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It is shown that the phase transition occurring in quasi-one-dimensional systems of weakly cou-
pled magnetic chains with solitons in the form of m kinks is closely related to the properties of these
solitons. The critical behavior of the systems considered corresponds to the critical behavior of the
Ising model with the same dimension. The model describing the behavior of solitons below and
above the critical temperature is presented. This model explains the experimental field dependence
of the magnetization direction in the spin-flopping configuration for antiferromagnetic K2FeF&.
Application of the theory proposed here to the antiferromagnetic tetramethylammonium man-

ganese trichloride (TMMC) allows one to explain the experimental field dependence of the Neel
temperature.

I. INTRODUCTION

During the past ten years much interest has been fo-
cused on the various phenomena in solid-state physics
and statistical mechanics connected with the concept of
solitons. ' Two main branches of the theoretical part of
this interest are (a) searching for classical and quantum
models that are governed by nonlinear equations of
motion, and looking for the solutions in the form of soli-
tary waves or solitons, (b) investigations of the role of
soliton excitations for thermodynamical properties of
nonlinear systems. '

Magnetic systems seem to be very interesting objects
both from the point of view of (a) (Ref. 5) as well as (b).
A majority of the works published to date in this area are
connected with the one-dimensional models. However,
real magnetic systems, such as CsNiF3 or tetramethyl
ammonium manganese trichloride (TMMC) compounds,
are in an obvious way quasi-one-dimensional in character
in the sense that they consist of the weakly coupled
chains of spins. Therefore, it is valuable to investigate
the role of soliton excitations in such quasi-one-
dimensional spin models. Particularly, the role of soli-
tons for phase transitions in quasi-one-dimensional sys-
tems seems to be one of the most interesting problems.

In our previous works we showed that solitons, in the
form of so-called m kinks, can play a crucial role for the
soliton-induced phase transition appearing in certain
cases of quasi-one-dimensional magnetic systems, namely,
in the systems with the Ising-like symmetry and in the
systems governed by the sine-Gordon equation. The sit-
uation is similar to that in the weakly coupled chains
with the y potential.

In this paper the complete theory of soliton-induced
phase transition in systems of weakly coupled anisotropic
magnetic chains with m. kinks is presented. All considera-
tions are performed here for systems with the local an-
isotropy taken in a more general form than in Refs. 7 and
8, and consisting of the uniaxial anisotropy of the easy
axis type and the anisotropy corresponding to the sine-
Gordon symmetry. Moreover, using the concept of the

II. SINGLE ANISOTRQPIC MAGNETIC CHAIN
%ITH SOLITONS IN AN EXTERNAL MAGNETIC FIELD

In this section we want to consider the role of solitons
for some properties of the single chain of classical spins,
described by the following Hamiltonian:

I
&= g [—JS; S;+,+ A(S ) —C(S;") —BS,'], (2.1)

where 8 =Hgpz/A, J, A, C&0. H &0 is the external
magnetic field applied along the easy axis and
J»C »B/S is assumed (S=

~
S;

~

). The first term de-
scribes the exchange interaction, the second term corre-
sponds to the easy plane anisotropy, and the third to the
uniaxial anisotropy.

It is well known that if the external field is equal to
zero, the continuous version of the system described by

field-induced anisotropy, the theory is extended to the
quasi-one-dimensional anisotropic antiferromagnets with
external magnetic field. The predictions of our theory for
the critical temperature are compared successfully with
experimental data for antiferromagnetic quasi-one-
dimensional TMMC compounds in the presence of a
magnetic field. Moreover, the model of the soliton-
induced phase transition proposed here very well explains
the experimental data for spin Hop in antiferromagnetic
K2FeF5.

The plan of the work is as follows: In Sec. II we ana-
lyze the problem of the single soliton-bearing ferromag-
netic spin chain with the required form of the local an-
isotropy and the external magnetic field applied along the
easy axis of the anisotropy. The results of Sec. II are ap-
plied in Sec. III where the phase transition in the system
of weakly coupled anisotropic ferromagnetic spin chains
is analyzed and a single model explaining the behavior of
kinks in this system is proposed. In Sec. IV a system of
weakly coupled antiferromagnetic chains with an exter-
nal field is considered. Comparison of theoretical predic-
tions with experimental data is presented. Section V con-
tains the main conclusions.
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(2.1) is completely integrable and the Landau-Lifshitz
equations of motion for spins have solutions in the form
of kinks, spin waves, and breathers. ' The kinks can be
described as follows:

cos8(x, r ) = tanh[+g(x —xo v—t ) /d ],
4(x, t) =Co=const,

(=[1+(A /C) cos 40]'i

v = ASdg 'sin240,

d =(J/2C)' a,

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

where a denotes the lattice constant and the coordinate
system is assumed in such a way that

S(x, t) =S(cos8, sin8 sin@, sin8 cos& ) . (2.2f)

One can see that these m. kinks correspond to the rotation
of the spin vector between two directions which are
equivalent to degenerate ground states of the Hamiltoni-
an (2.1): S"=—S and S"=S. The energy of kinks (2.2) is
equal to

Ek(4)=Ek g, Ek ——2(2CJ)' S (2.3)

and the velocity U of kinks depends on the angle 4. The
n kinks (2.2) play the role of domain walls dividing the
chain into domains (segments) in which the magnetiza-
tion is S = —S or S"=S.

