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Green s-function theory of ferroelectric phase transitions in hydrogen-bonded triglycine sulfate
with the pseudospin-lattice coupled-mode model: A unified theory of structural phase transitions.

I. Static and dynamic properties
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A pseudospin-lattice coupled-mode (PLCM) model and the statistical Green s-function theory
have been used to explain the static as well as the dynamic properties of ferroelectric phase transi-
tions in triglycine sulfate (TGS) and in its deuterated and undeuterated families. An attempt to set-

tle the long-standing controversy over the coexistence of both order-disorder and displacive phase
transitions in TGS and in many other H-bonded crystals (as observed from the studies of different

static and dynamic properties) has been made by expressing the transition mechanism in these crys-
tals as a "mixed" type rather than a purely order-disorder or a purely displacive type. This mixed

behavior is due to the importance of the pseudospin-phonon and the higher-order anharmonic
phonon-phonon interaction terms. The pseudospins are considered to be associated with the local
ordering (rotation, displacements, etc.) of some ions or groups in the lattice. This makes the mecha-
nism of structural phase transitions, in general, very complicated. As a consequence, the calculated
expression for the total phonon self-energy is found to contain an extra term in addition to that
which appears in the existing theoretical calculations by Cowley and others describing purely
displacive phase transitions with phonon-phonon interaction only. This additional self-energy term
is found, in principle, to be responsible for the observed deviations of some thermal and dielectric
properties of TGS from the Landau theory, the existence of the "double peak" in the NMR or NQR
relaxation times in TGS and in other crystals, and the appearance of both order-disorder and the
displacive type of behavior in many crystals. This additional part of the self-energy is also found to
be related to the "central peak" phenomenon. Depending on the strengths of the pseudospin-

phonon interaction terms, this part of the self-energy might also be responsible for the crossover
from order-disorder to displacive behavior observed in some structural transitions. This is also sup-

ported by recent EPR and other experimental observations made by Muller. The theoretical ex-

pressions derived for the transition temperature ( T, ), dielectric constant (e ), spontaneous polariza-
tion (P, ), Curie-Weiss constant (C), renormalized phonon frequency, etc., have been fitted with the
corresponding experimental data to find a single set of Blinc —de Gennes model parameters for the
TGS family. Finally, the unified character of the PLCM model in explaining various salient
features of structural phase transitions in crystals has been discussed, and supports the conclusion of
our previous work.

I. INTRODUCTION

After the discovery of the ferroelectric phase transi-
tion in hydrogen-bonded triglycine sulfate,
(CHzNH2COO)3H2SO4 by Matthias, Miller, and Remei-
ka, ' a great deal of experimental work has been done
with the aim of observing the critical phenomena very
close to the transition temperature. But many peculiari-
ties in the static as well as in the dynamic properties ex-
hibited by this salt have not been clearly explained.

This salt (TGS) undergoes a second-order order-
disorder phase transition at T, =49 C. Above this Curie
point, TGS has monoclinic symmetry ' belonging to the
centrosymmetric crystal class 2/m, and after transition
the mirror plane disappears and the crystal belongs to the
isostructural phase transition as observed in the
hydrogen-bonded SnC12.2H20 crystal. The TGS crystal
and all its isomorphs are very similar in their essential
character to the KHzPO4 (KDP) type of crystals. How-

ever, unlike KDP, the dielectric properties, transition
temperature (T, ), and Curie-Weiss constant (C) of TGS
are not greatly affected by deuteration, indicating that
the tunneling effect might not be very large in TGS.
However, there is no clear evidence that tunneling is ab-
sent in TGS. This is yet to be clarified. Another interest-
ing point is that unlike KDP, no soft mode has been ob-
served in TGS from Raman and infrared studies. How-
ever, recent observation of the "central peak" from Bril-
louin scattering draws particular attention for under-
standing the mechanism of phase transition in these crys-
tals. Theoretical investigation elucidating the origin of
this "central peak" would be interesting.

Although TGS has a very complicated molecular and
crystallographic structure (the H-bonded arrangements
are shown in Figs. l and 2), the transition mechanism in
this crystal was previously explained qualitatively with an
Ising-type theoretical model. For qualitative under-
standing of the state dielectric properties, one can also
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FIG. 1. (a) Crystal structure of TGS viewed along the c axis
showing the three glycine groups I, II, and III. The sulfate ions
are represented by tetrahedra and the oxygens have been omit-

ted; m and m' are the sets of pseudomirror planes in which the

glycine I molecules are inverted upon switching. (b) A glycine
molecule, and (c) an L-alanine molecule shown for comparison.
The smallest circles are hydrogen atoms (Ref. 2).

use a Devonshire- or Landau-type free-energy expansion
with even powers of the spontaneous polarization. The
theory of Gonzalo, which cannot explain the low-
temperature flattening of polarization and the deviation
of the Curie-Weiss law near the transition, was improved
by Tello and Hernandez' by allowing tunneling within
the pure Ising model of Blinc and Svetina. " This theory
cannot be fully supported as was also shown by Lines, '

equivalent adjustments in polarization curves can be
made by allowing the double-well local potential to devi-
ate from the Ising 5-function form.

The deviations from the Landau-like behavior in the
dielectric and thermal properties in the vicinity of T, are
also well recognized' ' in TGS. Recent optical
birefringence study' also indicates slight deviation from
the Landau-like behavior along the ferroelectric b axis.

FIG. 2. Schematic (100) projection of the elementary ce11 of
TGS or TGSe. Here G I, G II, and G III correspond to glycine,
I, II, and III, respectively (Ref. 7).

However, the origin of these deviations is not clear be-
cause of marked discrepancies among the experimental
results obtained by different authors. The above-
mentioned deviations might be due to various causes, like
the presence of impurities, surface effects, and defects
other than the critical fluctuation of polarization. Larkin
and Khmelnitskii' (LK) predicted from their theory a
Landau-like behavior modified by some correction terms
with fractional powers of logarithms [lnt ', where
t = ( T, —T )/T, ]. Recently similar results have also been
derived on the basis of the renormalization-group (RG)
theory. Stauffer ' and Nattermann analyzed and es-
timated the LK parameters for the TGS.

However, it is observed from the heat-capacity data
of TGS that the height of the peak is low compared to
many other H-bonded crystals, and in such a situation
LK theory appears to be not strictly valid. It should be
mentioned here, that such a logarithmic correction has
already been reported in the specific heats of the uniaxial
dipolar ferromagnets like LiTbF4. ' In the case of fer-
roelectric phase transitions where the polarization is
strongly coupled with the phonons (lattice deformations),
the situation is different from the case of a ferromagnetic
phase transition in which the coupling between the mag-
netization and the lattice deformation is, in general, very
weak. Furthermore, the RG theory appears to be not
strictly valid for molecular crystals like TGS, where the
critical region is quite narrow similar to other H-
bonded ferroelectric systems. Therefore, it seems to be
not yet clear whether the nonclassical behavior predicted
to exist in TGS is that of the LK type or not. Moreover,
the LK theory was developed mainly for the purely
displacive type of transitions. In TGS and in similar oth-
er crystals where the transitions appear to be neither
purely order-disorder nor purely displacive type, applica-
bility of the LK theory or any other similar theory for
TGS is not beyond question.

From their magnetic resonance data, Bjorkstam, and
Kato and Abe indicated the displacive nature of the
transition, while the results of Blinc et aI., and
Nishirnura and Hashimoto ' claim evidences for an



38 GREEN'S-FUNCTION THEORY OF. . . . I. 691

order-disorder character of the transition. More recent-
ly, Owens analyzed the linewidth effect in TGS and ob-
served two distinct linewidths. One is assumed to be aris-
ing from the rotation of the NH3 group (spin-like order-
ing), and other is considered to be associated with the
Auctuation of the polarization which might be strongly
coupled to the lattice. Thus two distinct mechanisms
(order-disorder and displacive) might be responsible for
the transition in TGS. More recent observation of the
"central peak" in TGS also supports this view. Even in
KDP, the transition is a "mixed" type where order-
disorder and displacive character appear together.
Therefore it is necessary to develop a model to study the
mixed behavior of phase transitions in TGS and in other
similar crystals.

