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The magnetic phase diagrams of the monoclinic antiferromagnet NiC12.4H20 were determined
from differential susceptibility measurements, for external fields applied along the easy axis (c), and

along the two principal perpendicular directions ( b and a'). The Neel temperature is

T& ——3.00+0.01 K. The T=O transition fields are H, (0)=68.35 kOe, Hb(0) =77.54 kOe,
H, (0)=86.40 kOe, and HsF(0)=23.0 kOe for the spin-fiop transition. These fields were used to
determine the parameters of a spin Hamiltonian that included anisotropic exchange and orthorhom-
bic single-ion anisotropy. The results show a slightly anisotropic exchange and a strong crystalline-
field anisotropy in the plane perpendicular to the easy axis. Several aspects of the phase diagrams
are discussed and found to be consistent with such a spin Hamiltonian. In particular, spin-wave cal-
culations of the low-T paramagnetic boundaries yielded results that agreed with the data not only in
the predicted T dependence, but also in the coefficients of the T .

I. INTRODUCTION

The experimental determination of the magnetic Geld

(H) versus temperature (T) phase boundaries of low-
anisotropy antiferrornagnets' is of interest for several
reasons. First, the T =0 transition fields, obtained from
extrapolations of the low-T boundaries, provide a direct
evaluation of the phenomenological exchange and aniso-
tropy parameters, Second, various theoretical predic-
tions for the temperature dependence of the transition
fields can be compared with the experimental data. In
this paper we present the magnetic phase diagrams of
NiC12 4HzO determined from differential magnetization
measurements, for H along the three principal magnetic
axes. The data are shown to be campatible with an or-
thorhombic single-ion Harniltonian. Using this Hamil-
tonian we calculate the low-T paramagnetic boundaries
with a spin-wave approach and find the predicted boun-
daries to be consistent with the experimental ones. We
also discuss the existent theoretical predictions for the
Neel temperature, Tz, and for the region near the bicriti-
cal point, and compare them with the experimental data.

Zero-field susceptibility and specific heat of
NiC12 4H20 were measured by McElearney et a/. Their
interpretation of the data led to an exchange parameter
too high when compared with TN, and anisotropy param-
eters of practically uniaxial symmetry (the orthorhombic
parameter was practically zero). These results were con-
tested in a short communication, in which part of the
present easy-axis data were presented, showing that their
parameters were totally incompatible with our easy-axis
T =0 transition fields. In that communication, better es-
timates of the exchange and anisotropy fields were given,
still in a simplified model of isotropic exchange and uni-
axial symmetry because this was all the data allowed. In

the present work, the addition of boundaries for H per-
pendicular to the easy-axis has made it possible to exarn-
ine a more complete model Harniltonian in which aniso-
tropic exchange as well as orthorhombic single-ion an-
isotropy was included. The set of parameters obtained
show a slightly anisotropic exchange and a single-ion an-
isotropy that is far from uniaxial symmetry. These pa-
rameters are also consistent with the other aspects of the
phase boundaries discussed.

In particular, we have calculated the low-T behavior of
the boundaries to the paramagnetic phase, starting from
the complete model Harniltonian, and using a spin-wave
approach. Earlier theoretical work predicts a T
dependence for the case of uniaxial symmetry and H ap-
plied along the easy axis. This dependence was demon-
strated for NiC1z 6HzO. ' When lower symmetry is con-
sidered (orthorhombic exchange or orthorhombic single-
ion anisotropy), the easy-axis boundary changes to a T2

behavior. ' Also, for the boundaries with H perpendicu-
lar to the easy axis, a T dependence is predicted. Two
of the above-mentioned references (Refs. 8 and 9) com-
pare their theoretical results with NiClz 4H20 data. In
both of them, however, a uniaxial model is assumed. In
the present calculations, the three boundaries of the

paramagnetic phase show a T dependence. When com-
pared with the experimental data, good agreement is
found not only with the predicted T dependence, but
also with the coefficients of T .

II. EXPERIMENTAL DETAILS

A. Experimental setup

The phase boundaries were determined from
differential magnetization (dM/dH) measurements taken
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as a function of an applied magnetic field at fixed temper-
atures below 4K. The ac mutual inductance bridge and

the variable temperature cryostat used are described in

Ref. 1. The external field was provided by a supercon-
ducting Nb3Sn magnet. The susceptibility data were tak-

en at the fixed frequency of 155 Hz.

