
bonds are occupied by holes) is thus the limiting point for
antiferromagnetic behavior. At x 1 there is total ab-
sence of correlations among individual copper ions' spins
even at T 0, and the ground-state entropy per cell is
Po kln2. For x exceeding 1, correlations are ferromag-
netic, with long-range ferromagnetic order setting in

beyond 1.7071. As the ferromagnetic regime lies outside
the physically interesting range of 0 ~ x ~ 1, it is perhaps
only of academic concern.

We now turn to the slightly more involved but physical-
ly more relevant LH model. A hole represents the ab-
sence of one electron on a specified oxygen ligand ion, the
spin-doublet ion 0 . The antiferromagnetic bond J as-
sociated with 0 is replaced by two antiferromagnetic
bonds gJ, connecting the hole's spin o~2 with those on
each copper ion. Thus, in the presence of the hole,
H~2 JS~S2 is rep/aced by H~2 gJo~2(S~+S2). (In the
Ising scenario adopted here, all operators o,S are restrict-
ed to the values +' 1.) As previously noted, J is an energy
of the order of 0. 1 eV and g a number typically »2. We
again define a function J,ff(T) and p,ff=J,ff/kT, with
which to map the physical system onto a reference Ising
model. The bond variables are now n;1-0 and 1, and

a;J +'1 (the spin orientation of the hole if and only if
n;~ 1). The total Hamiltonian for N Cu02 cells (1 site, 2
bonds per cell) is

H Jg [S;Sj(1—n;J)+gn;~o;J(S;+SJ)] —p g n;1,

(12)
with p satisfying Eq. (2).

In evaluating the partition function Z, one traces over
all n;~, cr;I first, obtaining Z in exactly the form of Eq. (3).
Once again tanhp, ff A,/Z as in Eq. (4a). Although f re-
tains the precise form of Eq. (5), the functions A, and X are
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no longer given by (4b), but by

X= (coshp+2e"l cosh gp),
A, —= (sinhp —2e"i" sinh gp) . (i3)

Combining Eqs. (4a), (6), and (13) eliminates p and
results in Eq. (9) once again. Replacing F+ of Eq. (10)
we now have

Fy [1+e~L(P,P,tt)]

F [1+e ~L (P,P ter)/cosh(2Pg) ]

where

(i4)

go(x) St(P,tt) —2[1 —wt(P, g)]P,tl, (16)

L (P,P,tt) =—[sinhP, ticosh Pg

+coshP, s sinh Pg]/sinh(P —P,tr) . (15)

On the antiferromagnetic side, at small x the behavior of
the LH model is virtually identical to the DB model. It
becomes independent of g for g»1, and Eq. (11), con-
necting Ttv with x, applies without modification. On the
ferromagnetic side, for g»1, long-range order appears
for x & 1+1/K2 1.7071 as before, with TF increasing
from TF 0 at this point to a maximum
TF T, x0.5766g, at x 2.

With the exception of such details in the ferromagnetic
regime, the statistical mechanics and the phase diagrams
of both models are virtually identical. They predict four
phases: (I) an antiferromagnetic phase at hole concentra-
tions 0&x &xo(AF), (II) a paramagnetic phase (an-
nealed spin glass?) with short-ranged antiferromagnetic
correlations persisting for xo(AF) & x & 1, (III) a similar
paramagnetic phase with ferromagnetic short-ranged
correlations at x & 1, and (IV) actual ferromagnetism at
x & xo(F). Comparison with Ref. 4 suggests that phase
II is the prime candidate for superconductivity.

The ground-state entropy per unit cell, ho=——8f/
8T ) o, can be obtained from Eq. (5) and is found to be

in units k 1, with p, tt being the value of p, ttat T 0. As
x increases, so does 4'o(x), quickly reaching a plateau
4'o(xo) 0.0697 in the vicinity of xo, increasing thereafter
to a maximum 4'o(1) In2 0.6931 at x= 1.

The decrease in antiferromagnetism with increasing
hole concentration appears in accord with experiment.
However, we have ignored a number of physically impor-
tant phenomena. A list of them includes: (1) coupling
between adjacent Cu02 planes, (2) quantum fluctuations
of spins, and (3) hopping of holes. Once the last is per-
mitted, it is the Pauli principle and not the Boltzmann fac-
tor which plays a major role in determining the distribu-
tion of the bonds. In ignoring hopping, the present work
turns the issue of superconductivity into a moot point, of
course. Nevertheless, we find two important results: a
lack of long-range antiferromagnetic correlations in phase
II, even in an Ising formulation which ordinarily promotes
long-range order, and the persistence of nonzero entropy,
even at T 0 indicative of magnetic frustrations.

It is possible to implement some modest improvements.
Concerning point (1), the Ising formulation can evidently
be extended to three dimensions, although that will not
effect a qualitative change. With the correct use of vector
spins, this point acquires more significance, as the two-
dimensional Heisenberg model has no phase transitions,
whereas its three-dimensional counterpart does. Note
that by manipulation of the Baker-Hausdorff expansion it
is possible to approximately formulate a "decorated"
Heisenberg model (although the calculation of the free
energy here is another matter). Concerning points (2)
and (3): recently, Pan, Lin, and the present author, 9

working in the x~ 0, T 0 limit, have studied the S
Heisenberg antiferromagnet in the presence of 1 and 2
hopping holes, taking due account of the Pauli principle,
and finding spin correlations not unlike the present results
in the x~ 0 limit.
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