As mentioned in our earlier work, " such a situation
can be well described with an appropriate pseudospin-
lattice coupled mode (PLCM) model, which has been ap-
plied for studying phase transitions in many H-bonded
ferroelectric and antiferroelectric crystals. The principal
advantage of using this model is that one can simultane-
ously consider the effect of spin-like ordering and the
phonon-phonon interaction on the transition mecha-
nism. Furthermore, it has also been mentioned in our
earlier work on KDP, that the PLCM model is
equivalent to the Jahn-Teller (JT) model as was also
pointed out by Thomas and others. ' Again the
PLCM model and the so called vibronic model ' (where
an extra term in the Hamiltonian describing the energy of
the electrons in bare bands is included) appear to give
identical results, after renormalization, elucidating the
microscopic origin of ferroelectric phase transitions, in
H-bonded crystals. Therefore, it is important to set up
such a model for TGS explaining the dielectric and other
properties in a unified way. From these studies it would
also be possible to elucidate the origin of the deviation
from the Landau behavior in TGS, the appearance of a
"central peak" at the Brillouin scattering experiment
along with other salient dynamic features.

For completeness sake, we should also mention the re-
sults of recent NMR relaxation measurements in TGS
crystal showing the "double peaks" near the transition
(yet unexplained). Whether this is connected to the fre-
quency dependent damping factor (shown by Shirane and
Axe in the case of a purely displacive transition) or has
some other origin needs further clarification. The
"double-peak" behavior of TGS resembles that observed
in many other crystals of displacive character like NaN-
b03. Of course, the frequency-dependent damping does
not behave similarly in all systems and is also not equally
sensitive to all dynamic effects. Though the recent obser-
vation with Brillouin scattering shows a central peak in
TGS, it does not clearly indicate a second quasielastic
response peak hke NaNO2. In support of the central-
peak concept, one might also refer to the work of Fuji
and Yamada who found very anisotropic x-ray intensity
distribution with scattering primarily in the plane normal
to the polar b axis in TGS. Pura and Frzedmojski also
found a small increase in the scattering intensity close to
the transition in TGS which resembles the appearance of
a double peak (one peak extra) in the NMR relaxation

rate of TGS. No clear explanation of this behavior is yet
to be found in the literature. In TGS, where no soft
mode has so far been observed, appearance of these two
peaks similar to those found in NaNb03 (Refs. 44 and 48)
and NaTa03 (Ref. 48) [but not observed in SrTi03 (Ref.
49)] seems to be very interesting. In the perovskite, how-
ever, the cubic crystals in the high-temperature phase
leads to soft-mode degeneracies and to a more complex
diffuse scattering pattern than that for TGS. It is not yet
clear why, in the case of TGS being an order-disorder
system, such a complex behavior should also exist. For a
clear understanding of all the characteristic features an
intensive theoretical investigation would be interesting.
This theory should simultaneously describe the charac-
teristics of phase transitions of both the so-called order-
disorder and the displacive behavior observed in TGS.
This type of theory would be considered as the unified

theory of phase transitions as also pointed out earlier by
Aubry.

%ith the help of the PLCM model we have attempted,
in this paper, a unique phenomenological explanation of
all the above-mentioned controversial points associated
with structural phase transitions in TGS and in other
crystals. Here we consider all the transitions to be of
mixed type rather than purely order-disorder or purely
displacive type in nature. %e have made elaborate calcu-
lations of the phonon self-energy and the damping con-
stant from our PLCM model Hamiltonian and have tried
to find the origin for various anomalous results in TGS
and other crystals, indicated above, in a unified way (see
Ref. 51, hereafter referred to as paper II).

The organization of this paper is as follows. In Sec. II
we have described first the pure pseudospin model associ-
ated with the ordering of the glycine modes. The
pseudospin-lattice (phonon) coupled mode (PLCM) mod-
el has also been written which might be valid for TGS
and many other crystals.

Theoretical expressions for the transition temperature
(T0), spontaneous polarization (P, ), dielectric constant
(e'), Curie temperature ( T, ), Curie-Weiss constant (C),
and renormalized phonon energy have also been derived
in this Sec. II. Statistical Green s-function technique has
been used to calculate all the above-mentioned expres-
sions.

To study the dynamical behavior we have calculated
the renormalized phonon self-energy using higher-order
pseudospin-phonon interaction terms. It has been shown
in Sec. III that the phonon self-energy consists of two
parts: one arising due to the phonon-phonon interaction
(including higher-order anharmonic terms) and the other
appears as a consequence of pseudospin-phonon interac-
tion. Importance of these two parts of the self-energy as
well as the damping constants (also having two parts
from our calculations) have also been discussed. In See.
IV the experimental data are fitted, similarly to our ear-
lier work, with the derived expressions and the model pa-
rameters (also called the Blinc —de Gennes parameters)
have been calculated. In this section, there is also a dis-
cussion of the validity of the PLCM model and its unified
character. Finally the paper ends with the summary and
conclusion in Sec. V, where we have pointed out the im-
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portance of the two different parts of the phonon self-

energy and damping constants.
The calculations and discussion made in this paper

have been used in paper II for a critical analysis of the
self energy and damping constants elucidating the origin
of the central peak, central dip (observed in the tempera-
ture dependent NMR or NQR relaxation times in TGS),
and other nonlinear behavior.

Here we should also mention that the discussion on the
method of our calculations with statistical Green's-
function technique and the random-phase (RPA) decou-
pling procedure used in this paper have already been
made in our earlier papers.

II. THEORY

A. Model Hamiltonian

For studying the phase transition in TGS, the ordering
of the H-bonds associated with the glycine I [see Figs.
1(a) and 1(b)] and glycine II (or glycine III) hydrogen
bonds should be taken into consideration. The pseudo-
spin variables S are associated with the ordering of the
glycine molecules (a =I and II).

The simplest way to describe the ordering of the pseu-
dospin variables is to write the Ising-type Hamiltonian in
the form

~s = 2& g (Srr+Sjrr } g[&ij(Si'rSn SrrrSJ'rr )+&rgfr~qrr 1+2 ~rq(SrrSJ'ir +SnrSJrr ) 2P+ g (Si'r +Sjrr } ~

where S (m =x,y, or z) is the mth component of the
pseudospin variables S .

Q is the proton tunneling frequency, J; and E; are, re-
spectively, the coupling within the same group (I or II)
and that between the spins of different groups (I and II).
The third term is the extra interaction term describing
the influence of the transverse field of one proton to the
transverse field of another; B; being the corresponding
coupling constant. For TGS and many other H-bonded
crystals like PbHPO4, alum, squaric acid, etc., hav-

ing very small values of tunneling frequency, the third
term of Eq. (1) is found to be important. This term has
the effect of reducing the value of Q. However, this
term cannot help in explaining the isotope effect without
considering the higher-order phonon-phonon interaction
already discussed in our earlier work. E' and p are,
respectively, the applied field and the resultant dipole
moment along the direction of polarization.

The model (1) is simply the pure pseudospin Hamil-

I

tonian describing purely order-disorder character of the
pseudospin system, viz.

H'= —20 g S;"——,
' g J;JS;"SJ" .

17J
(2)

We have shown earlier (Refs. 34—36} that many of the
salient features associated with the hydrogen-bonded sys-
tems, like isotope effect, phonon frequency shift, appear-
ance of "central peak, " damping character, etc., related
to the static as weB as to the dynamic properties of the
structural transitions cannot be explained with this sim-

ple model alone. One has to consider the pseudospin-
phonon coupled Hamiltonian containing higher-order
anharmonic interaction term —similar to the case of the
KDP crystal. ' ' Therefore, for the analysis of the stat-
ic and dynamical properties of TGS, one has to consider
the pseudospin-lattice (phonon) coupled-mode (PLCM}
model of the form

~(qr qz q3, q4)Q(qr)Q(qz)Q(q3)Q(q. »

H„=H, + ,' g P(q)P*(q)-+~'(q)Q(q)Q'(q)+g V„(q)S,* (q)Q(q)
i,q

+-,' X ~'(q q»q3)Q(qr)Q(q2)Q(q3)+-. ' X (3)
q[, q2, q3 q&, q&, q3, q4

where V,. ~(q) are the linear coupling constant govern-
ing the interaction between the pseudospin and the optic
vibrations. Q(q) and P(q) are, respectively, the normal
coordinates and conjugate momenta with wave vector q,
and the initial phonon frequency co(q) (where q=q for
the jth mode). The transverse and longitudinal optic and
acoustic branches may be numbered by the same index j.
B' and A are, respectively, the third- and fourth-order
anharmonicity constants. Following the procedure of
our earlier work and that of Silverman and Konsin
and Kristofel, the third- and fourth-order anharmonic
contributions are taken into consideration in our calcula-
tions. For convenience we always use the notations of
Refs. 34—36 and define the spin-wave transformation as

S (q) =g S expiq. R
l, a

(4)

where R; denotes the Bravais lattice site of the 1th bond.
Equation (3) is the basic Hamiltonian which we shall use
in the following section for investigating the static prop-
erties of the TGS crystal.