The second type of solutions for H =0 are the low-
amplitude periodic waves (spin waves} corresponding to
small oscillations of the spin vectors around one of the
ground states. The dispersion relation for these spin
waves is

4(x)= n m /2, n —integer,

where

d&
——[(2C+2A cos 4+BS ')/Ja2]'~

dz ——[1+B/2S(C+ A cos 4)]

(2.5b)

(2.5c)

(2.5d)

Here, the static solution is obtained for n odd only. If
8 g& CS, this solution can be treated as a kind of 2~ kink,
being a coupled pair of slightly modified static ~ kinks.
If B/CS tends to zero, such a pair dissociates into a pair
of two noncoupled static m kinks and the energy corre-
sponding to the solution (2.5) tends to two energies of the
static m kinks. Contrary to n. kinks, the 2m kinks do not
divide the chain into domains with opposite directions of
the magnetization because for the 2~ kinks one has
S"=S for

~

x
~

~Do and S"=—S at x =0 (the point
x =0 denotes here the central point of the 2n kink). The
approximate time-dependent solutions in the form of
moving 2m kinks can also be found, but only for
[B [

~&SA. "
Now, consider the thermodynamic properties of the

classical spin chain described by the Hamiltonian (2.1).
The partition function of the system is

I
Z =f exp( —P&) g dS;, P= 1/kq T, (2.6a)

where the coordinate system is assumed in such a way
that

double-sine-Gordon equation which has the special solu-
tion in the form"

8(x}=+2arcsin[[cosh (d, x)—d2sinh (d, x)]
(2.5a)

co(k)=2S[[C+ A +2J sin (ka/2)]

X [C+2J sin (ka/2)]] ' (2.4)

S, =S(cosB; cosy;, cos8, sing, , sin@; ),
dS; =sin@,d8, dy, ,

(2.6b)

(2.6c)

The third type of solutions possible for H =0 corre-
sponds to the so-called breathers; however these will not
be considered in our investigations.

With the external field H different from zero, the solu-
tions of the Landau-Lifshitz equations of motion are
modified substantially. In the static limit these equations
of motion can be reduced to the static version of the

Z=g exp( PE„I), —
n

(2.7)

where E„are defined by means of the transfer integral
equation

and periodic boundary conditions are superimposed. Us-
ing the transfer integral method, one obtains

fdS; exp[ —Ph(S; +S;)]f„(S;)=exp( PE„)P„(S;+,), —

h(S, +„S;)= —JS; S, +, +—,'[A(S ) + A(S,'+, ) —C(S;") —C(S;"+, ) BS;" BS;+,] . — —
(2.8a)

(2.8b)

In the thermodynamic limit (I~ oo ), the partition function is dominated by the lowest eigenvalue Eo =min(E„) and
the free energy of the system per one spin is equal to

F= —lim [(PI) '1 Zn]=E .oj= oo
(2.9)

To find E, Eq. (2.8) is replaced by the differential equation. To this purpose, the continuous version of the Hamiltonian
(2.1) is taken and g„(S;) is developed in a Taylor series around the point S,.+„so that Eq. (2.8a) can be integrated. The
result is as follows:

(L /2P JS + AS sin 8—CS cos icos p BScosdcosq&)g„(8,—p)=E„Q„(B,y), (2.10a)
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and L is the operator analogous to the square angular
momentum operator

1
L = — cos8

82
(2.10c)

cos 8 Bq

Equation (2.10a) has the form of the perturbed
Schrodinger equation for a quantum rotator with the po-
tential

V(8, y)=S (A sin 0—C cos icos y),
and with

(2.11a)

b, V(8,q) = —BScos8 cosy (2.11b)

as a perturbation.
It is fruitful to present here, first, the solution of the

unperturbed problem, i.e., the case with B =0 (H =0)
found in Ref. 12. The potential V(8, p) has two degen-
erate minima at (8=0, y=0}, and at (8=0, y=m). In
the low-temperature region, i.e., for m'=2P CJS »1,
the classical &KB approximation can be used. As a re-
sult, the energies of the two lowest levels are obtained'

where E„ is defined by

E„=E„+b,E, AE= —S J+P '1n(PJS /2n),

(2.10b)

wells in V(8, p) and is calculated with the "improved"
WKB method. ' It is important that for the low-
temperature region (m * »1), the tunneling contribution
tp is very small as compared with terms b E and Ep. Fi-
nally, taking into account (2.9) and (2.10b), the free ener-

gy of the system with 8 =0 is equal to

F(t,B=O}=E,+DE t, —. (2.13}

It is interesting to note here that this result was obtained
without any use of the solutions of the equations of
motion. The same result can also be obtained with the
use of the so-called collective gas phenomenological mod-
el. ' This allows us to interpret the formula (2.13}physi-
cally. In such an approach the free energy is calculated
as a sum of the ground-state energy and free energies cor-
responding to particular types of excitations, with in-

teraction between various types taken into account by
means of the so-called phase shifts. To do this, the free
energy of kinks and spin waves can be calculated directly
using the formula for energies of these excitations, and
the role of the breathers is assumed to be negligible. ' To
show this, the free energy (per one spin} of spin waves

Fsw ——ks T(2n. )
' f dk in[1 —exp[ —Pleo(k)]I, (2.14)

with co(k) defined by (2.4), is calculated within the classi-
cal approximation (Pfico«1) and with use of the as-
sumption J/C » 1. The result is as follows

Ep =Ep —tp and E& ——Ep+ tp

where

(2.12a) Fsw ——( I /P) ln(13JS /2n. )

+CS'[1+(1+1,}'"](m') (2.15)

ED ——CS [ —1+(m')

X [(I+A,)'"+I]j, A, = A /C

t0 ——8CS [1+(1+1,)'~ ]

Xexp[ —2(m*)'~ ]exp( —a)I0(a) .

