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A realistic Anderson lattice Hamiltonian for La2-„Sr„Cu04 is derived from an extensive tight-
binding parametrization of ab initio band structure. A solution of the Hamiltonian by the 1/N
expansion technique gives remarkably good agreement with the data on thermodynamic, trans-
port, and critical properties, e.g., the location of the holes on the oxygen and saturation of T, at
15% doping are reproduced.

One likely origin for the superconductivity in a strongly
correlated electron band is an indirect one via the Hub-
bard U (see below). For a half-filled Hubbard band, such
a system is believed to be a strongly fluctuating quantum
Heisenberg antiferromagnet. The limit of the introduc-
tion of a small number of holes into such a half-filled
band has been largely treated within the resonating-
valence-bond (RVB) approach. Here we concentrate
primarily on the opposite limit of large number of holes; a
limit which we find is better treated within an itinerant
picture (as is consistent with recent measurements of the
Fermi surface'), and by generalization of the Hubbard
model to the Anderson lattice Hamiltonian (ALH). We
present a detailed description of La2 „Sr,Cu04 using the
ALH both in the normal and superconducting states.

(1) We carry out an accurate parametrization of the

band structure of Laz, Sr„Cu04 to generate the ALH.
(2) We solve the ALH, using a 1/N expansion, in the nor-
mal and superconducting states. (3) In mean field (lead-
ing N), we find a Fermi fiuid above T, with a mass
enhancement of rn /m-5 and a superconducting long
range-order (LRO) parameter below T, . (4) We find a
narrow but observable critical region. (5) We find a
correct behavior for the trend of thermodynamic and
transport properties both above and below T„as a func-
tion of the hole concentration xi„with one adjustable pa-
rameter.

To describe the LazCu04 band structure, we need to in-

clude for the itinerant states the p orbitals of the oxygens;
the s, p, and tzs orbitals of the Cu; and the d states of La.
These then hybridize with the local d 2 y2 and d, 2 orbitals
on the Cu. Our ALH is then

P g ~,cg, cq, +E~ QD j Di~ + g (Vg,SDj c1„e '+H c )+—. . g Nd;p Nd;g —AN,
k, a, a i p, o k, a i p, cr 2 i, (p, ~)&(p', e')

where si„are the unhybridized itinerant bands, E~ is the
energy of the d, z z and d, 2 orbitals on the Cu sites
(denoted by p 0, 1, respectively), and V1„~are the hybri-
dizing matrix elements between them. cit, and D;j are
the creation operators in the itinerant and localized mani-
folds a and P, respectively, and o is the spin index. We
prefer to invert the band structure and work with holes
filled up to a chemical potential p. The fourth term in Eq.
(1) is the Hubbard repulsion U with Nq; ~ D;~p D;~ . An
identification may be made between the local-density-
approximation (LDA) band structure and the Hartree
solution to (1). A tight-binding parametrization of the
band structure then generates the values of ~ and Vq,s.
E& determined in this way, however, incorporates an un-
known Hartree shift, so we take it as an adjustable param-
eter.

In order to handle the large U, we write D;p in a

"boson-spinon" representation6 (convenient when U is
large)

D~p~ b; dpi+a;8ppdj ~sgncr, (2)

gd;tpQ;p +b;tb;+a;ta; Q; 1,
p, e

(3)

A

which, since [Q;,P] 0, conserves probabilities over the
boson and fermion subspaces on site i Equation (. 1) can
now be written in the bosonized form

where b;t is a Bose field representing d' Cu and d;j is a
fermion field representing d . Because the d, 2 states are
almost completely filled, it is sufficient to include only the
component of d with two d, z ~ holes, represented by
the Bose field a;. The three fields on site i are connected
by the constraint
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P g sf4~g, wg, ~+E2+a2 a;+EI +1j dp
k, a, cr i i,p, cr

+ g [Vl„p(b;dj +atbppdp — sgn~)cl„e' '+H. c.] —pN+gA, ;(Q; —1),
k, a,i,P, cr i

(4)

where

N-g '2a a;+gd, jQ;p. '+ g cft.~„... (5)

and E2 2EI+U. The last term in Eq. (4) adequately
imposes the constraint of Eq. (3) at all temperatures of in-
terest via the Lagrange multiplier A,;.

