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New types of reentrant phase transitions in the singlet-triplet model of antiferromagnets
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New theoretical possibilities of temperature-induced antiferromagnetic ordering in the singlet-
triplet model are considered. Within the framework of mean-field theory the phase diagrams in the
temperature —magnetic-field plane have been determined. They exhibit several possibilities of re-
entrant phase transitions to the paramagnetic and to the antiferromagnetic phases, as well as several
multicritical points. One of the phase diagrams is a simplified version of the case of HoSb.

I. INTRODUCTION

In the present work we study the new theoretical possi-
bilities of so-called heat magnetization in a system of
magnetic moments influenced by a cubic crystal field.
This phenomenon was predicted for the first time by Ki-
tano and Trammell' for the case where the lowest-lying
crystal-field-only state is a singlet while the next one is a
triplet. The physical reason for the occurrence of fer-
romagnetic long-range order with increasing temperature
in such a system is the following. At zero temperature
the unmagnetized singlet lies lower than the triplet if the
exchange interaction is not large enough to overcome the
crystal-field splitting. With increasing temperature the
excited triplet state becomes increasingly populated. If at
some finite temperature magnetic long-range order
occurs then the exchange field becomes larger and the
triplet is split. This in turn gives rise to magnetization in
a self-consistent manner. The appearance of the heat
magnetization can sometimes assume the nature of a
first-order phase transition, which was overlooked in the
original work of Kitano and Trammell. '

In the subsequent sections we investigate the antiferro-
magnetic version of heat magnetization in the singlet-
triplet model, by using the mean-field theory. It will be
shown further that this case includes new, interesting
properties which have no simple relevance to the fer-
romagnetic case considered earlier. '

II. THE MODEL

We consider the two-sublattice Ising antiferromagnet
with magnetic moments influenced by a cubic crystal
field. The model Hamiltonian is the following:

H & being the effective fields along the z axis. The free
energy is then given by

F = —kit T ln Tr exp — + (8 Ho )o, —
k~T

(3)

where ( )0 denotes the expectation value with respect to
the Hamiltonian 8o acting in the product space of the
four-dimensional spaces spanned by the eigenkets of the
corresponding crystal-field operators V' &. The represen-
tation of these states in the manifold of constant angular
momentum J can be found, for example, in Leushin's
tables. The nonzero matrix elements a and P of the J'
operator for all possible singlet-triplet spaces up to J =8
are listed in Table I. After evaluating the free energy, Eq.
(3), we minimize this function with respect to the molecu-
lar fields H and H& which gives

H =H +z)Km2+z2Lm ), (4a)

singlet ground state and the triplet excited states separat-
ed by an energy gap b„J' are the z components of the to-
tal angular momentum of each ion, a and P are the in-

dices labeling the first and second sublattices, respective-

ly, K is the inter- and L the intra-sublattice exchange in-

teraction, and H is the external magnetic field measured
in energy units. We assume that E (0 (antiferromagnet-
ic coupling) and L )0 (otherwise the sublattice structure
would be unstable).

The free energy of the system is calculated by using the
Bogoliubov variational principle. To begin with we

specify the trial Hamiltonian as follows:

Hp ——8 )+8 2
——g ( V' HJ' )+g—( Vt't Hit Jit ), —(2)

H = g V' +g Vt't Hg J' Hg Jp- —
a P a P H~=H+z, Km, +z,Lm, , (4b)

—K g Jgtt Lg Jg' Lg—JpJtr—
a,P a, a'

Here V'
& are the crystal-field operators acting upon the

variables of the first and second sublattices, yielding the

where z„zz are the coordination numbers of the first and
second neighbors, and m &, mz denote the sublattice mag-
netizations. The final form of the free energy per site is
given by
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f = t—ln 2e ' 'cosh ]/2t 1 b+2e 'cosh —1+—h,
2t c

1/2

—t ln 2e cosh +2e cosh —1+—h 2
—1/f —1/2i 1 b

t c

1/2
a

+2cy + x
2c

where

h» ——h +2cy+x,

P(L —K)
x = (m, —m2), y=

2h

L +K 2a (L +E)
L —E'

m (+m2 ka T pH
2P

P'(L +E)
2A

(8)

Here x and y are the antiferromagnetic and ferromagnetic order parameters, respectively. In equilibrium they should
minimize the free energy; i.e.,

Bf Bf
Bx By

It can easily be shown that these equations are equivalent to

(9)

Bf Bf
Bm& Bm2

=0. (10)

hi, /4, . 1 b+e ' sinh —1+ h
&2t c

bh,

2c(1+bh &c
')'

' 1/2

e ' 'sin h

x +2y =2
c

T

+e ' 'cosh —1+—h
t 2t c

e '/ 'cosh

The order parameters x and y obtained from (9) satisfy the following self-consistent equations:
' 1/2