B. Samples

Single crystals of NiC12 4H20 were grown from slow
evaporation of a saturated solution of reagent grade
NiC12 6H20 maintained in a temperature controlled bath
at 50.0+0.1'C. Since the tetrahydrated crystal is iso-
morphous with MnC12 4HzO (Ref. 10) the crystal axes
could be identified from the growth habit described by
Groth" for the latter.

NiC12 4H20 exhibits antiferromagnetic order below 3
K. No direct information on its magnetic structure is
available but magnetic susceptibility measurements indi-
cate that the easy axis is near the crystallographic c axis.
This is the same easy axis found in the isomorphous
MnC12 4HzO. It is thus likely, as pointed out in Ref. 2,
that both antiferromagnets have the same magnetic
structure. The magnetic structure of the Mn salt is well
known. ' A close look into its structure shows that it can
be described approximately in terms of two sublattices,
with each magnetic ion being coordinated to six nearest
neighbors of opposite spin.

These compounds crystallize in the monoclinic sys-
tem. ' The four water molecules and the two chloride
ions form a distorted octahedron around the magnetic
ion. The chloride ions are adjacent to one another in the
octahedron. This structure indicates that the distortion
of the cubic crystalline field acting on each Ni ion is of
low symmetry and an orthorhombic term must be includ-
ed in the model Hamiltonian.

Rod-shaped samples of NiClz. 4H20 were cut from sin-

gle crystals with their axis along the direction in which
the external field was applied. Typical dimensions were 7
mm long and 3 mm in diameter. The estimated demag-
netization factor was (N /4m )=0. 12.
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FIG. 1. Two dM/dH traces for H along the easy axis. At
T= 1.22 K the spin-flop transition and the transition from the

spin-flop phase to the paramagnetic phase are clear. At
T=2.47 K the single transition from the antiferromagnetic
phase to the paramagnetic phase appears.

netic phase occurs. This transition is also marked by a
lambda-shaped peak. The axis a' is perpendicular to
both b and c, and is a few degrees away from the a axis.
The assignment of these axes is illustrated in Fig. 2.

The critical transition fields, for H parallel to c, are
shown in Fig. 3. In this figure, some of the points near
the bicritical point were obtained from curves of dM/dH
versus T at constant H. Figure 4 displays the transition
fields for H along b and a'.

III. EXPERIMENTAL RESULTS

A. Phase boundaries

Most of the transition fields were obtained from con-
tinuous curves of dM/dH versus H at constant T. Figure
1 shows two of these curves for 8 applied along the easy
axis (the crystallographic c axis). For T= 1.22 K, the
trace shows a huge peak at the spin-flop transition and a
lambda-shaped peak at the second-order transition from
the spin-flop phase to the paramagnetic phase (SF-P). At
temperatures above the bicritical point, a single anomaly
is observed which corresponds to the second order transi-
tion from the antiferromagnet phase to the paramagnetic
phase (AF-P) (see curve for T=2.47 K in Fig. 1).

When H is applied along the principal directions per-
pendicular to the easy axis, the crystallographic axes b
and a', dM/dH is found to be almost independent of T
and H, until the second-order transition to the paramag-

FIG. 2. Magnetic unit cell of MnC12 4H20 from Ref. 12. In
our work the magnetic field is applied along the axes &, b, and c,
with 8' being perpendicular to b and c axes. The solid arrows
indicate spin directions.
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FIG. 3. Magnetic phase diagram for H parallel to the c axis.
The boundaries separate the antiferromagnet (AF), spin-flop
(SF), and the par@magnetic (P) phases.

FIG. 5. Low-T boundaries to the paramagnetic phase. The
solid lines correspond to the expressions (2), (3), and (4) with the
parameters given in Sec. V A.

B. Neel temperature
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The ordering temperature at zero field TN was deter-
mined from the extrapolation of the AF-P boundary at
low fields. Figure 5 is a plot of these data for H parallel
to the easy axis. Molecular field theory predicts a H
dependence for this boundary, ' and the extrapolation
was done on that basis. We obtained Tz ——3.00+0.01 K,

in good agreement with the reported value Tz ——2.99
+0.01 K from specific-heat measurements.

C. T =0 transition fields

The T =0 transition fields were obtained from extrapo-
lation of the boundaries. The spin-Bop boundary was as-
sumed to be temperature independent at low T, resulting
in HsF(0)=23. 0 kOe. The boundaries of the paramag-
netic phase were extrapolated by a T law, following the
theoretical predictions. The results were H, (0)=68.35
kOe, H„(0)=77.54 kOe, and H, ,(0)=86.40 kOe.