(2.12b)

(2.12c)

Here, a=(m')'~ A, /2, ID(a)—the modified Bessel func-
tion. In (2.10a)—(2.10c), the lowest eigenvalue for a prob-
lem with a single potential well centered in one of the
minima of V(8,q) is approximated by the lowest energy
of the two-dimensional anisotropic harmonic oscillator.
The quantity t0, given by (2.12c), denotes the tunneling
splitting which is the consequence of the existence of two

On the other hand, the free energy (per one spin) of kinks
can be calculated as a free energy of noninteracting quasi-
particles with a chemical potential p=0 and energy
E&+XI„where EI, is the energy of a kink (2.3) and X„
describes a change in kink energy connected with kink
spin waves interaction described in the frame of the phase
shift formalism. ' As a consequence of the change in the
spin-wave density caused by a kink, the free energy of
spin waves changes by the amount EFsw. It is usually
assumed that EFsw ——XI, . Thus, E&+XI, represents the
thermally renormalized energy of a kink. In view of a
low density of kinks (in the low-temperature region), the
influence of kink-kink interaction can be neglected. '

Then, the grand partition function of kinks is as follows:

QO

Z~(TL I )= X exp(PV&~)(&. ') ' f d~~ f dp~'xpI WE~(p~)+~. ]I-
N =0 0 —277

k

(2.16)

where L is the length of the chain, xj, a position of the
kink, pl, ——2(m/2 —401, ) the impulse of the kink, 401, the
spherical angle between the plane of rotation of spins in
the kink, and the hard axis [see Eq. (2.2)]. After integra-
tion, a thermodynamic potential

and the average kink density

n„= —(an„/a&) „,
(with p=O) are calculated. The resulting free energy of
the kinks is as follows

Ql, ———( I /pL ) lnZI, , Fg = —
n}t( k~ T= —tp (2.17)
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E,=AE+E, (t', +p'S—'8')'"

p =1—[4(m')' ] '[1+I/(1+k)' ]

(2.19a}

(2.19b)

where a power series in (m*) 'i was applied. Taking
into account formula (2.9), the free energy (per one spin)
of the system is equal to

F(TB)=EE+Ea (t +p S 8—)' (2.20)

In order to interpret this result, one can expand the free
energy (2.20) with respect to t0/SBp, assuming p = 1 and

t0/SB «1. (Note that the conditions SB/ta»1 and
8/CS «1—necessary for the earlier used perturbation
method —can be fulfilled together because, in view of the
low-temperature region m*»1, one has CS /t0»1. )

In this case a term proportional to t0 appears in the free-
energy expression. In view of the fact that

ta -exp[ —2( m '
) 'i']

is proportional to exp( —pEka), where E„a is the static
kink energy (2.3), the considered term in the free-energy
expansion is proportional to exp( 2pEk0), showing—that
the excitations with energy 2E&0 exist in the system.
When 8/CS « 1, these excitations correspond to the 2m.

kinks discussed previously. Moreover, there is no term
linear in t0, i.e., there is no contribution to the free ener-

gy coming from the m kinks.
Now, the average magnetization (per spin)

(S")= dF /r)B can be calculate—d, and the result is

If one adds the ground-state energy E = —S (J +C) of
the Hamiltonian (2.1) with 8 =0, the spin-wave free ener-

gy Fsw (2.15), and the kink free energy Fk (2.17), one ob-
tains that the energy of the system (8 =0), calculated by
means of the collective gas phenomenological model, is
exactly equal to the free energy calculated by means of
the transfer integral method

F ( T,8 =0)=Eg+ Fsw +Fk EQ——+ b E —t0 . (2.18)

Now, the full problem with the perturbation b, V

(2.11b) different from zero, i.e., 8&0, can be discussed.
In view of the low-temperature assumption m*))1, the
difference of energies between the lowest levels ED and E&

split by tunneling is very small as compared with those
for the next levels. Moreover, the matrix element of the
perturbation hV, taken for the states corresponding to
the levels Eo and E&, is very large as compared with all

other nonvanishing matrix elements. Therefore, to calcu-
late the perturbed lowest level energy E0, one can take
into account only the lowest two levels (2.12a) of the un-

perturbed system. Assuming that the eigenfunctions cor-
responding to these two levels form a complete orthonor-
mal set (we call this assumption the two-level approxima-
tion), the lowest energy of the perturbed system can be
found and the result is as follows

Moreover, the initial susceptibility

X„„=(B(S") /BB )s 0

1S

X„„=(Sp)/t0 . (2.22)

( S"(0)S"(x)}=pS exp( —2Pta
~

x
i

/a ), (2.24)

which means that the correlation range for the easy axis
spin components is

g„=a/2tap . (2.25)

In view of (2.17), the formula (2.22} shows that, because
Fk&0 for T &0 K, thus I„„&~ for all T &OK. This
means that the existence of m. kinks in our system for
H =0 is the reason for the lack of nonzero spontaneous
magnetization at T)0 K. This last property is, of
course, the well-known property of one-dimensional sys-
tems with short-range interaction. However, what is im-
portant for us is the part the m. kinks play in this crucial
role.

