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We have suggested that the properties of the resonating-valence-bond (RVB) ground state can
usefully be studied first by a correspondence with a lattice statistics model, and second by embed-

ding this RVB point into a larger family of lattice statistical models —the loop gas. The nature of
this loop gas —correlations, phase transitions, and order parameters —is studied in this paper by
means of Monte Carlo techniques, on lattices of up to 4608 sites or 9216 bonds. An ordered phase is

identified with divergent susceptibility and an order parameter which has the topology of a circle.
Since the model is two dimensional, the phase transition is expected to be of Kosterlitz-Thouless
(KT) type. The RVB point is within this ordered KT phase.

I. INTRODUCTION

Anderson and co-workers' have proposed that a
resonanting-valence-bond (RVB) ground state may be
applicable to the new high-temperature superconductors.
This RVB state is an old idea, and visualizes the ground
state of the electronic system as a quantum fluid of singlet
pairs. The number of possible ways of pairing the elec-
trons, or equivalently of orientating the singlet pairs on a
lattice of 2N sites, is very large —exponential in N —and
thus the ground state is a superposition over a very large
number of nonorthogonal spin-pair basis states. In the
new materials for which the RVB is thought to be applic-
able, the layered structure and highly anisotropic conduc-
tivity lead us to consider a two-dimensional RVB state.

We have made a theoretical effort ' to understand the
nature of the two-dimensiona1 RVB state, and excitations
from this ground state. In Ref. 4, we developed an exact
correspondence of the correlations in the RVB ground
state to the correlations in a lattice statistical problem.
We have embedded this RVB point in a more general lat-
tice statistical model —the so-called "loop gas"—
essentially by varying the ratio of diagonal to off-diagonal
terms in the wave-function normalization by means of a
fictituous activity of fugacity. We then argued that this
more general loop gas has a phase transition, with two
phases —a critical phase and an ordered phase.

The RVB point was sufficiently near the phase bound-

ary that it was not immediately clear in which phase it
might lie. In order to determine the nature of the RVB
point, we have made Monte Carlo (MC) calculations on
both the RVB and loop gas problems, using lattices with

up to 4608 lattice sites or 9216 bonds. We find the fol-
lowing. First, the order parameter of the loop gas in the
"ordered" phase is topologically like that of a planar x-y
model, and by well-known theorems, ' cannot have true
long-range order in two dimensions. Instead, the phase
transition is of the type that has become known as a
Kosterlitz-Thouless (KT) transition with a divergent sus-

ceptibility in the ordered or KT phase, but no long-range
order. Second, the RVB point is in this ordered or KT

phase. We believe that these facts offer a novel mecha-
nism for superconductivity, and therefore presented a
possible scenario for superconductivity in the RVB
state.

II. THE ORDER PARAMETER

Let us describe the loop gas model. The partition func-
tion is given by

Z (x,y) = g x 'y

Here c is a loop covering on a square lattice. This means
that closed loop are placed on the bonds between nearest
neighbors of a two-dimensional square lattice, so that
every site is on exactly one loop. The loops do not inter-
sect or touch. We do allow loops of length 2 and zero
area, corresponding to the diagonal terms in the normali-
zation; there are P2 of these. Otherwise the loops never
retrace themselves, have finite area, and correspond to
the off-diagonal terms in the normalization; there are P'
of these. The parameters x and y are activities or fugaci-
ties which allow us to recover the entropy for given
values of the thermodynamic variables P2 and P'. A lat-
tice of "size" N has 2N sites, 4N bonds, and the total
length of all the loops is 2N=2P2+P'. The lattice is
then wound on a torus, so that doubly periodic boundary
conditions are imposed in directions parallel to the diago-
nals of the square lattice —or perhaps more properly, a
diamond lattice. The RVB point is x =2, y =4, and the
wave-function normalization %'+4 is proportional to the
partition function at the RVB point. A typical
configuration from the MC calculation at the RVB point
is shown in Fig. 1.