B. Static properties

Here we shall first study the behavior of the Hamiltoni-
an H, [Eq. (I)] and calculate spontaneous polarization p„
and the transition temperature To similar to our earlier
work. We always follow the statistical Green's-
function technique used by Ramkrishna and Tanaka '
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6,, "(r t')=—((S, (t),SJ"(r')»

= -ie(r —r') & [s, (r),s,"(r ')]„&,

where

(5)

who also pointed out the importance of this technique for
studying the properties of H-bonded crystals compared to
those of other techniques. We shall next use the total
Hamiltonian Eq. (3) for calculating the electrical suscep-
tibility (X), Curie-Weiss constant (C), Curie temperature
( T, ), and dielectric constant (e').

The Green's function for our present calculations can
be represented in the form ' (in units of 6=1, c =1)

8,=2pE'+2JO(sf &+ICO(st, &,

4,=2Q+B(sf &, 4„=2Q+8(S"„&,

e'er =2PE +2JoSir+KoS

Jo ——g JJ; Ko ——gE/ .

eo =0 and@ =(8+4 ).
The polarization for the ferroelectric phase is

(12)

The pure pseudospin energy spectrum as mentioned
above has the form

r)=+1,[S;,S"] =S; S"—riS"S. p=~p[&s; &+(s;, &], (13)

and

0=1 for t ~0

and the corresponding dielectric constant e' is obtained
from

=0 fortg0. (e' —1)=
E'=0

(14)

The Green's functions (5) satisfy the equations of motion

E(&s, ,s,"», = ( [s, ,s,"]„&

+«[s;,a, ]„,s,"», . (6)

It was shown by Zubarev that the poles of the Green's
function correspond to the energies of the elementary ex-
citations of the system. In Eq. (6) the notation (
denotes the statistical average of the enclosed operators.
Now applying RPA-type decoupling procedure used by
Tyablikov, viz.

(
g

1 )
4NP F

1 —(2JO+Ko)F '

where

(15)

Pe z, QF= sech''+ tanhp',
2(82+Q ) (82+Q2)3/2

(16)

e=e„=—e„, 2p'=p(e'+n')'", n=2Q+a, (s"&.

For the paraelectric phase we put, as usual,

(Sf & = —(Sft & =o (say) and hence

«&&,C»=(& &(&&,C»+&& &&(&,C» (7) (17)

(8)

where p= 1/ks T (ks is the Boltzmann constant and T
denotes the absolute temperature, q = + 1 for Bose opera-
tors, and —1 for Fermi operators). When all the correla-
tion functions (with m, n =x,y, z) are calculated from Eq.
(8) we find (see Refs. 34—36 for details)

(S' & = 2, tanh —(8 +4 )'
( g2 +@2 )1/2

and

(S"&= 2, tanh —(8 +4 )'/2,
( g2 + q&2 )

1/2 (10)

where

we get from Eq. (6) nine coupled equations of motion.
The pure pseudospin energy spectrum is obtained from
the solution of these equations. The correlation
functions like (S&"S; & are obtained from the correspond-
ing Green's function ((S;,S;"» using the spectral
theorem

i«s, ,s, »„,,—«;,s,"»„,,
((S,"S, »= lim f

Here we should mention that the system of Eqs. (9) and
(10) may also have other solutions showing antiferroelec-
tric character of the transition valid for the case of squar-
ic acid and copper formate. This theory can also be
extended for the study of phase transitions in NH4C1 and
NH4Br (Ref. 66), where the orientations of the NH4+

tetrahedra are parallel oriented in NH4C1, while in
NH48r they are antiparallel ordered in the ab plane and
parallel ordered along the c axis. In TGS we consider the
case of the paraelectric-ferroelectric transition.

Equation (15) is similar to that derived for the case of
ferroelectric PbHPO4 (Ref. 35) studied earlier. From Eq.
(17) one finds that the tunneling frequency is modified by
the presence of extra coupling term 8; S; S. which has
also been explained by Blinc et al. Although this term is
important to modify 0, it cannot adequately and con-
sistently explain the isotope shifts of T, and C in H-
bonded systems. Since T,D [=230 K, transition tempera-
ture for deuterated KDP (Refs. 2 and 3)] is very large
compared to the corresponding undeuterated value
[T,z 123 K (Refs. 2 an——d 3)], one must make the deu-
terated value of exchange constant JD very large com-
pared to that of the undeuterated value Jz to fit the ex-
perimental data of T, (transition temperature), e', and C
consistently with a single set of model parameters. On
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1 =F0(2JO+Ko) (18)

the other hand, the transition temperature in some other
hydrogen bonded crystals like the lower transition point
of Rochelle salt and anilinium halides (Ref. 67) like
(C6H~NH3)Br (Ref. 68} are found to decrease on deutera-
tion, which demands decrease of the exchange constant
in the deuterated salt. This appears to be contradictory,
and the lowering or increase of transition temperatures in
the deuterated salts cannot be solely related to the length
and dynamics of the H bonds. In KDP, undeuterated
tunneling frequency QH is also very large (82 cm ') (Ref.
69) compared to the corresponding deuterated value QD
(0.486 cm ') (Ref. 69). Furthermore, the trend of varia-
tions of T, and C (in deuterated samples) are not the
same for all hydrogen bonded ferroelectrics and antifer-
roelectrics. All these are due to different strengths of the
anharmonic phonon-phonon interactions in different H-
bonded systems. The higher-order phonon-phonon in-
teraction seems to be always important for explaining the
isotope effect.

Now putting e' '~0 in Eq. (15), one finds the transi-
tion temperature T, from the relation

where Fo is the value of F at T=TO. Equation (18) is
satisfied for ferroelectric transition at To. The impor-
tance of tunneling is also indicated by Eq. (18), but its
magnitude depends on the sign and magnitude of the cou-
pling parameter Po [see Eq. (17)]. The parameter Bo
which appears to be important for all hydrogen bonded
ferroelectric and antiferroelectrics is related to the cou-
pling of the phonons with the transverse component of
the pseudospin variables.

C. Electrical susceptibility

Here we start with the .pseudospin-lattice coupled
Hamiltonian Eq. (3) and calculate all the Green's func-
tions of the form

((Q(q, r), Q'(q, r )»=G~~(r —r ),
((S;(q, r ),S' (q, t') » =Gss(r r'), —

etc. Again following Refs. 34-36 all the required equa-
tions of motion are written which can be expressed in the
matrix form

c'o —a
a co

0 b 0
—c d 0

0 2i m 0 0

0 0 —2iVq 0 icoq

((S",(q), Q'(q) »
((S» (q), Q'(q) »

((S;(q),Q'(q) »

(( Q(q), Q '(q) »
((P(q), Q'(q) » i /2n— .

(19)

where

a=i8'„b=iV (S'(q}&, c=2iQ, d=iV (S"(q)&; 2Q=ZQ —J (Sf(q)& —Ez(St, (q)&

e'=2J (S", &+a, (S"„&, V =N '"g V, ~'-=~'+» '"«S*.&+~'(q»
q

(20)

A'(q)=g A(q, —q, q', —q')(nq (T)+—,') .
12%

q Nq
(21)

In deriving the above Eqs. (19)—(21) we used
(S;"&=(S,"& (S &=(S;&, and (S»&=(S»&=0. n, (T)
are the phonon occupation numbers and A '(q) is the con-
tribution from the fourth-order anharmonic term in Eq.
(3). The contribution from the third-order term is also
taken into consideration following the procedure of
Silverman (see also Refs. 34—36). M is the effective
mass of the "active ions" in TGS.