(1 la)

x —2y = —2
a
c

h2
'sjnh +e '

~ sinh —1+—h 22t c 2

1/2

h2
e '~ 'cosh +e' 'cosh —1+—h 22t c

b 2

( 1 +bh 2 —1)1/2

' 1/2 (1 lb)

af =co +cop+2cy + x~, (12)

where co and co& are the eigenenergies of the Hamiltoni-
ans 8, and 8 2, respectively. There are four possibilities
for co:

We notice that the number of the model parameters is
now reduced from five (E, L, b„a, p) to three (a, b, c)
At zero temperature the free energy is given by

while the expressions for co& are obtained from Eq. (13)
upon replacing h&~h2. The quantities co

&
have the

meaning of the molecular-field energy levels per one site
and only the lowest-lying states of the first and second
sublattice contribute to the free energy (12), depending on
the model parameters a, b, c and the magnetic field.

III. CONDITIONS FOR HEAT ORDERING

o 1 1 b
co~= — 1 + h

2 2 1

co~= 1 —h )
1

co =—+—1+—h
1 1 b

2 2 c

co~= 1+6 )

1/2

1/2 (13)

In order to obtain heat ordering the two following con-
ditions should be fulfilled simultaneously. The first one is
that the ground state ( T =0, H =0) should be nonmag-
netic and the second is that at higher temperature antifer-
romagnetic ordering should occur. Let us begin with the
ground-state considerations.

It follows from Eq. (12) that the stability of the free en-
ergy requires that a, c & 0 which in turn implies also b & 0
because of Eq. (8). Existence of the antiferromagnetic
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TABLE I. The nonzero matrix elements of the J' operator in the manifold of the singlet I and trip-
letI" ' states: a=&r'~ J r'&=&r'~ J r'&, P=&r'

~

J
~

r'&= —&r'~ J ~r'&.

r,er,er,

r,eI,er,yr,

I.,e r,g r,+r,e2r,

r,gr, +2r,e2r,

I,2I 2I 2I

Singlet

12

I2
r,
r,
r,
r,
I1
I2
I2
r,
I2
I2
I2
12

r,
r,
r,
r,

Triplet 2

20
3

14

45
4

33
2

13
6

65
3
7
3

3
2

1

2

1

2

5
2

1

2

37
16
3
16
1

2

37
16
3
16
35
16
43
16
29
32
115
32

1

16
57
16
51
32
67
32

solution which we are interested in is guaranteed by
E &0, I. &0 which is equivalent to a &1. Now, we ob-
tain from (11) that the ferromagnetic order parameter y is
equal to zero and the free energy is given by one of the
following expressions:

f ~
=co~+cop+ xo o a 2

2c

f2 =N~+cd +px =co~+cop+ x0 3 a 2 1 0 a 2

2c 2c
(14)

f3 =co~+cop+ x 2

2c

It may be readily shown that other combinations of co

and co& give higher free-energy values. Let us consider
now the conditions for the nonmagnetic (x =0) ground
state. The function f &

attains a minimum for x =0 only
if b & a, and in such a case f, (0)=0. The expression for
f2 may be analyzed only numerically and we obtain that

f2 g0. For x =2cla we have the minimum of f3. This
function is positive if only c & a. In conclusion we obtain
the conditions for zero magnetization at T =0 K given
by the following inequalities:

b c
a '

a
(15)

analogously to those of Kitano and Tramrnell' for the fer-
romagnetic case ( A & 1, 8 & 1).

The condition for occurrence of the antiferromagnetic
ordering at finite temperatures can be obtained from the

expansion of the free energy, Eq. (5), in terms of the anti-
ferromagnetic order parameter x:

f =Fo+F2(r)x + (16)

If F& becomes negative in a certain temperature region a
nonzero value of x minimizes the free energy. It is possi-
ble to calculate F2 explicitly at the temperature where
this function attains its minimal value. Consequently the
condition for the heat ordering is given as follows:

F2(r I„)&0

which yields the inequality

4c 3a +b +4c—4ln + &0.
a —b c

IV. E-A PHASE DIAGRAMS

The results which are qualitatively new in comparison
with the ferromagnetic case are obtained if we plot the
phase diagrams in the temperature —magnetic-field plane.
This requires laborious numerical analysis of the self-
consistent equations for the order parameters Eq. (11)
and for the free energy Eq. (5). A series of the phase dia-
grams is shown in Fig. 1 for increasing value of the pa-