This critical role is connected with the property of m

kinks in that they divide the chain into domains with
S'=S and S = —S. %hen the external field is equal to
zero, the ~ kinks are distributed randomly along the
chain so that the average size of the domains with
S"=+Sis the same as of those with S = —S, thus the
spatial average of the magnetization, (S")=0.

III. SOLITON-INDUCED PHASE TRANSITION
IN QUASI-ONE-DIMENSIONAL FERROMAGNET

Up to this point we have considered only a single chain
of spins. %e will now show that in three-dimensional
systems of weakly coupled chains of spins (with the same
type of local anisotropy as in Sec. II), where the long-
range ordering exists in low temperatures as a result of a
coupling between chains, the static m. kinks extending
along the chains are responsible for the disappearance of
the long-range ordering above a critical temperature, but
below that temperature the ~ kinks are coupled into pairs
which are, in fact, deformed 2~ kinks.

For this purpose we consider a D-dimensional system
(D =2 or 3) of weakly coupled parallel chains of classical
spins with interactions between the spins belonging to
different chains taken into account. The system is de-
scribed by the following Hamiltonian:

The same formula for the susceptibility could be obtained
from the fluctuation-dissipation theorem

X„„=Pf (S (0)S"(x))dx,

if the correlation function in (2.23) would be calculated
by means of the transfer integral method. In this case
one obtains

(S")=8(pS} [t +(BpS) ]

and for BpS ((t0
(S")=[8(pS) /t0][1 (BpS/t0) /2] . —

(2.21a)

(2.21b)

& =g %k —
—,
' J, g' g S„i.Sk t

k A, 1&' I

where

~k g [
tt k, l k, liI C(Sk, l ) + 4(Sk, t ) ]

I

(3.1a)

(3.1b)



38 THEORY OF THE SOLITON-INDUCED PHASE TRANSITION. . . 6979

Here, &k represents the Hamiltonian of the kth chain, 1

labels the position of spin inside the chain, and the
second term in % describes the interchain interactions
of the spin which are the nearest neighbors but belong to
the nearest neighboring chains labeled by indices k and
k' (k+k'). For simplicity, we assume that the array of
spins forms the simple cubic lattice (for D =3) or the
quadratic lattice (for D =2}with a lattice constant taken
as the length unit. We assume also that the intrachain
(Jii ) and interchain (JI ) exchange constants as well as the
local anisotropy constants A and C fulfill the relations

Jii ))C ))Ji & 0, A )0 . (3.1c)

Due to the first part of this inequality (Jii »C}, at tem-
peratures so low that PJiiS »1, the continuous approxi-
mation can be used in the description of intrachain in-
teractions. C & 0 denotes that the X axis is an easy axis of
uniaxial anisotropy and A )0 denotes the XY easy plane
anisotropy. Finally, Jii))Ji corresponds to the special

kind of exchange interaction anisotropy which appears in
systems of weakly coupled chains of spins.

To study the thermodynamical properties of the system
considered here, we want to calculate the classical parti-
tion function

L K
Z= f p(-~~)n ndS. ,

1=1 k=1
(3.2}

where L is the number of spins in a chain, K is the num-
ber of chains,

d Sk I sin8——k Id 8k (d

and angles 8k I and leak I define a direction of the spin Sk I.
We use the transfer integral method along the axis of
chains so that in low temperatures the discrete form of
the intrachain interactions can be replaced by a continu-
ous version. We superimpose the periodic boundary con-
ditions and for simplicity introduce the following quanti-
ties:

Pl (Sl, l t 2, I& ' ' '
& K, l ) & (3.3a)

h(@!~@!+I)= JiiiPI'PI—+I (C/2}[—(PI } +(PI+I) ]+(A/2)l(PI} +(PI+I) ) ——,'JI. g'(Sk I Sk I+Sk I+, Sk, l+I)
k, k'

(3.3b)

(3.4)

(3.6)

Now the Hamiltonian can be written as
L= g h(S I VI+I)

1=1

and the partition function as

Z=g exp( PLE„'), — (3.5)

where E„' are defined by means of the transfer integral
equation

jdpl expl Ph(pl WI—+I }]4.(W()

=e"p( —~En )en(pl+ I }

F= —lim ( I /PKL ) lnZ = ( 1/K )E0L=co
(3.7)

where Eo is the lowest value of the set l
E„' ). One can see

that the transfer integral equation has a similar form to
that used in Sec. II for the case of a single chain. Thus,
one can expand III„(pI) into the Taylor series about
III„(@!+I)and integrate the transfer integral equation.
The result is as follows:

In a thermodynamic limit (L ~ ~ ), the free energy (per
one spin) of the system is equal to