From Eq. (19) one can calculate all the Green's func-
tions and the energy spectrum of the pseudospin-phonon
coupled system (see Refs. 34—36). These Green's func-
tions also give (using RPA type decoupling) the corre-

CO —I
q

2 2

G QQ(~)—
2

q

(22)

where

I.
q

-—Q —Q(S"&J +(Jo(S' &}

and

sponding correlation functions like (Q'(q)Q(q) &,

(S'( —q)S'(q) &, (P"(q)P(q) &, etc. The electrical sus-
ceptibility is related to the Green's function
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5 =(to —co, )(to —toz),

co] 2(q, T)=—toq+20 20 —Jo tanh + A'(q, T)+ coq+ A'(q, T)—20(20 —Jo tanh
2 B B

1/2

+ V Qtanh
B

'2

(23)

Now using the Kubo equation we obtain the expression
for the susceptibility X(q =O, co=0)

A'(0, T)
T T=T

C

80 Vo tanh

X(0,0)= toq+ A'(0, T)
g —rt' tanh(rilktt T)

40 Vort (1—tanh g/2ktt T, )

ktt T, ( rt rt tan—hrt I2ktt T )
(29)

(24)

where

g'=40(2Jo+Ko) =40Jo Jo =2Jo+Eo (25)

k~ T, =20[are tanhr( T, ) ] (26)

where

8Jocoo( T )+ Vo
r(T, )=

16Qtoo( T, )
(27)

o( T,o) = (qco=0)+ A '(q =0,T = T, ) . (28)

A phase transition with the PLCM model is possible if
r( T, ) & 1. Now expanding Eq. (24) around T, we
have the Curie-Weiss constant

and vo is the volume of the unit cell with number of pseu-
dospin values n in TGS.

Since Eq. (23) indicates ferroelectric instability, "soft-
mode" —like behavior may also be predicted in TGS.
This has recently been observed from the Brillouin
scattering experiment. Actually, with a PLCM model, a
soft-mode-like behavior is always possible. But the
anharmonic phonon coupling might be strong enough
in some samples to destroy this possibility (sometimes
showing only a minimum in the energy spectrum). As
soft mode has not been observed from the Raman stud-
ies, we believe the co, 2 mode does not describe the in-

phase motion of the pseudospin system and the lattice
system, but both of them behave independently. It has,
however, been shown earlier that for the SnC12 2H20,
and for the transition-metal ferroelectric alums, the lat-
tice instability condition could be applied even if these
salts do not show true soft-mode behavior. Therefore,
considering this assumption is also valid for TGS, we get
the Curie temperature T, from Eq. (23) in the usual way
(T~T, as co~0) as

Since exact calculation of (dA/BT) is difficult, we ap-
proximate as before A' {T)=Aok&T and fit the ex-
perimental data of T„C, and e'(= I+4mX) to find the
value of Ao (see Sec. IV). The sign as well as the magni-
tude of the anharmonicity parameters A '(q, T ) have
great influence on the transition mechanism, isotope
effect on T„etc. These parameters are also related to the
Landau free energy F which can be expressed as a
power series in the order parameter (discussed in paper
II).

III. DYNAMICAL BEHAVIOR

In order to investigate the dynamical properties of
phonons on the basis of the pseudospin lattice coupled
Hamiltonian H, in Eq. (3) it is convenient to calculate
the phonon and the pseudospin Green's functions in the
form

G~(q, t) = —i( T, IQ(q, t )Q'(q, O) I ) (30a)

and

G s(q', t ) = i ( T, I
S—' (q, t )S' ( q', t ) I ) . — (30b)

Here the Green's functions are to be defined on the imag-
inary axis ( —p&it &p). T, is the Wick s time ordering
operator for real time it For the inter. val 0&it &p, it is
well known that the Green's functions G(t) satisfy a
periodic boundary condition in the time variable.

Here we like to mention that in Eq. (3) we have con-
sidered only the first linear term ' of an expansion of
the interaction energy in powers of the pseudospin and
normal coordinates. One may also consider like Winter-
feldt and Schaack two important additional higher-order
terms along with Eq. (3) to calculate the dynamical prop-
erties of TGS and similar other crystals. However, in our
RPA-type calculations with statistical Green s functions,
an average contribution of these pseudospin-phonon (nor-
mal coordinate) interaction terms will appear (discussed
below). Considering these two terms our total Hamiltoni-
an written in a renormalized form is
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H,' = —,
' g [P'(q)P(q)+co (q)Q'(q)Q(q) j ——,

' g J,ff(q)S'( —q)S'(q}—g V",ff(q, q')S'(q)Q*(q)Q(q —q')
q q

V',zff'(q, q', q")S' (q)S' (q')Q*(q)Q(q —q' —q" )+H,„h,
q, q', q"

(31)

where

J ff(q}=J(q)+& I V(q}
I

'
q

and

y
des F(co)
2' N„—N

(32b)

is the e6'ective exchange energy of the pseudospins. H,„h
is the anharmonic terms of Eq. (3) including the normal
coordinates of phonons. V",ff, V',ff, etc. terms contain
the geometrical coordinates, and coordinate derivatives
of the potential evaluated at the equilibrium position of
the ions appropriate for the TGS type crystals (obtained
by using the procedure of Nagamiya, Yamada et al.,
and also by following the lattice dynamical method ).

Equation (31) is the effective Hamiltonian of our calcu-
lations in this section. The Green s functions [Eqs. (30)]
possess a Fourier series expansion and spectral function
F(to) defined as

where co„=3min'lP and n' is an integer. To calculate, as
usual, the phonon self-energy, we use the second deriva-
tive of the phonon Green's function G ~(q, t) which has
the form

d2
z G~(q, t) =5(t)([Q(q), H,' ],Q "(q) )t'

—iT, I [[Q(q, t )],H,', ]Q'(q o}I &

(33)

G(t) =—g exp( iso„—t )G(co„)
n

(32a)
From Eqs. (31) and (33) we have

2
—co (q) G~(q, t)=5(t)+(—T, ([P'(q, t),H,„h] Q'(q, O)) ) i g V—"'(q,q')(T, jQ(q —q', t)S*(q, t)Q'(q, O)I )

dt2

where

i g V—' '(q, q', q")( T, jQ(q —q' —q")S'(q, t)S'(q", t)Q*(q, O)I ),
q', q'

(34)

and

V'"(q, q'}=V'.ff(q q'}+ V'.ff( —q+q' q')

V"'(q, q', q') = V',ff(q, q', q")+ V',ff( —q+q'+q", q, q") .

(35a)

(35b)

We considered in deriving Eq. (34) the second-order approximation for the pseudospin variables. Carrying out a pertur-
bation calculation for the Green's function in the fourth term of Eq. (34) and using RPA for the fifth term we can write
[using Eq. (32}]

[co'„—(to'(q)+ V'"(q, q'=0)(S'(q =0))+V"'(q, q', —q')(
~

S'(q)
~
')+~»(q, ~„)+~,~(q, ~„)I]G~(q,~„)=1, (36)

where the terms m; and
happ

are the two parts of the pho-
non self-energy. The first part

happ
arises due to the in-

teraction between phonons and agrees (to be discussed
below) with that derived by Cowley and also by
Feder for the purely displacive (or phonon mecha-
nism of the transition). The second part of the self-
energy m; arises, on the other hand, from the interaction
between the phonons and the pseudospins (or with the
spin-like ordering and/or displacements of some ions or
groups in the lattice).

For explaining various salient features associated, in
particular, with the dynamic behavior of the crystal, one
has to make critical analysis of both n, ~ and m.» terms (as
discussed in paper II).

lim n (q, co+i5) =Rem. (q, co) i 1m'.»(q, cu) . —
5~0

(37)

The strength of the pseudospin-phonon coupling con-
tribution would actually decide which mechanism
(order-disorder or displacive type) would predominate
over the other. The additional self-energy term m., ob-
tained from our calculation does not appear in the calcu-
lations of Cowley and others obtained by consider-
ing the pure phonon-phonon interaction Hamiltonian,
where the pseudospin part was neglected.