The ordered phase is stabilized by y ~~, and it is to
this limit that we shall now go understand the order pa-
rameter. (The parameter y is analogous to inverse tem-
perature. ) In this litnit we make the number of loops of
nonzero area P' as large as possible; this mean N/2
square loops each of length 4. In Fig. 2(a) we show such
an ordered phase of squares "crystallized" onto one of
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FIG. 1. This is an instantaneous configuration in a Monte
Carlo simulation of the loop gas at the RVB point for a lattice
of 256 sites and periodic boundary conditions. The dimers are
actually zero-area loops of length 2. The initial configuration
was a superlattice of squares on the faces indicated by solid cir-
cles.

two directions, so that we have MXM unit cell and
N =4M . Then the number of sites is SM, the number
of bonds is 16M, the number of faces is 8M, the num-
ber of bonds of each class is 4M, and the number of links
is 8M .)

However, there are not just four pure phases, with a
sharp phase boundary between different phases in a phase
mixture. Instead, we can mix for instance phase A and B
arbitrarily finely by shifting diagonal rows of squares, as
shown in Fig. 2(b), with no cost in energy and no phase
boundary. Thus there is a continuum of equilibrium
states, with the topology of a circle, going from
A~B~C~D~A. (This is analogous to the shear in-

stability in two-dimensional "crystals. ")
We may define the order parameter as follows. Consid-

er the four classes of bonds as labeled 0,1,2,3 in Fig. 3.
There are N bonds of each class. Let

four equivalent superlattices. The other possible phases
are given by translations along the vertical and diagonal
directions as shown and labeled in Fig. 3. Indeed, Fig. 3
shows a unit cell of the ordered superlattice. This unit
cell contains 8 sites, 8 faces, and 16 bonds each grouped
into four classes and appropriately labeled. (The lattice
should contain a multiple of this unit cell and thus N
should be a multiple of 4. In fact, we consider only dou-
bly periodic lattices with equal repeat distances in the

N = QN(j)
jEa

be the number of links of the loop covering on bonds of
class a. Then N( j), the number of links on bond j, is 0,1,
or 2, so N =0, . . . , 2N. Let us represent the fractional
occupancy of class a bonds by links by the loop covering
as n (a), where

n(a)=2N lN —1, 3 )n( a)) —1 .

These occupancies are normalized so that the four super-
lattices of squares at y~ ~ are given by [n(0),n(1),n(2),
n(3)]=(+ 1, + 1,—1,—1) for A; =(—1, + 1, + 1,—1)
for B; =(—1,—1, + 1, + 1) for C; =(+ 1,—1,—1, + 1)
for D as shown in Fig. 4. We also show in Fig. 4(b) the
square curve for the y ~ ao equilibrium states with
A ~B~C~D ~ A. We note the sum rule

g n(a)=0 .

It is useful at this point to make a change of variables

oooo ooo. ''o ''o

'oo..—::—oo.

b]

pc/

gd

Qa

(b)

FIG. 2. (a) One of the four superlattices of squares for the
loop gas as y~~. (b) An intermediate equilibrium state for
y~ ~, halfway between the A and B phases. Shaded squares
are on the A superlattice, while unshaded squares are on the B
superlattice. (It could as well be the C and D phases. )

FIG. 3. The unit cell of the ordered superlattice. The classes
of equivalent faces are labeled by bold circles, sites are labeled

by squares, and bonds are labeled by light circles. The arrows
indicate the transitions to take the A phase into the B, C, and D
phases.
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in order-parameter space, from the four dependent vari-
ables n(a) to the three independent variables u, u, w

defined as

u =[n (0)+n (1)/2, u =[n (0)+n (3)]/2,
w =[n (0)+n (2)]2

or

The Monte Carlo investigation in this paper is largely
concerned with determining whether, and in what sense
the order found for y ~~ persists for finite y.

(a)

n(2)

n(3) 1(
V

(b)

n(0)

FIG. 4. The order parameter phase plane is shown. (a) The
full u-U-w space. The shaded plane is the w =0 plane; the values

of the order parameter contracts onto this plane. (b) The m =0
plane. The outer boundary is the allowed region. The bold
directed square shows the phase boundary in the y ~~ limit,
with the labeled corners giving the four periodic phases. The
sense of the arrows shows a positive winding number of + 1.

n(0)=u+U+w, n(1)=u —U —w,

n( 2)=w —u —U, n(3)=U —w —u .

Clearly the sum rule is satisfied. One final transformation
to polar coordinates will prove useful:

r =u +U, tan(8)=U/u .