(I/2P Ji~~S )L„+A(PI) C(PI} zJ!.—g'Skl S—k', I @n(PI) En!I'n(PI} ~

k, k'
(3.&)

where PJiiS »1 and Jii/C»1 were applied. Here

L =QLkl
k k

a
cosBk I B8'k I

a
cos4k I

k, 1

Q2

cos Bk, I BV'k, I
2 2 (3.9a)

(P;) =g (Sk!), (IMI ) =g (Sk, l }
k k

(3.9b)

(3.9c)
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The operator in the large parentheses in (3.8) can be
treated as the Hamiltonian of a (D-1)-dimensional system
of weakly coupled quantum rotators in an anisotropy
field. The free energy (per one spin) of the system con-
sidered is therefore equal (up to the additive constant) to
the energy (per rotator) of the ground state gp(p, ) of the
system of rotators. Thus, to investigate the thermo-
dynamic properties of the D dimensional system of weak-
ly coupled chains of spins, it is necessary to analyze the
ground state of the (D-1)-dimensional system of weakly
coupled rotators. To do this analysis we treat the in-
teraction between rotators as a small perturbation. %e
denote

~

1(' „) and
~

g' „) the eigenfunctions corre-
sponding to the, respectively, symmetric and antisym-
metric combinations formed from the mth and nth eigen-
states of the unperturbed rotator. Here,

~ gp p) corre-
sponds to the ground state of the unperturbed rotator.
First and higher-order corrections are coming from the
first (

i Pp p) ) and higher eigenstates of the unperturbed
rotator. These corrections depend on the matrix ele-
ments of the perturbation operator and on the difference

between higher eigenvalues and the eigenvalue corre-
sponding to the ground state of the unperturbed rotator.
Taking into account the form of the perturbation opera-
tor (J~Sk Sk ), one can see that it is necessary to calculate
the matrix elements of the type (gp p ~

S"' '
~

g'„' ). For
temperatures so low that m" =2P J~~CS &&1, the main
contribution comes from

~ gp p). Therefore, to find the
ground state of the Hamiltonian (3.8) for temperatures so
low that m* ~~1, and with the assumption that the in-
teractions between rotators are so weak that Ji ((C, it is
enough to use the two-level approximation in which the
basis consists of only the two lowest eigenfunctions gp p

and Pp p. We call this approximation the pseudospin (or
spinor) approximation. Moreover, in view of the fact
that ( gp p ~

S»'
~ Pp p) =0, the Y and Z spin components

of interactions play only a minor role as compared with
the easy axis X spin component. In our pseudospin ap-
proximation the eigenfunction

i gp p) is replaced by spi-
nor (p), and

~

happ)

by spinor (&). Thus, the part of the
Hamiltonian (3.8) corresponding to noninteracting rota-
tors can be transformed in the following way:

K K

g [(1/2p JlS )(L„) —C(S„")'+&(S„')] g [—(I /2)o'„+(I /2+E' )I„], (3.10a)
k=i

I =2to,
k=1

(3.10b)

where

1 0 1 0
k 0 1 ~ k

—
0

To prove this transformation, it is enough to note that
the matrix elements of the operators on both sides of this
transformation are the same due to the fact that the ei-
genvalue Ep p corresponds to the eigenvector

~ Pp p), and
the eigenvalue Eo 0

——Eo 0+2to corresponds to the eigen-
vector

~ happ). Similarly, the interaction part of the
Hamiltonian (3.8}can be transformed as follows:

——,'J~ g'Sk Sk ~—
—,'J~ g'SkSk ~—,'p J~S o"kt»k. , —

k, k' k, k'

(3.11)

where

0 1

1 0

and

p= 1 —[4(m*)'»'] '[1+1/(1+A, )'~'], A, = 3/C .

(3.12)

To prove (3.11), it was useful to note that the matrix
elements (Pp p ~

S'
~ gp p), (Pp p ~

S"
~ fp p), and

(gp'p
~

S»'~ 1(p'p) vanish.
In this way our problem of the ground state of the sys-

tem of weakly coupled rotators is reduced to the problem
of the ground state of the following Hamiltonian:

K

jef X ok pp S Jl y okok' ~

k=1 k k'
(3.13)

where the unimportant term

(I /2+Epp) ark =Ep Q Ik
k k

is omitted [Ep=Epp+tp —according to (2.12a)]. The
Hamiltonian (3.13} represents the so-called Ising model
with a transverse field, the ground state of which is well
recognized. Note that while the Hamiltonian (3.1) de-
scribed a D dimensional system of spins, the effective
Hamiltonian (3.13) represents a (D-1)-dimensional system
of pseudospin. In the ground state of the last Hamiltoni-
an, in the thermodynamic limit (K~ ~ ), a phase transi-
tion appears. ' For values of the transverse field I small-
er than a critical value I „the long-range ordering ap-
pears (( crk )&0), but for I larger than I, the long-range
ordering vanishes ((o'k ) =0). Using solutions obtained
in Ref. 15, we have



38 THEORY OF THE SOLITON-INDUCED PHASE TRANSITION. . . 6981

I,=g(D)J~ S

( o.
& & = [1—( I /I, ) ]~, for I ~ I', ,

X,,-(r—r, ) ', for r&r, ,

(3.14a)

(3.14b)

(3.14c)