Both n.»(q, z) and m,~(q, t) are analytic functions of the
complex variables z except on the real axis. Approaching
the real axis from above, one can define the real and
imaginary parts of m (say) in the following manner:
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b
p

——g V,p(q —q') U p, (39)

The real part in Eq. (37) denoted by b,
~ (say) measures

the anharmonic frequency shift, and the imaginary part
of &pp is the reciprocal of the phonon relaxation time
(r ) and hence proportional to the phonon damping con-
stant (I ). This shift is observable, for instance, from
the Raman spectroscopic studies. The real part of Eq.
(37}may again be split into two parts like

(3&)

where 5 is associated with the therma1 strain U & and
represents the anharmonic frequency shift due to thermal
expansion and can also be expressed as

where 6"„ is the contribution from the higher-order
anharmonic terms. In the present paper we have con-
sidered only the third and the fourth-order terms similar
to that used by Cowley and others and, therefore,
we have

(40)

where 3' ' and A' ' are, respectively, the self-energies
arising from the cubic and quartic terms which contrib-
ute in the same order in perturbation theory. Following
the calculations of Cowley, Maradudin et al. , and Cal-
ifano et al., the leading terms for the cubic anharmoni-
city that appears from our calculations (up to second or-
der) have the usual form

A,",' = —„, X I
~(q q' q")

I

' n (q')+n(q")+ 1 n(q') —n(q")[co(q')+co(q")+conj

p I co(q') —co(q")+co j p

n(q") —n(q') n(q')+n(q")+ I 2[2n(q")]+ I

Iso(q') —co(q")+~ j p [co(q')+co(q") —~ jp [~(q') j p

where P denotes the principal part. Similarly, the corresponding leading term in quartic interaction has been found to
have the form

A ' ' = g A ( q, —q, q', —q') [4n (q' ) + 1]
q'

which is independent of the applied frequency co unlike the A ' ' term. In Eqs. (41) and (42)

n(q) =n(q, j)=[exp(A'co(q )/ks T) —1]

Now we calculate the imaginary part of n~ from [Eq. (37)] which is denoted by n' and can be expressed as

18
, Z [~(q —q' —q')~( —q q' q'}l

q, q'

(42)

(43)

X [ [~(q')+ n (q" )+ I ]5[~(q')+~(q" )+~]—5[~(q')+ ~(q" )+~) ]

+ [n (q" ) —n (q') ]5[co(q') —co(q" ) —co]—5[co(q') —co(q" )+co]j, (44)

Imm =m'' =2a)I „(q,co}, (45}

where I (q, co) is the damping constant. Now one can

where 5 is the Dirac 5 function having its usual meaning.
So far, in this section, we have tried to establish the

similarity in the behavior of the phonon self-energy
(when the phonon is coupled with the pseudospin subsys-
tem) with that observed from the calculation of Cowley,
where only pure phonon-phonon interaction is con-
sidered. Further analysis of the above theoretical results
could also be made following the procedure of Cowley
and others. It is found that the cubic anharmonic
term (second order in the interaction representation) con-
tributes both to the real and imaginary parts of 7Tpp while
the quartic term contributes only to the real part happ

and
hence does not contribute to damping I

pp
related to the

imaginary part of the happ.
The imaginary part (Imm „)of Eq. (44) can be written

in the form

write ' the spectral function I'ppj which is basically the
imaginary part of the dynamic phonon susceptibility

ppj '

F (q, co) = [1—exp(A~/ks T)]

XImI [a)~(T)+npp~(q, co) co ] 'j (46)—

and

7 [a) (q =0),co, T]=[coj~(T)+I
p (q, co, T) co]—

(47)

where

co, (T)=
~

co (q =0)+b, J(T)
~

'~

is the renormalized quasiharmonic frequency and
co (q =0) is the harmonic frequency of phonon mode j
(say). The static mode susceptibility is proportional to
co, which in turn is proportional to the integrated inten-
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sity of the mode j (for ks T» fico). For a damped har-
monic oscillator with self-energy m» [Eq. (37)] one finds

from Eq. (46)

,(T}
1 —exp( Ac—o lks T) [c02( T) —~~]~—~21 .( T)

Equation (48) is identical with that derived by Cowley
and Maradudin and Fein, which is appropriate for the
purely displacive mechanism of the transition. However,
the effect of pseudospin phonon coupling which is found
(from our calculation) to largely modify the phonon ener-

gy does not appear in their calculations. It can be shown
from our subsequent discussion that the additional pho-
non self-energy term introduced in the theory of Cow-
ley [see Eq. (65)] to account for the central peak behav-
ior in some crystals, should actually originate from the
vr, part of the self-energy obtained in our calculations
with PLCM model. We have shown below that this addi-
tional self-energy term m, is also very important for the
studies of the dynamical behavior of phase transitions in
TGS and many other crystals.

This additional self-energy ~, arising from the
phonon-pseudospin interaction comes out to be [from Eq.
(36)] of the form

~,p(q, co„)=— g ~

V"'(q, q')
~ g Gq~(q —q', co„—co„.)G (q, co„) .

B q n'

Using Eq. (49) and the spectral Green's function [Eq. (32)] we have

(49)

n., (q, co„)=—„g ~

V (q, q')
~

(1) i 2

B q n'
(50)

where F and F, are, respectively, the spectral functions for the phonon and the pseudospin Green's functions [Eq.
(30)]. The Fourier transform of the correlation function (dynamic scattering function) of the pseudospin variable is

S, (q, co) = Idt exp(i cot ) (S' (q, t )S' ( —q, 0) )

which is related to F, as

F,p(q, co) =[n(co+1]F,p(q, co) .

Now using the summation rule

1 1 = ——,
' [2n (co)+ 1]

kB T „COn —CO

and the Bose occupation number n (co) = [exp' lks T 1] ', we obt—ain from Eq. (50)

dN dN Fpp(q q co )Fsp(q et) )
m, p(q, co„)=g

~

V (q, q')
~ z [n(co)+n(co')+1]

(2m. ) 6)„—N —6)

(51)

(52)

(53)

(54)

Since m, (q, co„) is also an analytic function of the complex variable like ~pp [Eq. (37)], as mentioned above, we may
define the real and the imaginary parts of m, as

m, p(q, co)=h, (q, co) —i Imm, (q, co) . (55)

The real part denoted by 6, (say) will also contribute like b, [Eq. (37)] a shift in the phonon frequency co(q), while the
imaginary part denoted by n.

s (say) will contribute to the damping. This contribution arising from the pseudospin-
phonon interaction has not so far been considered in the literature while describing the quasielastic neutron scattering
or other experimental data of crystals undergoing structural or other transitions.

Using, for convenience, the spectral function F (q, co) of noninteracting phonons [in Eq. (54)] viz,

Fpp(q, co) =—[5(co—co(q) )—5(co+co(q) )], (56}

one might calculate the real (b,, ) and the imaginary (vr,
'

) parts of m, (similar to that made for the n,„)which can be
written as

~

V"'(q, q')
~

den, nco(q —q')+n(c0')+1 n~(q q') n(co')— —
q, co =~~ I F,p q, co') +2'(q —q ) dm co —cu(q —q') —co' co+co(q —q) —co

(57}

where P again denotes the principal part of the integral. Similarly, for the imaginary part we have
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m,
'

(q, co)=g ', [[n(co(q —q'))+n(co —co(q —q'))+1]F, (q', co —co(q —q'))
4'(q —q') Sp

+ [n (co(q —q') }—n (co+co(q —q') )]F»(q', co+co(q —q') ) ] . (58)

Now the damping constant related to m, may be obtained from

Imm, (q, co) =2col, (q, co), (59)

where I, denotes the damping constant due to the pseudospin-phonon interaction. Similarly, earlier we have obtained
I for the phonon-phonon interaction from the imaginary part of n [Eq. (37)]. Using Eqs. (52), (58), and (59) we get

8roco(q —q') n(co —co(q —q'))+1» '
n(co+co(q —q'))+1 (60)

It is observed from Eq. (60) that the temperature
dependence of the damping constant for the phonon fre-
quency ~j(q) is modulated by the presence of scattering
function S»(q, co). The dynamic scattering function

S»(q, co), is known ' to undergo a sharp increase near a
phase transition. Therefore, Eq. (60) arising from the
pseudospin-phonon interaction will give rise to an anom-
aly and increase in its value around the transition point.
This contribution is in addition to that arising from
pure-phonon phonon interaction. Consequently, both
the damping constants I, and I would show
anomalies around the transition. Temperature depen-
dences of both I, and I

pp
is shown in Fig. 3. Now simi-

lar to Eq. (47) we can also write the spectral function F,
(related to dynamic "pseudospin susceptibility, "X») as

F, (q, co)=[1—exp(co'R/kaT)]

X 1m[co (q =0)+m»j(q, co') —m ]
' (61}

and

I (q, co) =I pp(q, ci))+I »(q, co) . (64)

CO

L
fg

The I, part has not previously been considered while ex-
plaining various anomalous (nonlinear) behavior in
H bonded and other crystals as observed from NMR (or
NQR) relaxation, Brillouin, or Rarnan scattering experi-
ments. For example, neutron scattering experimental re-
sults ' indicate that at low frequencies there is an addi-

X»(coj, T, co) =[coj(q =0)+I »j(q, co', T) ~]—(62)

Equation (61) can also be written in the form of Eq. (48)
as

I »j( T)
F, (q, co) =

1 —exp~'$/ks T [~2( 1) ~'2]2 ~'&I 2 {T)

(63)

Temperature ( K )

The importance of Eq. (63) and other additional contribu-
tions arising from ~, would be visualized if one makes a
critical analysis of the experimental neutron scattering,
Brillouin scattering, or Raman scattering data. These re-
sults would actually illuminate the salient features of the
dynamical properties of TGS or other crystals as dis-
cussed in Paper II.