IV. THEORETICAL RESULTS

We considered a two-sublattice (u, P) anisotropic anti-
ferromagnet defined by a spin Hamiltonian of the form

H = g [J(S"Sp S+S«» )pJ+'$+p]+L g (S' )2

a,P

+E g [(S")' —(S» )']—gppH gS

20—
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FIG. 4. Magnetic phase diagrams for H parallel to b and a'.

where z is the easy axis, y is the intermediate axis, and x
is the hard axis. J and J' are the exchange parameters,
and L and E are the single-ion uniaxial and orthorhombic
anisotropy parameters, respectively. The other symbols
have their usual ineanings. The sum (a,P) runs over all
nearest-neighbor pairs. To obtain the magnetic boun-
daries to the paramagnetic phase at low temperatures we
used the Green's function method. Some details of the
calculations are explained in the Appendix. We stress
here that we considered only terms to order 1/S, ' and
two magnetic ions per sublattice and per unit cell.

When H is applied along z, the T dependence of the
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SF-P transition field is given by

gpt3H;(T) =nS(J+J')+2S(L+E)
2

3g 3(J+J )+L +E kii T
(2)

3g(2) 3(J+J'}—(L+E)
4m &2 [3(J'—J ) —(L E)]'/—

'2
kBT
S

1
X

( Jz}3/2

where the condition nS( J' J) & 2S(L— E) is sa—tisfied.
For H parallel to x, the corresponding result is

g

hatt

H,"(T)=nS (J+J') 2S ( L —E)—

(3)

3g(2) 3(J'+J ) (L E)— —
4n'&2 [3(J'—J)—(L+E)]'/'

T 2
k~T
SX

1

(Jz)3/2 (4)

where the conditions for the existence of this solution are
nS(J' J) &2S—(L+E), J'& J, L &0, and E &0.

The first-order transition field between the antiferro-
magnetic and the spin-Aop phases was obtained by equat-
ing the free energies of these two phases. The result at
T=O &s

ghatt HsF(0) =S[n (J'—J ) —2(L +E )]'

X [n(J+J')+2(L +E)]'/ (5)

with the condition n (J'—J) & 2(L +E).
It is worth noting that the above expressions for the

critical fields agree with the molecular field theory (MFT)
predictions at T =0. This can be seen, for instance, by
comparing the present expressions at T =0 with the ones
given by Gorter and Van Peski-Tinbergen' (for this com-
parison one shall make the following substitutions in
their expressions: A„=A„=nJ; 3,=nJ', D, = —2L;
D„= Dy =2E). Earl—ier calculations for the perpendic-
ular direction do not show this agreement. The
difference is the particular choice of spin operators, as de-
scribed in the Appendix.

V. DISCUSSION AND CONCLUSIONS

A. Exchange and anisotropy parameters

From the experimental values of the T =0 transition
fields and the theoretical expressions (2)—(5) we calculat-
ed the crystal-field parameters. Using a g factor of 2.28
(as obtained in Ref. 2), S = 1 and n =6 we found
J*/kti =0.971 K, JIk~ =0.891 K, L/k~ = —0.691 K,
and E/kz ——0.339 K. The negative sign of L indicates

where the condition E & 0 was used. Here, n is the num-

ber of nearest neighbors of a given magnetic ion, k& is the
Boltzman factor, and g(2) = g„" i (1/r )

For H applied along y, the low-T boundary is

g pttH3'(T) =nS(J+J') 2S(L—+E }

that the single-ion states (1/&2)(
~

1)+
~

—1)) have en-
ergies which are lower than the energy of the singlet

~

0)
by the amounts L+E. The relative values of these pa-
rameters show' that the symmetry of the crystalline field
on the Ni + is far from uniaxial, the highest anisotropy
being in the a'b plane. On the other hand, the relative
values of J' and J, (J/J')=0. 9, indicate that the ex-
change interaction is not strongly anisotropic.

B. Low'-temperature paramagnetic boundaries

The low-temperature dependence of the SF-P bound-
ary for H parallel to the easy axis is extensively discussed
in Ref. 1. There, a detailed analysis of the experimental
data for NiC12 6H20 is presented demonstrating the T
dependence predicted for uniaxial symmetry. In
NiC12 6H20, as well as in NiC12 4H20, the crystalline
field is produced mainly by an octahedron that surrounds
the Ni ion and which is composed by four electrically po-
larized H20 molecules and the two Cl ions. In
NiC12 6H20 the Cl ions occupy opposite vertices of the
octahedron (transposition)' and the anisotropy is mostly
uniaxial. In NiC12 4H20, however, the Cl ions occupy
adjacent vertices of the octahedron (cisposition}, and con-
sequently a large orthorhombic component is expected.
For this reason we have included anisotropic exchange
and orthorhombic parameters in our model Hamiltonian.

