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Field-induced transitions in Y2Cu205
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Magnetic susceptibility and isothermal magnetization measurements on single crystals of
Y2Cu205 show evidence for two field-induced phase transitions that develop out of an antiferro-

magnetic ground state.

The antiferromagnetic insulator La2Cu04 has received
considerable attention since the discovery' that doping
this material with a divalent atom such as Sr or Ba results

in superconductivity near 40 K. Because of the possible
connection between superconductivity in the doped ma-

terial and magnetic order in the host, the nature of mag-
netic correlations in La2Cu04 has been studied in some
detail. 2 " Initial neutron scattering experiments2 on

sintered powder samples of La2Cu04 showed that antifer-
romagnetic order at T~-250 K (the precise value of TN

depending on oxygen stoichiometry) resulted from anti-
ferromagnetic coupling of the Cu 3d9 spins in the ortho-
rhombic Cu02 basal plane. However, magnetic suscepti-
bility measurements for T~ TN indicated a positive

paramagnetic Curie temperature 8, suggesting the pres-

ence of ferromagnetic interactions. More recent
magnetic-susceptibility and magnetoresistance measure-

ments ' on single crystals of La2Cu04 revealed a
metamagnetic transition at T~ TN for fields applied per-
pendicular to the Cu02 basal plane. The origin of this
field-induced transition has been demonstrated" by neu-

tron scattering to arise from canting of the Cu spins out of
the basal plane, a condition produced by the rotationally
distorted octahedral coordination of oxygen atoms around

the Cu.
Given the interest in LazCu04, it is worthwhile to study

other examples of Cu-0 systems that might show similar
magnetic behavior. Y2Cu205, a common second phase
found when producing the 90-K superconductor YBa2-
CU307 is a potential candidate for undergoing a field-
induced transition. The magnetic properties of powder
samples of this compound have been measured by Troc,
Bukowski, Horyn, and Klamut' who found antiferromag-
netic order at T~ 13 K but also a positive 8 38.5 K.
Further, oxygen coordination about Cu forms an irregular
hexahedron. To investigate the possibility of a field-
induced transition we have determined the anisotropic
susceptibility and isothermal magnetization of single crys-
tals of Y2Cu205.

Small parallelopiped crystals were prepared as a by-
product of flux-grown YBa2Cu&0, crystals. Single-
crystal x-ray diffraction showed an orthorhombic crystal
structure (space group Pna2~) with lattice parameters
a 10.782(2) A, b 3.4870(7) A, and c 12.446(1) A.,
results similar to those reported' for Ho2Cu205 in which
there are two inequivalent Cu sites per cell. Suscepti-
bility/magnetization were performed with a quantum de-
sign superconducting-quantum-interference-device-based
(SQUID-based) system.

Figure 1 shows the magnetic susceptibility X of
Y2Cu205 measured in a 0.5-T field applied parallel (XII)
and perpendicular (X~) to the orthorhombic b axis. Clear
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FIG. 1. Magnetic susceptibility of Y2Cu205 measured in a
0.5-T field applied parallel (l~~) and perpendicular (X~) to the
orthorhomhic b axis. The inset shows 1/Xs vs temperature from
which we obtain an effective moment of 2.16pg per Cu and a
paramagnetic Curie temperature of 37 K.

FIG. 2. Magnetic susceptibility of Y2Cu205 in the vicinity of
its Neel temperature. Left panel is for the field parallel'to the b
axis and the right panel for the field perpendicular to the b axis.
Symbols correspond to different fields: 0.5 T (circles), 3 T
(squares), 5 T (diamonds).
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FIG. 3. Isothermal magnetization vs field for fields parallel to
the b axis. Note the appearance of two field-induced transitions
for T & TN and the shift in origin for T 7 and 15-K data.

evidence for antiferromagnetic order is observed at TN
=13 K. For 150~ T~ 350 K, plots of I/XII and I/&~

versus temperature give 8's of 37 and 3S K, respectively,
and effective moments of 2.16ptt and 1.9Sptt per Cu, re-
spectively. A polycrystalline average of these single-
crystal results are in reasonably good agreement with
those reported by Troc et al. '2 The temperature depen-
dence of XII and X& below Tiv is qualitatively that predict-
ed by mean-field theory which would suggest that the
direction of the sublattice magnetization is parallel to the
b axis. However, Fig. 2 shows that the temperature
dependence of XII is a strong function of the field in which
the measurements are made. For a field of 5 T, XII no
longer looks mean-field-like. At the same time, X&(T) is
virtually unchanged in a 5 T field, except for a modest
depression of Tiv.

Representative isothermal magnetization curves, with
the field parallel to the b axis, are given in Fig. 3. For
T& TN, M vs H is linear and extrapolates through the
origin. However, for T ( TN, there is clear evidence for
two field-induced transitions. At 2 K, a sharp increase in
the magnetic moment by -0.3ptt per Cu appears at a
field of 3 T, followed by another incomplete transition
near 5 T. Little, if any, hysteresis was found in either
transition. With increasing temperature these phase tran-
sitions become less well defined. If the critical field for the
transition is defined by the field at which the slope
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FIG. 4. Field-temperature phase diagram for Y2Cu305. The
boundary separating the paramagnetic phase from other phases
was determined from the maximum in X. Boundaries defining
phases A and 8 were obtained from the field at which dM/dH is
a maximum (Fig. 3). AFM represents antiferromagnetic.

dM/dH is a maximum, we arrive at the field-temperature
phase diagram shown in Fig. 4. Given the uncertainty in
determining the critical field as T~ T~, the precise H-T
dependence of boundaries defining phases A and 8 should
be considered with caution.

From the susceptibility/magnetization data alone, it is
not possible to determine unambiguously the nature of
phases A and 8 in Fig. 4. Because Y2Cu20s is an insula-
tor, superexchange through the oxygen is probably impor-
tant. Clearly, phase A is weakly ferromagnetic. Because
of the anisotropy in X and irregular hexahedral coordina-
tion of oxygen, it is possible that weak ferromagnetism is
produced by single-ion anisotropy or possibly antisym-
metric spin coupling. However, an analysis using the
theory of Dzyaloshinsky' and Moriya's is complicated by
the complex crystal structure of Y2CuzOs. A mean-field

analysis of phase 8, assuming it to be a spin-flopped state,
gives order-of-magnitude agreement with our observa-
tions; although, this is by no means definitive. Certainly,
additional magnetization measurements to fields greater
than 5 T and neutron scattering experiments would be
helpful in understanding the field-induced transitions in

YzCu205.
The work at Los Alamos was performed under the

auspices of the U.S. Department of Energy.
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