A. Total damping constant

From the above calculations it is, therefore, evident
that there are two parts of the damping constant, viz I

pp
and I, , arising from the phonon-phonon and the
pseudospin-phonon interactions, respectively. That is,
the total damping constant is

Temperature ( K)
FIG. 3. Anomalous temperature dependences of the renor-

malized phonon frequency (energy), and the damping constants

(rpp and I,p) are shown schematically. The total damping con-
stant I =I pp+I p might, ho~ever, show a smaller or larger
anomaly at the transition point. It is also, unnecessary that
both I pp and l,p and, hence, the total damping constant, as well
as the energy should show the anomaly at the same temperature
T, (say). All these depend on the various interaction strengths
already mentioned in the text.
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tional response not described by the "soft mode" formula
[Eq. (48)] where damping is proportional to m. To de-
scribe this additional response the self-energy expression
[Eq. (37)] was modified ' ' in the form

&'( T)
vrpp(q, co}=App(q, co} il—pp(q, co} ic—o

P —l CO

(65)

To write this additional term, it was assumed earlier
that the "soft mode" decays into some other mode or
combination of modes, and then this further mode decays
exponentially with a long characteristic time 1iy. The
coupling constant 5 has not yet been possible to specify.
We have shown in paper II that this term could be ex-
plained by considering the m,„part of the self-energy. It
has also been shown in paper II that the origin of the
hitherto unexplained "double peaks" observed from the
NMR relaxation rate measurement in TGS, is associated
with the m, part of the self-energy.

It should also be mentioned that Eq. (64) bears consid-
erable significance indicating the presence of two subsys-
tems (phonons and pseudospins) contributing to the dy-
namic behavior of crystals. The transition mechanism in
TGS or in other crystals would be mainly of the displa-
cive (or order-disorder) type depending on the impor-
tance attributed to ~pp or 7T

p
That is, the contribution

from the 7Tpp part of the phonon self-energy would be
greater for the displacive behavior, while that from the
7T

p part would be greater for the order-disorder behavior
of the transition. The weaker part of the self-energy, in
this competition (say m, in case of displacive behavior),
usually becomes more important near the transition point
(i.e., the fluctuating region). During the ferroelectric
transition in TGS or in other crystals, both the 7Tpp and
7T

p
parts of the self-energy contributed, respective ly, by

the lattice vibrations and the molecular ordering (pseu-
dospin ordering) become important. Therefore, the devi-
ation of the Landau behavior in TGS, as mentioned in
Sec. I, might also be due to the importance of the m.,
term rather than that due to other causes. Since it ap-
pears from our calculations and also from other facts
(discussed in Sec. I) that the transition mechanism in
TGS is a "mixed" type (both order-disorder and displa-

cive behavior of transition coexist), one cannot directly
apply the LK theory or similar other theories for TGS.
This picture would be more vivid from our subsequent
discussion (see also paper II). Here we should therefore
mention that the transition rnechanisrn in TGS is also
more complicated than the usual magnetic spin-ordering
transition, where the lattice has very little part to play.
These two situations should not be mingled together.
However, the magnon-phonon coupled system could be
described by the PLCM model with suitable
modifications.

B. Phonon frequency

If we assume that the real and the imaginary parts of
, ar.e very small compared to co (q), the mean frequency

co obtained from Eq. (36}is given by the expression

co =co (q, co)+ V' '(q, q'=0)(S'(q=O) )

+g V"'(q, q', —q')(
~

S'(q')
~
')+~„(q,co), (66)

q

where co(q, co) is the renormalized phonon frequency

co(q, co):ro (q)—+Rem (q, co)

which might be calculated for TGS from the fitting of
various experimental results following the procedure of
our earlier work. The second term in Eq. (66) is the
first-order correction of the frequency shift with respect
to the pseudospin variable (associated with the micro-
scopic rotation or ordering of some ions or groups in the
lattice, say the glycine molecules in TGS). The corre-
sponding order parameter, (S'(qo)), can be obtained
from the mean-field-type calculation shown in Sec. II,
and its temperature dependence has been well discussed
by Bront. ' Here qo is the specific wave vector with
which the pseudospins are macroscopically ordered. The
third and fourth terms in Eq. (66) denote the second-
order correction of the frequency shifts caused by the
pseudospin correlation. To study the salient features of
the transition in TGS and other H-bonded crystals one
can write Eq. (66) using Eq. (41) as

co'=r)'(q, a)+ V'"(q, q'=0}(S;(q=O))+g V"'(q, q', —q') f Ssp(q', ~')
q'

~

V'"(q, q')
~ I d~ neo(q q')+n(co')+ I— neo(q —q') —n(co') Ssp(q

q' 2'(q —q ) 2m' to —co(q —q ) —co co+co(q —q ) —co n(co )+1 (67)

The dynamic scattering function S, (q, co) in Eq. (67}be-
ing related to the dynamic susceptibility (by fluctuation
dissipation theorem) is known ' to undergo a sharp in-
crease near the transition. This is also exhibited by the
damping constants discussed above. The temperature
variation of co is shown schematically in Fig. 3. Thus it
is evident from Eq. (67) that the pseudospin ordering
should also give rise to an additional temperature-
dependent anomaly to the phonon frequency. Conse-

quently, the anomalous temperature dependence of the
phonon frequency due to the pseudospin ordering and
correlation is given by (S'(qo) ) and Eq. (67), respective-
ly. A question may arise as to whether the temperature
at which the pseudospin ordering (with the specified wave
vector qo) takes place would also coincide with the soft-
mode (phonon) transition. To answer this question one
has to find the pseudospin-phonon coupling strength and
the higher-order phonon anharrnonicity parameters. An
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estimate of these parameters can be obtained from the
spectroscopic studies, and also from fitting the experi-
mental values of T„C,7, P„renormalized phonon fre-
quency, etc. with the corresponding theoretically derived
expressions. The latter procedure has been adopted in
this paper. As the sign and magnitudes of these coupling
parameters are different in different crystals, several
peculiarities near the transition region might appear.
These are actually observed from various experimental
results on TGS and other crystals (see also paper II).

In Sec. IV we have tried to fit the experimental results
of T„g, P„C, etc. for the TGS and its isomorphs (both
deuterated and undeuterated) with the corresponding
theoretically derived expressions to find the Blinc —de
Gennes model parameters for these crystals.

IV. RESULTS AND DISCUSSION

The experimental values of T„dielectric constant (e'),
spontaneous polarization (P, ), and the Curie-Weiss con-
stant (C) of the TGS, deuterated triglycine sulfate (DGS),
triglycine selenate (TGSe), and deuterated triglycine
selenate (DTGSe) crystals are fitted with the respective
expressions [Eqs. (26), (24), (13), and (29)] derived
theoretically in Sec. II. It was attempted in our earlier
work and also in this paper for the present TGS
crystal to fit all these theoretical expressions with a single
set of model parameters, being different for different crys-
tals. The model parameters Jo, 0, co(q =0), p,
Ao(q =0,0), etc. thus obtained for the above-mentioned
deuterated and undeuterated TGS family are shown in
Table I. The experimental and the theoretical (e'-T), and
(P, -T) curves for these crystals are shown in Figs. 4—6.
It is observed from these figures that the agreement be-
tween the theoretical and the experimental curves for all
of the above four crystals studied, are very good except
for the regions very close to the transition point —the
fluctuating region, where this deviation is obvious. How-
ever, if these model parameters are varied from these de-
rived values by about 10%, on the average, similar to
that done by Samara Samuelsen for KDP and squaric
acid, the (e'-T) and (P, -T) curves can be fitted even very
close to the transition region. This agreement between
the theoretical and the experimental results definitely in-
dicates the validity of the PLCM model for explaining, at
least within the RPA limit, the ferroelectric phase transi-

tion of the TGS family similar to other H-bonded fer-
roelectrics studied earlier. This also indicates the
unified character of the PLCM model. Of course, proper
generalization of the model is necessary for every crystal
system. Furthermore, our calculations also point out
that the RPA-type calculation with the statistical
Green's-function technique is good for TGS similar to
other H-bonded ferroelectric crystals, in particular.