III. THE MONTE CARLO SCHEME

Before outlining the Monte Carlo (MC) calculation, we
first need to derive some conservation laws. Let us con-
sider a horizontal row of 4M bonds, which may be divid-
ed into M bonds of each of the four classes. This row
connects with the next row of 4M bonds through a row of
2M sites. Let us suppose that from 4 we have E dimers
on the first row of bonds. These cover exactly K of the
2M sites, leaving 2M —E to be covered by the next row
of dirners. Thus the partition function is symmetric if we
reflect K about M, and therefore by the convexity of the
free energy, we can as well evaluate the partition function
in the "microcanonical" ensemble where the number of
links or dimers from 4, and from 4+, in each row and
each column in the loop gas is exactly M.

The Monte Carlo calculation we use consists in making
a transition from one loop gas configuration to another,
by (1) picking a face at random from the 8M faces; (2)
looking to see if there is a pair of dimers from either 4 or
4+ located on a pair of opposite edges of the face; (3)
moving this pair of dimers from the original pair of oppo-
site edges, to the alternate pair of opposite edges of the
face, with a transition rate determined by the usual
Metropolis algorithm.

'

It is the determination of the transition rates which is
complicated. If the number of nonzero loops does not

change, then the Boltzmann weights x 'y can be deter-
mined entirely by a local calculation which examines only
the configuration of dimers about a face. However, when
the edges of the face are occupied only by a pair of di-
mers from either 4 or 4+ located on a pair of opposite
edges, one must trace the entire loop beginning from one
dimer to see if the two dimers lie on the same loop or not;
the transition rates will be different in the two cases. In
rare cases, this can require us to walk a loop of length
equal to the size of the entire system. In Fig. 5 we show
those dirner configurations about a face which may possi-
bly lead to a flip, along with the ratio R of the Boltzrnann
weight of the configuration after the flip, to the
Boltzrnann weight of the configuration before the flip.
For the Metropolis algorithm —which we use —the tran-
sition rate is equal to the ratio of the Boltzmann weights
if the ratio is less than one, and unity otherwise.

This scheme obviously keeps us within the micro-
canonical ensemble, since it can never change the number
of dimers within a row or column. We have no doubts
that all states within the rnicrocanonical ensemble are ac-
cessible, although we have not proven it. As our initial
configuration, we take the y ~ ~ limit of one of the four
superlattices of squares. This guarantees that we are
within the proper microcanonical ensemble.

Thus the basic transition is such a "flip" of a pair of di-
mers. (We call it a flip whether it is actually realized or
not. ) Then for an "update, " we take an average of one
flip per face, or 8M flips. For a "run", we fix x,y and
the size of the system M. We then start with 1000 up-
dates to bring the system to equilibrium, begin recording
running averages for 1000 updates, store the result, begin
new running averages, etc. , and repeat for a total of 10
times. Then we keep x and the size of the system M con-
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stant, while y is increased along a "heating" curve for
another run, using the final configuration from the last
run as the initial configuration of the new run.

We then made runs with x always fixed at 2, and

y = 10,6,5,4,3,2, 1 for systems of M=2,4,6,8, 10,12; and
y=4, 3,2, 1 for M =24. (Remember, the number of sites is
8M and the number of bonds is 16M .) A total of ap-
proximately 50 h of CPU time on a VAX785 computer
was thus consumed.

R=x

R = y/x 2

R = 1/x

IV. RESULTS: QUALITATIVE FEATURES

The Monte Carlo calculation picks systems of size N
from an ensemble of such independent systems, by per-
forming a random walk within the ensemble, with visita-
tion times proportional to the Boltzmann weights. Thus
an average over the walk of the MC calculation will con-
verge to an ensemble average. Since we are in fact in-
terested in the thermodynamic limit of large systems,
when N ~~, a second limiting process will be necessary.