This requirement has again the same form as that ob-
tained by Kitano and Trammell, ' for the ferromagnetic
case, if we identify b/a and c/a with their A and B, re-
spectively.
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FIG. 1. Magnetic phase diagrams for the parameters a =0.5, b =0.4, and different values of c. A is the antiferromagnetic phase,
P the paramagnetic phase. The dashed and solid lines denote discontinuous and continuous transitions, respectively. The crosses on
the upper phase boundary denote the tricritical points while the cross within the A phase marks the critical endpoint.
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rameter c [see Eq. (8)]. The series begins with the case
when there is no ordering in absence of the magnetic
field, i.e., the first condition (15) for the heat ordering is
fulfilled while the second (18) is not. The field-ordered re-
gion is bounded by a line of first- and second-order phase
transitions separated by the two tricritical points. If both

conditions (15) and (18) are satisfied, heat ordering ap-
pears [Fig. 1(b)]. The regions of heat and field ordering
join together in Fig. 1(c) dividing the paramagnetic phase
into two separate domains. The upper phase boundary
includes now three tricritical points. It is interesting to
point out that for T =0 it is possible to distinguish be-
tween the low- and high-field paramagnetic phases. In
the first case the lowest-lying energy levels are co and co&

while for the second case they are co' and co&. This
difference vanishes at higher temperatures where all the
levels contribute to the free energy simultaneously.

The process of heat ordering can be either continuous
Fig. 1(b), or discontinuous Fig. 1(c) as was the case for
the ferromagnetic solution of the model considered here.

Along the isotherms corresponding to the diagram in
Fig. 1(d) we plotted the order parameters as a function of
magnetic field for two different values of temperature
[Figs. 2(a) and 2(b)]. Therefore, we obtained the two- and
three-threshold reentrant transitions to the paramagnetic
phase as well as the reentrance to the antiferromagnetic
phase [Fig. 2(b)].

For c g 0.5 there is no heat ordering, and the low-field
and low-temperature paramagnetic phase vanishes [Fig.
1(e)], but inside the antiferromagnetic phase there ap-
pears a line of discontinuous phase transitions terminat-
ing at the critical endpoint. The order parameters have a
jump along this line as shown in Fig. 2(c). We then con-
clude that the crystal field can produce something very
similar to a spin-Hop transition.

For higher values of the parameter c, Fig. 1(f), the
number of tricritical points at the upper phase boundary
is reduced from three to one.

We should point out that the phase diagrams derived
in this work and even the order of the phase transitions
may change if better statistical-mechanics approxima-
tions going beyond the mean-field approximation are ap-
plied.

It is also of interest to consider the effects of Heisen-
berg antiferromagnetic exchange (this work is in pro-
gress) as far as the phase diagrams and the collective exci-
tations are concerned.

V. CONCLUSIONS
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FIG. 2. Antiferromagnetic order parameter x and the mag-
netization y vs magnetic field for a =0.5 and b =0.4.

Searching for the possibilities of heat ordering in the
singlet-triplet model with antiferromagnetic intersublat-
tice coupling described by the Ising Hamiltonian, we
have found the conditions for this phenomenon to occur.
They are formally analogous to those obtained by Kitano
and Trammell' for the ferromagnetic case. We have
shown that the phase transition from the low-
temperature paramagnetic phase to the high-temperature
antiferrornagnetic phase can be either continuous or
discontinuous, as might be expected from our previous in-
vestigations. Moreover, essentially new reentrant transi-
tions are found. We have obtained reentrance to the
paramagnetic phase when the magnetic field or the tem-
perature increase as well as to the antiferromagnetic
phase when the magnetic field increases [Fig. 1(d)].

The present model of the heat magnetization is a rela-
tively simple one and a direct comparison with experi-
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ment might be no easy matter. However, the diagram in

Fig. 1(f) may be considered as a simplified version of the
case of the rare-earth antimonide HoSb. As has been re-
ported earlier the parameter x which gives the ratio of
the fourth-order to the sixth-order cubic anisotropy is
close to —,

' for this compound. According to Lea et al.
for x ~ —', the lowest-lying states of Ho + are I, and I 4

which suggests the singlet-triplet model to be applicable
here if we neglect the low-lying doublet I 3. As it may be
seen from Table I for J =8 and for the I &, I"4 scheme one
has c/b =P /(4a )=1.3598 which is really the case of
the diagram shown in Fig. 1(f). This diagram reflects one
important feature of HoSb, e.g. , the two successive phase
transitions with increasing magnetic field at a low tem-
perature, which is shown more exactly in Fig. 2(c).

More detailed theories of HoSb (Refs. 6 and 8) take
into account also the doublet I 3 and include isotropic bi-
linear pair interactions as well as the quadrupolar pair
couplings. These models are able to describe most of the

magnetic properties of HoSb, especially the unusual
tricritical-like behavior and a rotation of magnetic mo-
ments in intermediate external fields. '

Finally let us stress that it would also be interesting to
find the experimental evidences for the phase diagrams
shown in Figs. 1(a)—1(e). However, the intrinsic richness
of the model presented as far as the field- and
temperature-induced phase transitions are concerned
makes it worth further theoretical studies.
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