Before we turn to an approximate solution of Eq. (4),
we must establish a superconducting long-range-order pa-
rameter. This is not entirely trivial. Equation (4) is in-
variant under local gauge symmetry

A A

e' 'A;e ' ' A;e' (6)

(7b)

g&c&.~&..&+Ng(dip~„. & -1+x„.
Ãs ~,. P

(7c)

A

where A; a;, b;, or d;p, hence b; or a; cannot have LRO
individually Co.nvenient choices of s-wave order parame-
ter equivalently involve either the conventional form
(ck 1 ck 1 ) or the gauge-invariant combination &b; a; &.

Normal state To so.lve Eq. (4) we extend the spin de-
generacy o from 2~ to large N. Such a procedure per-
mits a systematic expansion in powers of 1/N (the ex-
pectation is that the qualitative features of the results will
remain unchanged when N 2). We expand the normal
self-energy to leading order in 1/N [Fig. 1(a)] equivalent
to a mean-field approximation to b; and A,;, i.e., b; (b&
and A, ; )I,. The violation of gauge symmetry involved
here is only apparent (see, e.g., Ref. 4). In the normal
state (b) and lI, are calculated by minimizing the free ener-
gy with respect to (b) and X to get

N g V~.(dip~&..)-—~(b), (7a)
k,P,a

ng(dflp+pp ) ( —N —&b) '),
P

and conservation of hole number gives the relation

16
La 'r .'aQ

I

In (7c), xs is the number of holes due to Sr doping, pro-
portional to Sr concentration x up to x=0.15. The k
sums in (7) are over the full three-dimensional (3D) Bril-
louin zone.

The expectation values in Eq. (7) are related to various
single-particle Green's functions. All three are calculated
numerically from Eq. (4) by solving the mean-field band
structure and employing the tetrahedron algorithm. The
self-consistent relations (7) are then solved numerically.

The resulting density of states (DOS) for La2Cu04 in

Fig. 2 shows an uppermost partly filled band —1 eV wide,
consisting mostly of d„2 y2 with a filled d, 2 band just
below it, below which lies the upper edge of the itinerant
band at 6.3 eV. Sr doping is dealt with just by adding the
appropriate number of holes. Adding holes is seen to
lower the d bands, resulting in a discontinuity at x-0.12
where the Fermi level goes into the itinerant bands. In
Fig. 3 we see that added holes indeed go onto the oxygens
as experimental data' confirms. The density of states at
cF is seen to agree with the trend and absolute value deter-
mined from susceptibility" and specific-heat' measure-
ments. The Hall resistivity in Fig. 3 is in fair agreement
with a single point'3 determined on a film; its trend also
agrees with ceramic data. ' The picture that emerges of
the normal phase then is of a strongly correlated Fermi
liquid whose mass enhancement is m /m -5.

Superconducting state We hav.e examined the super-
conducting phase by studying the generalized (normal
and anomalous) self-energy using the well-known
Nambu-Gorkov formalistn. We have included the
leading-order self-energies of each type; the graphs for the
anomalous self-energy are shown in Figs. 1(b) and l(c).
They are of order 1/N. The details of assigning the order
to various graphs and some of the algebra involved in ob-
taining the equations for the superconducting phase is dis-
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FIG. 1. Diagrams for the self-energy. (a) Leading-N [order
(1)l contribution to the normal self-energy. (b), (c) Leading (or-
der 1/N) contributions to the anomalous self-energy. Wavy line
is b boson, zig-zag line is a boson.