Let us use k to denote a system selected from the en-
semble, with k =1, . . . , L. Let the unnormalized weights
be Q(k). If q denotes an intensive thermodynamic pa-
rameter such as n(a), given by a system average over
sites j in a system of size N as

R=x /y
2

R=y

R = y/x

R=x /y
2

R = 1/y

q= gq, /N,
J

then let q (k) and q (k) be the value of q and qj in system
k of the ensemble. Thus, the thermodynamic value of q is
the ensemble average & q & of q, given by

R = j /y R=y

&q & = g Q(k)q(k)/g Q(k)

N g Q(k) ' g g Q(k)qj(k) .
k j

Similarly, we can calculate the mean-square deviation

FIG. 5. Those dimer configurations about a face which may
possibly lead to a flip, along with the ratio R of the Boltzmann
weight of the configuration after the flip, to the Boltzmann
weight of the configuration before the flip. This ratio R gives
the transition rates. Double lines are a pair of dimers and
dashed lines are empty bonds on the face; a curved semicircle
represents a path of arbitrary length extending off the face and
through the remainder of the lattice.

&(q —&q &)'& = &q'& —&q &'= g Q(k)q'(k) g Q(k) —&q &'

k k

N g Q(k) 'g g g Q(k)(q (k) —&q &)(q'(k) —&q &)
k

' g ggqq (j,j ' ):Xqq /N . —

In this expression, we have introduced the familiar pair-
correlation function g (j,j ) and susceptibility X~ . In
the usual situation with translational invariance and rap-
id decay of correlations, g (j,j')=g (j—j') so that X
is intensive. For the loop gas the correlations decay very
slowly, so the susceptibility may not converge in the ther-
modynamic limit. In any case, all quantities defined
above are implicitly functions of the size N of the system.

However, in the MC calculation we not only get the

moments of an intensive thermodynamic quantity q, but
more generally the distribution function P(q) is defined

by

P(q)=&5(q —q')&= QQ(k)5(q —q(k)) QQ(k) .
k k

Again this is an implicit function of the system size N.
The previous moments of q are moments with respect to
this distribution.
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In this section we wish to discuss the qualitative nature
of this distribution function when N is of a convenient
size and the intensive thermodynamic parameter q is the
set of proposed order parameters for the system: n (a),
a=0, 1,2,3; or better u, v, w; or as we shall see, u, v or
equivalently r, O. Although not producing "numbers, "
such a study is well worth the time since it is certainly
more rewarding than simply looking at a succession of
pictures like Fig. 1 and at the same time will give us an
idea of what numbers we should be calculating in Sec. V.
(The pictures of Fig. 1 were, however, invaluable for de-

bugging the program. )

The first qualitative feature of a MC run is that the dis-
tribution function P (u, v, tv) contracts onto the u-v plane
with ( tv }=0, and ( tv }=Xa,a, /N. The numerical sup-

port for this will be presented in Sec. V; it is immediately
apparent by eye. Thus, let us project down onto the u-v

plane and consider the distribution function P(u, v). For
w=0, the allowed values of u and v are —1&u (1,
—1 ( v & 1. In Fig. 6, we plot a point in the u-u plane for
each time that value of (u, v) was measured in a single
MC run. The system size was N =(14) =196, or M =7.
This value was chosen since the variables u and v change
in steps of 2/N, and with a screen resolution of (200)
pixels, this allows us to avoid any binning effects. Furth-
ermore, for a reasonable MC run of 4000 points, this
gives us a coverage of about 10%%uo, so that the visual den-

sity of the scatter plot should give a good idea of the ac-
tual density P(u, v). In Fig. 6, we show a succession of
pictures at intervals of 1000 updates, for x =2 and

y =10. Other values of y with y) 3 are qualitatively
similar.

We note the following two features of this picture,
most evident for the large value of y. ' The points are
most dense in a region with roughly the shape of the cir-
cumference of a circle. (2) As the number of points accu-
mulate, they are distributed roughly uniformly around
this circular region. Watching the points accumulate in

time gives one the impression that the angle 0 is perform-

ing a random walk.
In light of these qualitative features, we expect that the

"order parameter" is planar in nature with the topology
of a circle or U(1) symmetry, and since the lattice is two-
dimensional, by well-known rigorous arguments there
can be no long-ranged order, because of the strong fluc-
tuations of the local angle 0 of the order parameter.
However, there can still be a Kosterlitz-Thouless type of
phase transition characterized by a transition from a
divergent to a finite susceptibility 7„„.This interpretation
will shape the analysis of Sec. V.