Since experimental values of AH (undeuterated value of
0), Qn (deuterate value of 0), J(q =0), V(q =0), and

Ao(q =0) are not available for the TGS salt, we could
not directly compare the calculated values of these pa-
rameters with experimental ones. However, the values of
Np for all the salts studied are found to be very close to
the experimentally observed ones (Table I). It is ob-
served from Table I that the tunneling contribution is not
zero in TGS. Therefore, it appears that the tunneling
contribution is never zero in H-bonded crystals.

Neglecting higher-order V(q =0) terms in Eq. (61),
and also if we assume that the anharmonic contribution
is very small, we have

[coq(T) co (q =0—)]~P,(T) . (68)

(It is clear from the subsequent discussion that this as-
sumption is not strictly valid for the TGS crystal. ) If the
mean-field approximation (MFA) is assumed to be valid
for TGS (or TGSe) down to

i
T —T,

~

))(5X10 )'&
[i.e., P, cc(T, —T)' ], Eq. (68) would also be equivalent
to

[(coq(T) —m (q =0)]=A,'(T, —T), (69)

where k' is a constant. Equation (69) is, however, valid
up to the straight part of the P, versus (r, —T) curve
(for the C-type modes ) as shown in Fig. 6(a). Similar
linear temperature dependence of the frequency shift,
proportional to the order parameter (up to the linear por-
tion of P, ), was also observed ' in the NMR and ESR
experimental results of TGS and DTGS [Fig. 6(b)]. We
believe that this linear variation is possible, while the
anharmonic contribution to the EFG remains small or if
this contribution is neglected. Although this behavior
might also indicate that the origin of the temperature-
dependent coupling constant is essentially due to
Coulomb interaction, the frequency shift as observed
from the Raman or other spectroscopic techniques in

TABLE I. Pseudospin-lattice coupled mode (PLCM) model parameters obtained for TGS, TGSe, DTGS, and DTGSe from the
best fitting of the experimental data {Ref. 83) of T„C,P„and e'. (These data are fitted with parameters Kp =Bp =0 and taking 1 ev
=8056.80 cm '.) T, and C are the experimental values (Ref. 83) used to fit the dielectric constant (e') curves of the TGS family as a
function of temperatures as shown in Figs. 4 and 5. The model parameters 0 and Q(q=0) are found to be very small compared to
those of other H-bonded ferroelectric and antiferroelectric crystals (Refs. 34—36). However, relatively higher values of the anhar-
monicity parameters A p are obtained from the theoretical fitting of the above-mentioned experimental data for the TGS family.

Samples T, ('C) C {'C) 0 (cm ') Jp (cm ') Vp (crn
—') Acoq —p (cm '

) Ap (cm ') Xp (pC/cm )

TGS
TGSe
DTGS
DTGSe

49.10
22.50
60.70
34.00

3007
4727
4600
4507

0.10
0.40
0.01
0.05

340
320
470
430

10
12
15
20

0.59
0.61
1.92
1.99

10.20
11.15
14.22
15.25

2.22 (at 50 C)
3.70 (at 12.50'C)
2.30 (at 30.70 C)

2.70 (at 24'C)
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FIG. 6. (a) Linear temperature-dependent part of spontane-
ous polarization (P, ) (Ref. 83), (b) thermal variation of NQR
splitting (denoted by I) (Ref. 28), and resonance field shift
(denoted by II) (Ref. 85) obtained from the ESR spectra of Cu +

in TGS.

FIG. 4. Thermal variation of dielectric constants of TGS and
DTGS. Solid circles, experimental points (Ref. 83); large open
circles, present theory.
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FIG. 5. Thermal variation of dielectric constants of TGSe
and DTGSE. Small circles, experimental points (Ref. 83); X,
present theory.

TGS (or in other crystals) could not be explained without
considering the higher-order pseudospin-phonon interac-
tion terms.

The order-disorder model ' of the ferroelectric phase
transition was used by Bjorkstam~ to explain the NQR
data of TGS, considering that the transition is triggered
by the proton in a double-well potential between the gly-
cine molecules (Fig. l). This model, however, describes
only the qualitative behavior of the complicated phase
transition in TGS. Proper care has not been taken in this
work to elucidate the importance of the higher-order
phonon-phonon interaction terms for the interpretation
of the NQR results. Not only in NQR, these higher-
order interaction terms were also considered to be impor-
tant to explain the ultrasonic velocity and attenuation
in TGS [where a model similar to that given by Eq. (3) is
valid]. More about the importance of the higher-order
phonon-phonon and the pseudospin-phonon interaction
terms will be discussed in Paper II.

It has already been shown in Sec. III that the expres-
sions for I

pp
I

p
and the renormalized phonon frequen-

cy co(q) contain the scattering function S,~(q, co). Thus
both F

pp
and I, are expected to exhibit anomalous be-

havior, i.e., anornalously large values near T, as shown in
Fig. 3. However, these anomalies associated with I

pp
and I, may not appear at the same temperature (i.e., the
same T, ) There may b. e two (say T„and T,z) or one (ei-
ther T, &

or T,2, if the two anomalies appear simultane-
ously) T, values. One may consider T„(say) associated
with I,p or 'fT

p
and T,2 associated with I

pp
or 7Tpp These

features of the damping constants and the renormalized
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phonon frequency must also be reflected in the dynamic
properties of the crystals undergoing structural phase
transitions. This behavior would again vary from crystal
to crystal depending on the coupling strengths between
the pseudospin [local potential ' P(r)] and the phonons
(including higher-order anharmonic interaction terms).

Under some special circumstances, depending on the
above-mentioned coupling strengths and also on the reso-
lution function of the experimental technique used for
measuring the response, the anomalies at or around T,
(or at T„and T,2 as shown by I',

~ and I » in Fig. 3)
might be observed. The two anomalies, if at all possible,
might also appear separately (when T,)+T,2) or as a sin-

gle anomaly (T„=T,2 T, ).——The latter situation will
occur due to the importance of either I (or I, }, when
one part m» (or m.,~) would predominate over the other,
and the crystal would behave either as the order-disorder
or as the displacive system (depending on whether m, or

predominates).
It can be shown that the order-disorder character cor-

responds to E &&k&T, and the displacive behavior ap-
pears when E «k~T, [where F. corresponds to the
minimum in the local potential P(r) described in Fig. 7].
If the two anomalies due to I and I,~ (or, in other
words, due to n» and n,~} appear simultaneously, it
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FIG. 7. (a) Schematic "crossover" (displacive to order-
disorder) (Ref. 89) behavior observable in a structural phase
transition. (b) Average local potential P(r) associated with the
pseudospin variable. (c) Single-peak and double-peaked order
parameter (P) distribution P(P).

mean that the pseudospin mode and the phonon mode
are equally important and simultaneously trigger the
transition. Otherwise, the transitions might appear sepa-
rately at diff'erent temperatures (both with equal intensity
or one with very small intensity compared to the other).
One anomaly might also be associated with the structural
transition, while the other might appear showing only lit-
tle anomalous behavior in the physical properties. In this
way several peculiarities might be observed in the system.

As mentioned above, the transition appears to be most-
ly displacive (or mostly order-disorder) type, when the

(or the n, ) term becomes important. That is, for a
displacive transition the characteristic features of the
transition might be qualitatively explained with a purely
phonon-phonon interaction Hamiltonian studied by
Cowley and others, while the so-called order-disorder
transition might be qualitatively explained with a purely
pseudospin-like model ' studied by Blinc and others.
Since it appears from our calculations that no such tran-
sition is purely order-disorder or purely displacive type,
both the ~, and

happ
terms are important for a critical un-

derstanding of the dynamic behavior of any crystal un-
dergoing a phase transition. The mathematical picture
for such a transition mechanism could only be properly
represented with a pseudospin-lattice coupled Hamiltoni-
an (PLCM model).