=2tP = —2Fk =2nk k~ T (3.15)

which means that the transverse field I in (3.13) is
defined by the free energy of m kinks or the density nk of
n. kinks [calculated for a single chain described by the
Hamiltonian (3.1b)]. Concluding, we find that for the
system of weakly coupled chains of spins described by the
Hamiltonian (3.1a), there exists a critical temperature T„
and corresponding to this temperature the critical density
of n kinks nf, =nz(T, ), such that at T, the following rela-
tions are fulfilled:

—F~(T, )=nf kaT, = ,'g(D)J~ S— (3.16a)

The critical temperature T, is therefore defined as a tem-
perature at which the value of the free energy of m kinks
(calculated for a single chain of spins) is comparable with
the value of interchain interactions. Below T„ in view of
the relation (3.14b), there exists a long-range magnetic or-
dering described by the nonvanishing spontaneous mag-
netization along the easy axis

(S"&= 1— nq(T)T

Elk Tc
pS, T~T, . (3.16b)

Above T„ the long-range magnetic ordering vanishes,
and in view of the relation (3.14c) the initial susceptibility
can be written as

where 7&& represents the initial easy axis susceptibility;
we also have for D =2: g(2)=2, P'=1/8, and r*=—„
and for D =3: g(3)=6.2, P= —,'„and 7'= —,'.

One can see now that there is a one-to-one correspon-
dence between the Hamiltonians (3.8) and (3.13): The or-
der parameter (o f, & in the system described by (3.13}
corresponds to the order parameter (Sg& in the system
described by (3.8)—because the matrix elements of Of,
taken in the basis of spinors (p } and (

&
) are the same (up

to the multiplicative constant) as the matrix elements of
SP in the basis of eigenvectors

~ happ& and
~ flap& ~ Simi-

larly, the initial susceptibility Xxx for the Hamiltonian
(3.13) corresponds to the initial susceptibility Xxx for the
Hamiltonian (3.8). It is so because the application of the
external magnetic field along the X axis to the system of
coupled rotators corresponds to the application of the
external field along the X axis to the Hamiltonian (3.13).
Moreover, the critical properties of the ground state of
the Hamiltonian (3.13) correspond to those of the system
described by (3.8). Finally, in view of the relation (3.7),
all properties of the ground state of the system described
by the Hamiltonian (3.8) correspond to the properties of
the system of weakly coupled chains of spins described by
the Hamiltonian (3.1). We can now put the relations
(3.10b) and (2.17) together

kT
nq( T)T

T~T, . (3.16c)

If the relations (3.16b) and (3.16c) are expanded in a
power series of

~

T T,—~, then one finds that the critical
behavior of the weakly coupled chains of spins is identi-
cal to that of the D-dimensional Ising model, i.e.,
(S"&-(T,—T)~, X'x~-(T —T, ) ', where the critical
exponents P, r are the critical exponents of the D-
dimensional Ising model. To conclude this, it was useful
to know that the critical exponents of the ground state of
the (D-1)-dimensional Ising model with transverse field
are exactly the same as the critical exponents of the D-
dimensional Ising model without any transverse field,
which was proven in Ref. 16, i.e., P(D}=P'(D —1) and
r(D)=r'(D —1). The results obtained earlier are in

good agreement with the universality hypothesis for criti-
cal phenomena, because due to the existence in our sys-
tem of the easy axis uniaxial anisotropy, the dimension of
the order parameter is the same as for the Ising model.

One can see that below T, the density nk of thermally
activated n. kinks is smaller than nk, but above T, the
density nk is larger than nk. The decrease of nk to the
value nk as T~T, is the reason for the singularity Xzz
at T, . In this way there appears a dominant infiuence of
m. kinks on the critical properties of the quasi-one-
dirnensional system considered here. The situation is, to
some extent, similar to that for the one-dimensional sys-
tems, but contrary to the one-dimensional systems, where
the existence of m. kinks is responsible for the lack of
spontaneous magnetization for T&0 K, in the quasi-
one-dimensional systems the critical temperature is
different from 0 K.

In conclusion, the phase transition occurring in the
quasi-one-dimensional systems of weakly coupled chains
of spins with a proper local anisotropy considered here is
induced by ~ kink solitons. The situation is fully analo-
gous to that appearing in weakly coupled chains with the

q potential.
Now we propose a simple model explaining the behav-

ior of ~ kinks in a system under consideration. ' Above
the critical temperature T„ the quasi-one-dimensional
system behaves as a system of single one-dimensional
chains. m. kinks and spin waves together form a collective
gas of elementary excitations in which the ~ kinks are
distributed randomly along each chain so that the corre-
lation range (2.25) is inversely proportional to the mean
density of m kinks. Therefore, there are domains with
S"=S and domains with S = —S in each chain, and
these domains are bounded by walls (m. kinks) distributed
randomly. The mean sizes of domains with S =S and of
those with S"=—S are the same, thus (S"&=0. Below
T„~kinks along each chain are coupled into pairs which
are deformed 2m. kinks in a very similar way as in a single
chain with the external magnetic field applied along the
easy axis (see Sec. II). In our quasi-one-dimensional sys-
tem, the role of the external field is played by the internal
field coming from the weak interchain interactions.