The calculations of the low-T boundaries described in
the Appendix result in a T dependence for H parallel
and perpendicular to the easy axis [Eqs. (2)—(4)]. They
differ from earlier published calculations in two aspects.
First, the starting Hamiltonian includes both anisotropic
exchange and orthorhombic single-ion anisotropy.
Second, the present calculations lead to T =0 transition
fields which agree with MFT.

Figure 5 shows the experimental data for all the three
phase boundaries in an H versus T plot. The solid lines
represent the theoretical expressions (2), (3), and (4),
which correspond, respectively, to the axes c, b, and a',
and which were obtained using the parameters described
in the preceding section. It is clear that the data are con-
sistent not only with the predicted asymptotic T depen-
dence, but also with the predicted coefficient of the T .
The calculated values of these coefficients are 4.365
kOe/K for the c axis, 3.179 kOe/K for the b axis, and
5.185 kOe/K for the a' axis. The agreement between
the data and the present calculations is good. It is in-
teresting to note that the slope for the intermediate axis is
smaller than that of the other two. It is interesting to
point out also, that the solid lines in Fig. 5 describe the
data for the for the hard and intermediate axes, actually
until beyond the plotted temperatures ( & 1.6 K), al-
though for the easy axis the experimental points start to
deviate right above 1.2 K. This is due, probably, to the
presence of the bicritical point at Tb ——2.22 K. This spe-
cial critical point governs the behavior of the boundaries
in its vicinity, as will be discussed later.

C. Neel temperature

A review of the predictions of the high-temperature
series (HTS) expansions for the critical temperatures of
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isotropic ferromagnets and and antiferromagnets was
done by Rushbrooke et al. ' For general spin values the
available estimates are those of Rushbrooke and Wood'
based on the analysis of the HTS for the Heisenberg mod-
el. For a ferromagnet with a given

~

J
~

they propose
that

4

T, = [0.579S(S+1)—0.072]
n —1 /J[

2 k~
(6)

and for antiferromagnets with the same
~

J ~, Ttv can be
estimated according to

0.65
(7)

with T, given by (6). These expressions are claimed to be
accurate within few percent. In fact a latter estimate of
Ritchie and Fisher for S = 1 based on HTS give a value
4% smaller than that calculated from (6).

Using our experimentally derived value of J in the
above expressions we get Tz ——2. 55 K, a value well below
the one observed experimentally. These expressions,
however, apply to isotropic systems, and we still have to
account for the effect of the anisotropic exchange and
crystal-field anisotropy.

The influence of the ratio J/J' has been studied from
high-temperature series expansions by Jou and Chen ' for
S=-,' and by Mouritsen et al. for a classical spin
(S~~ ). For a ratio of 0.9 (present case) the estimated
corrections are +6.3% for S= —,

' and +3.4% for S~~.
These corrections bring our theoretical TN (for S= 1) to a
value between 2.62 and 2.7 K. The influence of the
crystal-field anisotropy was discussed by Lines and Dev-
lin in the MF and also using various decoupling pro-
cedures for the Green's function method. Brankov
et al. , from high-temperature series expansions, con-
clude that the MFT results work better. Considering an
experimental ratio (L/J)=0. 77, and the curves for a
magnetic simple-cubic lattice of Ref. 23, the estimated
correction factor is 1.07. This brings the theoretical pre-
diction to between 2.8 and 2.9 K, a value already close to
the experimental one. We do not know of any work that
includes the influence of E on Tz.

D. The easy-axis AF-P boundary near T„

In Fig. 6, the AF-P boundary for H parallel to the easy
axis is plotted against H . The data suggest an asymptot-
ic quadratic dependence, which, in fact, is predicted by
high-temperature series expansion. In this reference the
authors also conclude that the exchange anisotropy
should not affect the slope of the H . In the MFT the en-
tire boundary is quadratic' ' and Shapira and Foner
give the following expression for its slope:

N C(H) 2S +2S+ 1

H2 40k 2 P

Shapira also estimated the influence of the crystal-field
parameter on the boundary, to first order in L Ik~ T. For
S =1 the single-ion anisotropy has no effect on the slope.

p I

2.5 3.Q
TEMPERATURE (K)

FIG. 6. Antiferromagnetic-paramagnetic boundary near Tz.
The solid lines correspond to the Eq. (8).