The peak height, position, and width, as shown in Fig.
3, all depend on the strengths of the pseudospin-phonon,
and the phonon-phonon interaction parameters. Actual-
ly, these coupling constants decide the order-disorder or
the displacive character of the structural transitions.
Therefore, depending on these parameters, it appears
quite plausible that interesting "crossover" phenomenon
(order-disorder to displacive or vice versa) would be ob-
served in some crystals. This would, of course, occur un-
der certain special circumstances. For example, in a
perovskite structure like BaTi03 showing displacive be-
havior, the local mode character (pseudospin ) is associ-
ated with the displacement of Ti atoms with respect to
the 06 oxygen case (illustrated by the rotation of Ti06 oc-
tahedra). This incipient pseudospin character"'2 be-
comes modulated (pseudospin-phonon coupling constant
changes) when BaTi03 (say) is doped with Fe + or oth-
er suitable ions. Consequently, one might observe "cross-
over" behavior in this doped system. This behavior is
also observed in H-bonded squartic acid. In Fig. 7 we
have also represented schematically the probable "cross-
over" behavior in H-bonded or nonhydrogen-bonded
crystals, where both ~, and m.

pp
terms are equally sensi-

tive. Here the transition mechanism should be called a
mixed type since both 7Tpp and ~, terms characterize the
transition mechanism. To be specific, the observed cross-
over phenomenon arises due to the failure of the strong
competition between the order-disorder and the displa-
cive mechanism or, in other words, due to the break of
coupling between the short-range (H bonds, covalent
bonds, Pauli repulsive forces, etc.) and long-range
(Coulombic) forces in such a mixed system, and are sub-
ject to considerable change when some ions or groups in
the lattice get reoriented (for example, in TGS the
glycinium-I ion reorients). As a result, one mechanism,
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order-disorder or displacive, wins over the other, and the
crystal under consideration behave accordingly.

Not only crossover phenomenon in perovskite but also
some other interesting change in the physical property
might be expected with the addition of foreign ions. For
instance, addition of-Nb in SrTi03 gives rise to a super-
conducting transition. ' Here also both the

happ
and m, p

part of the self-energy are involved. This part m, would
also effect the superconducting energy gap in the case of
superconducting transition. The m., part of the self-
energy associated with the local ordering motion is actu-
ally involved in all kinds of transition mechanism and
should be properly taken care of.

It should be noted that approaching towards T„
short-range order might also exist due to correlated
order-parameter fluctuations giving rise to a saturated
soft mode (Fig. 7). This is an intrinsic characteristic
property of the central peak phenomenon about which
we shall deal with in paper II. Upon cooling towards T„
the short-range order implies a displacive to order-
disorder crossover.

We also believe that the origin of the "double peaks"
as observed in the relaxation rate versus temperature
curve of the H-bonded TGS crystal, is due to the appear-
ance of two separate anomalies related to the two
different contributions from the damping constants I

p
and I

pp
and hence to the two relaxation times which

might also have different frequency responses (for details
see Paper II).

V. SUMMARY AND CONCLUSION

In this paper we have first developed the PLCM model
appropriate for describing the transition mechanism in
TGS and its family (deuterated and undeuterated). Our
calculations with statistical Green's function technique
and with RPA-type decoupling procedure indicate that
the PLCM model is sufficient to explain the various
salient features of the structural phase transitions in TGS
and similar other crystals in a unified way. A single set of
the inodel parameters (Blinc-de Gennes) have also been
obtained from fitting simultaneously the experimental
values of T„C,e', and P, .

We believe, as also observed from our calculations (see
also paper II), that the exciting nonlinear behavior (ap-
pearance of the central peak, central dip, etc.) and the de-
viation from the Landau theory observed from some of
the physical properties of TGS are due to the importance
of the second part m, of the phonon self-energy. This
part arises due to the importance of the pseudospin-
phonon interaction and higher-order phonon anharmonic
interaction. The large values of the anharrnonicity pa-
rameter as shown by TGS (Table I) and also by other
crystals (Refs. 34-36) give rise to a small anomaly in the
thermal variation of specific heat. ' This is also true
for the case of Rochelle salt. A comparatively small
anomaly in the specific heat curve of the TGS (Refs. 23
and 28) also indicates the importance of the anharmonic
phonon-phonon interaction in this crystal. The small
values of the transition entropy hS=R ln2 observed in
Rochelle salt, squaric acid, PbHPO4, and also in

TGS, support the important role of the higher-order
anharmonic interaction terms in these crystals. For all
the above-mentioned crystals, the properly generalized
PLCM model might be the unique model to elucidate the
mechanism of phase transitions in them.

Our calculations also indicate that the pseudospin pho-
non coupled system behave like two subsystems (the local
pseudospin subsystem and the usual phonon subsystem)
and they are active to trigger the transition in TGS or in
other H-bonded crystals. The first one described by the
pseudospins variables, tries to stimulate the order-
disorder behavior while the second one (described by the
phonons) tries to give rise to the displacive character of
the transition. As a consequence, a competition starts.
At which temperature, field or frequency this competi-
tion will terminate or one mechanism will predominate, is
decided by the coupling strengths as well as by the sign
and magnitudes of the higher-order phonon-phonon and
the pseudospin-phonon interaction terms. The transition
is characterized by which mechanism predominates. In
this way one might get order-disorder and the displacive
mechanism when the ~, and n.

pp parts of the self-energy
become important.

It should be noted here and also pointed out in Refs.
34-36, that the above-mentioned competition between
the order-disorder and the displacive mechanisms (or be-
tween m. and m, ) might even be responsible for the ap-
pearance of the incommensurate phase in many H-
bonded systems like SC(NHz)2, (NH4)2BF4, ammoni-
um Rochelle salt, etc. One might also expect this com-
petition to exist even in non-hydrogen-bonded crystals
like K2Se04, BaTi03 doped with other ions, Nb, Sn, etc. ,
where the pseudospin concept" ' appears in a
broadened sense and it is associated with the rotations
and/or displacements of some ions or groups in the crys-
tal lattice.

Again, it might also be concluded that if at low tem-
perature the contribution from the phonon-phonon in-
teraction (vis. I ~~) becomes very weak, the "frozen-in"
disorder of the local modes (associated with the pseudos-
pin variables and hence with I, ) would be responsible
for the glasslike behavior observed in some single crystals
like SnClz(H20)2, ferroelectric alums (hydrogen-
bonded crystals) and K2Se04, Sr, „Ba„N1203
(non —hydrogen-bonded crystals), ' etc. In support of
this assumption we might mention that the transverse Is-
ing model which is actually the pure pseudospin model
[Eq. (2)] has already been found theoretically to show the
glassy behavior. ' '

The ~, part of the self-energy also appears to be re-
sponsible for the observed maximum in the C /T versus
T curve, ' a characteristic feature of glassy samples (C
being the specific heat). Calculation of the specific heat
with the PLCM model following the procedure of our
earlier work and finding out of the specific heat con-
tributed by the pseudospin-phonon part, will give impor-
tant clues to this glassy behavior in crystals.

It is interesting to note that this glassy behavior has so
far been observed only in the ferroelectric type single
crystals, where the contributions of both the phonons and
pseudospins (hence vr, ~ and n ) are found to be impor-
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tant. That is, the transition mechanism should be charac-
terized by the mixed mechanism. This is probably be-
cause of the fact that the ~pp and also the ~,„parts of the
self-energy are not equally important in the magnetic sys-
tems where the mechanism of real spin ordering is quite
different.

We have discussed earlier that depending on the
strength of the anharmonicity parameters, the H-bonded
crystals, in which we are interested in this paper, might
also be classified into four groups: group I having very
small or zero values of Ao shows large isotope effects on
both T, and C (i.e.; PbHPO~, RbHSO4, squaric acid,
etc.); group II having A I) very small but not zero shows

large isotope eff'ects on T, but relatively small (compared
to group III cited below) isotope dependence on C (i.e.;
LiH3(Se03)2, Rochelle salt, TGS, etc.); group III having

comparatively large values of Ao shows very large iso-

tope effects on T, but small isotope effects on C (i.e.; all
KDP family), and the crystals belonging to group IV
have large values of Ao and are non —hydrogen-bonded
(i.e.; BaTi03, K2Se04,etc.). Here large or small values of
A 0 correspond to the relative values in comparison to
that of the KDP crystal. Comparing the values of Ao

(from Table I) with those of other H-bonded crystals
(Refs. 34—36) we find that the TGS family belongs to
group II.

Finally, we would like to point out that the calcula-
tions made in this paper may also be extended to the
cases of other H-bonded or non —H-bonded crystals with
suitable generalization of the model. The spin-phonon,
or magnon-phonon coupled system could also be well
treated following the procedure of this paper.

In paper II we will try to show, using the calculations
made in this paper, the origin of the central peak, central
dip; etc. which, we believe, are also associated with the
pseudospin-phonon part of the derived self-energy. All of
these will ultimately support the unified character of the
PLCM model.
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