To illustrate such a model, one can apply the molecu-
lar field approximation to the weak interchain interac-
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tions while the strong intrachain interactions are taken
into account exactly. Thus, the Hamiltonian

L"=g [ J—
~~~Sk, l Sk. l+1+ A (Sk, l }

1=1

hand, the exact expression for Eg, approximated by the
perturbative series with respect to z ' [z, the coordinate
number for a system (3.13) in Ref. 18], can be written as
follows:

C(—Sk, , ) B—Sk, ,],
may be used for the kth chain, where

(3.17a)
for I ~2zS p Jl, (3.21a)

BMF J (S ) (3.17b)

Here z denotes the number of nearest-neighboring spins
belonging to the nearest-neighboring chains [for D =2 or
3, z =2(D —1), because we assutned that our chains form
a quadratic or simple cubic lattice, respectively). Only in-
teractions between S' components are included to 8 "in
view of the easy axis uniaxial anisotropy. Using the re-
sults (2.21a) obtained for (Sk, ) with B "substituted in-

stead of 8, one can calculate

BMF +[( 2S2J )2 t2 ]1/2/S (3.18)

(apart from the trivial solution corresponding to the
molecular field vanishing}. The relation (3.18} allows us
to find the equation defining the critical temperature T, "

t (T ")=zS Jlp (T (3.19)

F=AE+Eo+Eg, (3.20)

where bE is given by (3.9c), Eo by (2.12b), and E corre-
sponds to the ground energy (per one lattice point) of the
Hamiltonian (3.13). The sum bE+Eo represents the free
energy of spin waves in a single chain plus the ground-
state energy of such a chain (per one spin). On the other

The molecular field 8 "can also be used as an applied
field for the equations of motion for the spins in each
chain. For the continuous version of the Harniltonian
(3.17a), the solutions of these equations of motion were
found in the form (2.5). These solutions represent the
static 2m kinks, which for B "«CS (it holds, due to
Jl « C) have a form of the pair of coupled and slightly
deformed, static ~ kinks. For 8 "&&CS, the coupling
energy of m kinks in such a pair is much smaller than the
energy of a single m kink, thus the energy of 2m kink is
equal approximately to two energies of m kinks. We
remember from Sec. II that for the 2m kinks, the mean
sizes of domains with S =S and domains with S = —S
are not equal, thus (S")&0. Such a situation exists
below T, . When T~T, , then (S")~0 and B "~0,
thus the distance between ~ kinks in a pair tends to
infinity, which can be interpreted as a dissociation of a 2n.
kink into a pair of uncoupled m kinks.

Resuming, apart from the critical region, above T, we
have a gas of free m. kinks, but below T, a gas of 2m. kinks.

It is interesting that some indications of the existence
of 2~ kinks below T, can be also obtained in some
rigorous way —from the transfer integral method instead
of the molecular field approximation. Namely, the free
energy (per one spin) of the weakly coupled chains of
spins, according to formulae (3.7), (3.9c), (3.10)—(3.11),
can be written as

IV. SOLITON-INDUCED PHASE TRANSITION
IN WEAKLY COUPLED ANISOTROPIC

ANTIFERROMAGNETIC CHAINS
IN AN EXTERNAL FIELD

Theory presented in Sec. III can be easily applied to
systems of weakly coupled anisotropic antiferromagnetic
chains with the external field applied to the system. One
example of such a system is the quasi-one-dimensional
antiferrornagnetic TMMC compound. The existence of m.

kinks in this compound was confirmed experirnental-
20—22

The quasi-one-dimensional TMMC compound can be
described by the following Hamiltonian:

=g %k ——,
' Jl g' g Sk l Sk'

k k, k' I

(4.1a)

&k ' "=g [2Jt~(Sk l Sk 1+1 5Sk lSk l+1+ESk lS—k, l+1}
I

gPtt~ Sk, l l ~— (4.1b)

E = zp S—Jl /2 to/2—zJlS p +O(to),

for I &2zS p J~ . (3.21b)

Expression (3.21a) shows that for the system of weakly
coupled chains above a critical temperature there exists a
contribution to the free energy, having the same form as
the free energy corresponding to m kinks in a single
chain. On the other hand, (3.2 lb) shows that below this
critical temperature there exists a term proportional to
t11-exp( —2Ek p), where Ek is the free energy of the

0 0

static n kink. The existence of this term suggests that the
excitations with energy 2Ek exist in the system in a situ-

0

ation considered. These excitations correspond just to 2m

kinks, being, in fact, pairs of coupled m. kinks. It is im-
portant here that no term of the series (3.21b) is propor-
tional to to, which shows that there are no free m. kinks
below T, .

The model proposed here was described by us earlier
for the case of sine-Gordon chains and was later used
successfully by Rettori' to explain the recent experimen-
tal results on the quasi-one-dimensional antiferrornagnet
K2FeF5. Namely, the field dependence of the mean angle
between the hyperfine field and the antiferromagnetic axis
in the spin flopping configuration (magnetic field applied
parallel to the initial direction of antiferromagnetism),
measured in the Mossbauer effect, agrees surprisingly
well with theoretical predictions based on our model
despite the particular simplicity of the model which
shows that the solitons responsible for the great variation
of the angle mentioned earlier (when the field approaches
the spin flop field) are very similar to our 21r kinks.
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where X', F', Z' are the axes of the coordinate system,
H is the external magnetic field applied along the
a ax's, a=X' or Y', Jll 6——.7Eks,

~

S
~

= —,, g =2
5=0.01—0.02, e=2.6X10 ', J,=(10 '-10 )Kks (the
