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Ground-state properties of generalized Heisenberg chains with composite spin
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We consider in detail the ground-state properties of recently introduced generalized Heisenberg

models which can have several spin operators at each site and which interpolate smoothly between

Heisenberg chains of different spin lengths. We show that the mappings to field-theoretical models

used to describe the critical properties of the Heisenberg model remain valid in the composite-spin
model. In models which interpolate between the spin-~ and the spin-1 behavior, these mappings

predict an extended singlet phase around the isotropic antiferromagnetic point whenever the models

move away from the spin-2 point. Numerical calculations on finite chains seem to confirm the ex-

istence of this singlet phase. The phase boundaries are, however, found to be independent of the in-

terpolation parameter, and thus in disagreement with the predictions of the continuum theory, indi-

cating its limitation.

I. INTRODUCTION

In a recent paper' we have introduced composite spin
models with a generalized Heisenberg-like interaction. It
has been shown that with the appropriate choice of the
coupling constants, the low-lying levels of the
composite-spin models will coincide with those of the
usual Heisenberg chain with arbitrary spin. The extra
states introduced by the extra degrees of freedom of the
composite spin do not mix, in special cases, to the other
levels and lie higher in energy. It was also shown that
this makes it possible to connect continuously, by chang-
ing a single parameter, Heisenberg models with different
spin s.

This possibility is of special interest in light of a
surprising prediction by Haldane, according to which
half-integer and integer spin Heisenberg models behave
drastically differently when the coupling is antiferromag-
netic. Near the isotropic antiferromagnetic point for in-
teger spins the ground state is a nondegenerate singlet
state, separated from the first excited state by a finite gap.
This so-called Heisenberg-singlet phase appears in a rela-
tively narrow region between the antiferromagnetic, the
massless planar, and the usual massive singlet phases.
For half-integer spins, however, this Heisenberg-singlet
phase cannot exist, the antiferromagnetic and planar
phases meet at the isotropic antiferromagnetic point.

A lot of numerical work has been devoted to study this
problem. " The numerical results for the S=1 model
indicate quite strongly the existence of a finite gap at the
isotropic point, the strongest evidence being the Monte
Carlo calculation for rather long chains (up to 32 sites),
although other calculations on chains with 40 sites gave
contradictory results. Due to the spin quantization the
calculations using the original Heisenberg Hamiltonian
have to be done separately for integer and half-integer

II. DEFINITION OF THE COMPOSITE-SPIN MODELS

A composite-spin model was recently proposed' by us
where at each lattice site i there are two or more spin
operators o.

, (a=1,2, . . . , ) with arbitrary spin lengths.
We assume that the interaction is of short range in space,
and consider on-site and nearest-neighbor interactions
only. On the other hand a spin species a interacts with
all spin species on the same site or on nearest-neighbor
sites. The Hamiltonian can be decomposed into a sum

H=gH ts,
a,P

(2.1)

where H & describes the interaction between spin species

spins. Having at our disposal the composite-spin model
where integer and half-integer spin situations can be con-
sidered in the same framework, it seemed to us that it
could shed some light on the mechanism of this mass gen-
eration. In this spirit we have undertaken analytical and
numerical studies of the composite spin model taking two
or more spins at a site and using different choices of the
coupling constants.

The model and its relationship to the usual Heisenberg
chain with arbitrary spin is presented in Sec. II. When
the spin is composed of S =—,

' operators, various transfor-
mations can be used to study the properties of the model
in the continuum limit, as discussed in Sec. III. In Sec.
IV we show first the numerical results for the case when
the composite spin model interpolates between S = —,

' and
S=—', behavior. The results obtained here serve as a
guide for how reliable the numerical calculations on the
available chain lengths can be. The problem of the
Heisenberg-singlet phase is treated in Sec. V. Finally a
discussion of the analytic and numerical results is given
in Sec. VI.
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~z X aiaaj'p+D X aiaa(p &
(2.2)

where the xy term is written in terms of the raising and
lowering operators.

In general, if there are p different species of spins, there
are 3p different coupling parameters in the Hamiltonian.
One of the parameters can be chosen as setting the energy
scale so the dimension of the phase space is 3p —1. This
is too large for any practical calculation even for two
different spin species and it is useful to consider two-
dimensional sections of the phase space by choosing sim-

ple parametrizations.
Let us consider first models where D ~=0. A particu-

larly simple parametrization is

Jk, for a=P
for a&P (2.3)

a and P.
Furthermore, it will be assumed that each of the terms

H
&

is of the same form. It contains a usual Heisenberg
exchange with a possibility for anisotropy in the longitu-
dinal terms only and an on-site coupling between the z
components of the spins

~a@ 2 xy X (+iaaf+ ia+jp)
t& J

bile magnetic defect in the chain. Because of the shorter
spin length, this state is separated from the ground state
by a finite energy. In the "planar" region,

Jzy & Jz & Jzy this energy difference is hE =2Sp Jzy in
the limit N ~. In the ferromagnetic region J, & J„
this energy difference is AE =2S J,. Taking the absolute
value of J, this is also true on the antiferromagnetic side,
away from the isotropic point, where the Neel state is a
good approximation.