Expression (8) yields the value 9.75X10 ' K/Oe which
was used to generate the solid line in Fig. 6. The agree-
ment at low fields is quite good.

E. The hicriticai point (BP)

The extended scaling theory predicts that the AF-P
and the SF-P critical lines meet the SF line tangentially at
the bicritical point (Hb, Tb). ' The mathematical ex-

pressions for these phase boundaries near the BP and the
choice of the best scaling axes are discussed in Ref. 30.
For our discussion, the relevant point is that our com-
pound should be a representative of an N =2 system (N
being the spin dimensionality at the BP). This is due to
the orthorhombic character of the anisotropy, which
causes both critical lines approaching the BP to have an
Ising-like behavior. A uniaxial anisotropy would corre-
spond to X =3.

Figure 7 compares our data with fits to the theoretical
predictions for the N =3 case (solid line) and N=2
(dashed line). The theoretical curves were obtained by
least-squares fits of the data to the equations g =co~t for
the SF-P boundary and g = —

co~~~t
~ for the AF-P bound-

ary. Here, g=g —pt and t=t+qg, where g=H —Hb
and t = ( T Tb ) /Tb. The pa—rameter p = (1/Tb )(dH sF I
d T )b was obtained from the tangent to the experimental
spin-flop boundary at Tb ——2.22 K, resulting in p =41.2
kOe /K . The parameter

q =[(N+2)I3NTb](dT, /dH')H

was determined from the experimental slope of the easy-
axis AF-P boundary near Tz, resulting in q =2.68 && 10
kOe for N =3, and q=3.21 kOe for N =2. The
crossover exponent P and the amplitude ratio co~/coi were
taken at their theoretically predicted values ' /=1. 25
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These definitions preserve the commutation rules for the
spin operators. For instance, for H along the z direction
these rules are

[S+ S ]=2$', [S',S ]=—S

and

[s:,s+]=s+ .

~ ~ ~ ~ ~ ~ ~ ~ ~

20—
I I I

2.0 2.1 2.2 2.3 2.4

TEMPERATURE (K j

FIG. 7. Magnetic boundaries near the bicritical point. The
solid line corresponds to the prediction of the extended scaling
theory for N =3, and the dashed line for N =2.

and (Ni/f01) =2.51 for E =3 and /=1. 175 and NJ ——coi

for N=2. Therefore, the only adjustable parameter was
one of the amplitudes co. Clearly, the data points are
much better described by the N =2 curve.

%'hen H is applied along x and y, S, must be replaced,
respectively, by S and S".

For H parallel to x, we observe that the present choice
of S+ and S is difFerent from that used in Refs. 7 and 9.
Although that choice also preserves the commutation
rules, the present one leads to T =0 transition fields that
agree with MFT for H perpendicular to z.

Next we introduce the Holstein-Primakoff transforma-
tion:

S,+ =(2S)' 'f (S)a

S~ =(2S)aJ' (S),
S' =S—a~a

where

f (S)=[1—(a a /2S)]'
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APPENDIX

To obtain the temperature dependence of the phase

boundaries of the paramagnetic phase at low tempera-

tures from the spin Hamiltonian (1), we introduce raising

and lowering spin operators S+ and S for each one of
the directions in which the field is applied. For the sub-

lattice we write

S—=S'+is~ for H parallel to z (easy axis),

S—=S'+is" for H parallel to y (intermediate axis},

andi =(x,y, z).
At low temperatures it is reasonable to consider the ap-

proximation

f~(S)=1—(1/4S)a a

If we now introduce the lattice Fourier transformation
we obtain a Hamiltonian that contains products of two
and four spin-wave operators up to the order 1/S. Next
we write the equation of motion for the Green's function
((ai, ', ak )) and ((a i, ', ak. )) where k is the reciprocal-
lattice vector belonging to the first Brillouin zone of the
simple-cubic lattice. %ithin the random phase approxi-
mation we obtain a renormalized magnon energy spec-
trum ei,(T,H}. The critical fields are determined from

ez (T,H)=0, where k, is a vector that points to the

corner of the Brillouin zone. Neglecting the small zero-
point corrections, and noting that, near the corners of the
Brillouin zone, ei,- A

i
k —k„ i

where A is a constant,
we obtain the dominant term in the temperature. The re-
sults are the three equations (2), (3), and (4}.
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