V. RESULTS: QUANTITATIVE FEATURES

We have already described how the Monte Carlo calcu-
lations were made; in this section we present the quanti-
tative results. In light of the expected long-ranged
power-law correlations, we decided to minimize the
amount of evaluation and determine only the essentials,
so that we might go to systems with linear dimensions of
approximately 100 bond-lattice constants. (Previous cal-
culations for the RVB state —an exact enumeration of di-

mer configurations —were limited to a 4)&4 square lat-
tice. "

This precludes the possibility of a complete evaluation
of the correlation functions, for this would require us to
walk each loop of a loop gas configuration. Also, the
amount of data would be so large as to be unwieldy. (We
did perform such a calculation on rather small systems of
up to 128 sites, verifying that the RVB variational esti-
mate of the Heisenberg antiferromagnet ground state
remains about 4%%uo above the best variational estimate
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FIG. 6. We plot a point in the u-U plane for each time that
value of (u, u) was measured in a single MC run. The system
size was X = ( 14)' = 196, or M =7. We show a succession of
three pictures taken at intervals of 1000 updates, for x =2 and

y =10.
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with other trial wave functions.
Instead, we chose to evaluate only four quantities:

( w ), ( w ), (r ), and ( r ). First, we give in Fig. 7 a ln-

ln plot of (w ) versus the system size N. Clearly these
confirm our remark in Sec. IV that m is not an order pa-
rameter of the system but is simply an ordinary thermo-
dynamic variable with equilibrium value m =0, and a sus-

ceptibility X (2,y) as shown in Fig. 8. There is no evi-

dence for any anomaly as a function of y. (As we shall
see in the next paragraph, the evaluation of ( w ) serves
only as a check on the consistency of the MC calculation,
since it is expected to vanish on general grounds. )

For the remaining two quantities, (r ) and (r ) some
interpretation is in order before we present the numerical
results. The loop gas has geometric symmetries which in
order parameter space translate into a dihedral symmetry
D4, or invariance if

uI ~—ttI, 8~ —8 or 8~8+m/2 .

Then for averages of the order parameters, by symmetry
we will have

&u &=&U &=&w&=0

and

& w') =X /N, & u') =
& U') =X„„/(2N),

& u U & = ( UttI ) = & wu & =O .

These symmetries, however, strictly hold only in the limit
of an infinite Monte Carlo run.

Let us examine the expression from Sec. IV for

In fact, let us course grain the order parameter so that we
define a local order parameter with components
u =r cos(8 ), U =r sin(8 ). Then alternatively

(r ) =X„,/N=N g g (r r'[cos(8 )cos(8 )+sin(8 )sin(8 ])
J J

=N g g (r, r'cos(8 —8, )) .
J J

Now the correlations in r can be expected to decay rapid-
ly, so that

(r') =X„„/N=(r )'g g (cos(8, —8, ))/N' .

Finally, by the familiar arguments from spin-wave theory
for the fluctuation in the local angle of the order parame-
ter, we expect the pair correlation function for the angles
to decay as a power of the separation

l

j-j'
l
. Defining

an appropriate exponent g by

gag(J, J )=(cos(8 —8'))~go
I j —j'

l

we have the final result that

This expression only holds when P„diverges with in-

creasing N, or g & 2.
Thus, a ln-ln plot of X„„=N ( r ) as a function of N, for

large N should give a straight line with either finite slope
1 —g/2 & 0, or zero slope and a finite susceptibility in the
thermodynamic limit. The transition between these two
kinds of behavior indicates a Kosterlitz-Thouless-type
phase transition due to the unbinding of pairs of vortices
with winding number b, 8/2m =+1. The intercept of such
a plot might loosely be related to the magnitude of the
length of the local order parameter ( r ) .

After this lengthy prelude, in Fig. 9, we present such a

R
a

1

10

0
0

ln(N/64)

FIG. 7. ln-ln plot of susceptibility X =)V(w'l vs system
size N. The straight line is a least-squares fit to the data for sys-
tems of size N =4(12) =576 or less; i.e., all but the right-most
set of points.

0 q
0.0

I

0.2
I

0.4
I

0.6
I

OQ 1.0

FIG. 8. A plot of the susceptibility P vs 1/y as determined
from the data of Fig. 7.
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dimensional Heisenberg-Ising model at the isotropic
point 6= —1.
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