exact values of parameters 5 and J~ are not uniquely
known). If no external field is applied, the (X', Y')
plane is the easy plane and the X' axis is the easy axis in
that plane.

It was shown that the static properties of such an an-
tiferromagnetic Harniltonian (4.1b) (for H gps /4J~~S
«1) are the same as static properties of the following
ferromagnetic Hamiltonian:

~k g [
~~

k, 2I k, 2l+2 ( k, 2l )

1

E

f

20 40 60
H (koe)

80 100 120

+a(Sk2~) +b(Sk, i)'1 (4.1c)

with a=45J~~, b =gpsH /8JlS, and c=4eJ1. The lat-
tice constant in the last case is equal to two lattice con-
stants of the previous case, thus the free energy (per one
spin) for the former is two times larger than that for the
latter. It is worth noting that the square field (H ) plays
the role of the uniaxial anisotropy with the hard axis.
Now the calculations of Sec. III can be applied to the
present case, leading to the following result for the free
energy at the critical temperature:

FIG. 1. Field dependence of the critical temperature for the
antiferromagnetic TMMC compound. Continuous curve —the
result of our theory with experimental points taken from Refs.
24-26. Circles and asterisks correspond to the field directed
along the hard axis and the easy axis, respectively.

proximation), the temperature TN, obtained from the
molecular field calculation for the same values of Jj must
be treated as too large.

—Fk(T&)=eg(D)JjS p (Tz)/2, (4.2) V. CONCLUSIONS

where g (3)=6.2, e is a factor of order of unity, depen-
dent on the type of the crystallographic lattice, and
J~=2Jj. Using the relations (2.17) and (2.12c), one ob-
tains the equation which defines a dependence of the crit-
ical temperature for TMMC on the direction and value of
the external field H

[C+(C + AC)'~ ]exp( 2m) '~—) exp( w~)IO(w~)—

=Jj (6.2/8) [1—[1+(1+3 /C) ' ]/4m/ '

(4.3)

where wz ——mz ' A /2C, mz 2CJl S /( ks T——
N ), and A

and C are the H dependent combinations of constants a,
b, and c. For example, if H is directed along the F' axis
and b &a, then A =a —b, and C =b+c, but if b &a, then
A =b —a, and C=a+c. If, however, H is directed
along the X' axis and b & c, then A =a, and C =c —b, but
for a+c)b)c one has A =a+c —b, and C=b —c,
and for b &a+c one has A =b —a —c, and C =a. The
results of numerical computations for 6=0.024 and
eJ~=0.53&(10 Kkz are depicted in Fig. 1, with experi-
mental data ' together. Good agreement of the theory
and experiment is obtained. It is necessary to mention at
this point that similar phase diagrams for TMMC were,
in part, obtained earlier, theoretically, with the use of the
molecular field approximation used to describe the inter-
chain interactions. ' The constant J~

" however,
necessary to obtain good agreement with experiment in
this case, is smaller by a factor of 1.3 than our constant
J~. In view of the more rigorous treatment of the inter-
chain interaction in our approach (the pseudospin ap-

Our analysis of some of the properties of quasi-one-
dimensional systems of weakly coupled magnetic chains
with the solitons in the form of ~ kinks shows that the
phase transition appearing in such systems is related
closely to properties and behavior of solitons. We call
such phase transitions soliton-induced phase transitions.
The critical role of solitons in systems considered here
appears ih the following way: As compared with one-
dimensional systems, where the existence of solitons in
the form of ~ kinks determines the finite value of the
correlation range and makes the magnetic susceptibility
finite for T &0 K, i.e., leads to the lack of phase transi-
tions for T&0 K, in quasi-one-dimensional systems of
weakly coupled chains the existence of m kinks leads to
the appearance of the phase transition at some T, & 0 K
and to the appropriate expressions for magnetic suscepti-
bility at T)T, and for nonvanishing spontaneous mag-
netization below T, . The critical temperature T, is ob-
tained as a temperature at which the free energy of m

kinks (calculated for a single chain) is comparable with
the energy of interchain interactions. The critical behav-
ior of the system considered corresponds to the critical
behavior of the Ising model with the same dimension —in
complete agreement with the universality hypothesis.

The important result of our analysis is connected with
our model of the behavior of m kinks below the critical
temperature. We showed here that below T„ the ~ kinks
are coupled into pairs corresponding to the 2~ kinks
(along each chain). The reason for such a pairing is the
interchain interaction, the effect of which is similar to
that of the external field in the single chain case. As the
critical temperature is approached from below, the dis-
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tances between m kinks of one pair increase, and at T, the
2~ kinks dissociate into free ~ kinks. Above T„only free
~ kinks exist. Such a model explains the experimental
field dependence of the magnetization direction in the
spin Hopping configuration obtained for antiferromagnet-
ic K2FeF5 by means of the Mossbauer technique.

Application of our theory to the antiferromagnetic
TMMC compound allows us to obtain the field depen-
dence of the Neel temperature of this compound, which
is in good agreement with experimental data.

Possibilities of further experimental verification of our

theory may be searched for in various types of experi-
ments, e.g., on specific heat on the one hand, and on criti-
cal exponents on the other hand.
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