FIG. 2. DOS for La2Cu04 (solid curve) and Lal 9Sro ICu04
(dashed curve) calculated in mean-field approximation with

EI 9.42 eV. Uertical lines indicate position of Fermi level.
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cussed at length in Ref. 15.
Notice, the gap equation derived here has no adjustable

parameter such as p of the Eliashberg theory for conven-
tional superconductors. Here the corresponding pseudo-
potential term is explicitly evaluated. '

The solution below T, is numerically difficult, but is
simplied when we recognize that near the Fermi level, the
normal-state band structure is nearly approximated by a
single band cl, hybridizing with an effective single d orbit-
al via matrix elements Vp-V. The gap equation may
then be obtained analytically as

where

2NV

E2

2, ,gk'k'

t', ' to„+E$ + b gk I,
(8a)

cot8~ - (cd —~)/2&b) V,

Eg cd+(b) Vtang, (8b)

1 0.2u~ l-
Nppsin 8g~ N

gg I, sin8g cosHI, ,
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FIG. 3. Comparison between theory and experiment as a
function of doping x. Top panel: DOS at cF (solid curve), ex-
perimental points are from susceptibility (open squares) and
specific-heat jump (filled square); dashed curve, holes on planar
oxygen p„,p„orbitals. Lower panel: solid curve and box, T, at
U 6.5 eU with u 0.439; filled squares are data. Dotted curve,
RH, open square, data point.

T—T, , T, cj+((b)V)'(Cey
C 88F

(9)

where cF c(kF ), y
' (3/2) 't m, /m, and e 4 —d.

C(e) is a universal constant which to order e (with
e 1)-400. Inside this region, the specific-heat exponenta-, '0 e,'0. Inserting values for the constants in (9),
we obtain a value of about 1 K for the width of the critical
region. This is in agreement with recent data. ' '

We conclude with the following remarks concerning the
principal features of our results. (1) By considering a
realistic ALH for these high-T, materials and solving it
with the (1/N) expansion techniques using slave bosons,
one can explain a number of normal-state properties like
susceptibility, Hall coefficient, and the location of the add-
ed holes in the system. (2) The magnitude of T„its varia-
tion, and eventual saturation with doping can also be ex-
plained with our model. (3) Quantum fluctuations in the
phase of the boson fleld b do not change the conclusions
qualitatively, despite destroying the LRO of (b), because
in the normal phase one may show via a gauge transfor-
mation that only ((b ~) is essential to form the Fermi-
liquid state. (4) It is nevertheless desirable to investigate
higher order in 1/N corrections, e.g., to the I/y ratio and
to T,. (5) In the limit of xt, 0, the ALH can naturally
produce the observed antiferromagnetic structure. ' Here
then spin fluctuations must predominate. ' Therefore, as
xp, gets smaller, we expect stronger suppression of T, than
that illustrated in Fig. 3. The overall picture, however, is
that we have achieved a substantial degree of agreement
with the data using one or, at most, two adjustable param-
eters.

and where E2 E2+), and cq E~+A, . The sum over n'is
the typical Matsubara sum for fermions.

Equation (8) is solved for T, and the results are com-
pared with data' in Fig. 3, taking U 5.9 eV, which is in
the usually quoted range. Incidentally, without the tt, T,
will be much too high and since the value of u here is ex-
plicitly determined by considering the appropriate graphs;
one may further conclude that the theory presented here
delineates the delicate balance between competing mecha-
nisms in the superconducting phase of these high-T, ma-
terials.

Next, to explore the width of the critical region around
T„ it is crucial to account for the three-dimensional na-
ture of the electronic dispersion. We model it by

cl„+itzk,2/2m, where l k, l is terminated at the zone
boundary 6,/2. Since the parallel mass m= (I/2x)—fdl/

~
Vc(k) ( is much smaller than rn, [rn, /m-80 (Ref. 16)]

the three-dimensional Fermi surface is almost cylindrical.
With these simpliflcations we make a Landau-Ginsburg
expansion of Eq. (4) in powers of the superconducting or-
der parameters. We flnd the critical region to be given by
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