Since, as mentioned above, at X=O the properties of
the model are those of independent chains with spin
length cr, while at A, =1 the behavior of a magnetic sys-
tem with spin Sy

——g~o is recovered, in a model where
A, varies from zero to 1, the behavior of the model should
vary from that corresponding to a spin-o chain to that
corresponding to a spin-S chain. How smooth that vari-
ation is and what we can learn from it will be the subject
of the further sections.

An interesting and potentially useful feature of param-
etrization (2.3) is the behavior under canonical transfor-
mation of spin variables. When p=2 and the two spin
species have the same length, interchanging the two spin
operators on every other site gives the same problem with
modified parameters, J„ in (2.3) replaced by AJj, and AJk

by Jk. Consequently, all the energy levels satisfy a simple
self-duality relation

which results in a two-dimensional phase space for all p.
Here k =xy or z. We have done detailed calculations
only in the cases p=2, 3 and o =—,', 1, but it is easy to
generalize some of the results to arbitrary values of these
parameters.

It is clear that at A, =O, the model reduces to that of p
decoupled spin chains with their individual spin lengths.
For finite A. , when the different spin species are coupled,
in general little is known about the behavior of the mod-
el. At A, =1, however, the ground state of the model
given by Eqs. (2.1)—(2.3) is identical to that of a Heisen-
berg model with spin S = gy; a . Although this state-
ment is not trivial, it is not surprising either, as will be
shown below.

The Hilbert space of the problem is a direct product of
the spin states of the different spin species. Using the
rules of addition of the angular momentum, this Hilbert
space can be sectorized according to the length of the to-
tal spin on a site, S, Sz —1, S —2, . . . . Using as basis
states the eigenstates of the z component of the spin from
each sector, the Hamiltonian will mix states from
different sectors. A particular simplification arises at
A, =1. Namely, at this point the Hamiltonian will behave
as the usual Heisenberg exchange Hamiltonian. The S'
projections of neighboring spin states can be changed,
one is lowered, the other is raised, but the spin length is
not modified. The spin length on any site is conserved.
The ground-state energy is in the sector where at each
site the spin length is the largest, i.e., the ground state is
identical to that of a Heisenberg model with spin S . The
low-lying states are also identical. The first extra states
compared to the spin-S Heisenberg model are those
where at one site a spin S is replaced by a spin of length

S~ —1. At X=1 this spin can be considered as an immo-

E (k) = RE (1/A. ) . (2.4)

(2.5a)

This parametrization defines again a two-dimensional
surface in the phase space. The system is now reduced at
A, =O to a single Heisenberg chain with S =o.

l and a col-
lection of independent, free spins. At k= 1 its behavior is
exactly the same as described above.

This duality relation is helpful in studying the scaling
behavior of energy levels since it holds for finite chains,
too. The duality relation (2.4) relates the weak-coupling
situation 0&A. &1 to the strong coupling case 1&A, & ~.
The case A, =O, where the coupling between different spin
species vanishes, is related by duality to X= 00 where the
coupling between identical spin species can be neglected.
However, the type of the ground state is the same in the
two cases. For A, &0, the model would include both fer-
romagnetic and antiferromagnetic couplings and by vary-
ing A. the character of the ground state would change ac-
cordingly. It is clear that the duality relations are valid
for A, &0 only.

It is desirable to have other routes in the phase space
for interpolating between the A, =O and A, = 1 systems, and
therefore we look for other parametrization that satisfy
the duality relationship. Another parametrization with
such features is one where one spin species (a = 1) plays a
distinct role. The couplings Jk' between the spins of this
species are denoted by Jk (k =xy, z), while the couplings
Jp of these spins to the other spin species (p+1) and the
couplings Jk~ between the other spin specifies (a,p&1)
are chosen as
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Jk =JP'=+~k

JI =Jk

(2.5b)

For p=2 and identical spin length S, parametrization
(2.5a) leads, by a trivial interchange of spins at each site,
to a self-duality relation for the energy levels E, of the
Hamiltonian.

For any p & 2 relation (2.4) does not hold, but parame-
trization (2.5a) is dual to

where

p

S,'= g 0',
a=1

(2.11)

The single-ion anisotropy parameter D gives a new di-
mension in phase space and allows us to study the ap-
pearance of the singlet phase for large D as A, varies from
X=O to A, =1.

This model does not satisfy self-duality. This property
can be restored with the choice

in the sense that the energy levels Eb resulting from this
parametrization are related to E, by

D =D ~=v'AD .

III. INFINITE CHAIN RESULTS

(2.12)

E, (A, )=A,Eb(1/A, ) . (2.6)

When p) 2, further interesting parametrizations can be
found that satisfy the duality relationship. One such pa-
rametrization is the "helical" parametrization. When all
the spin lengths are identical, we take the following
choice

Jk' =Jk
Ja,a+ 1 g 1 /(P —1)Jk k

Ja, a+2 g2/(P —1)Jk k 7 (2.7)

Ja,a+P —1

k k

where the index of the species should be taken mod p.
Due to the helical symmetry of this parametrization the
energy levels satisfy (2.4), if the number of sites on the
chain is a multiple ofp.

All the parametrizations defined so far conserve the an-
isotropy, the couplings between the xy and z components
have the same A, factors. The spin- —,

' model at A, =O and
the spin-1 model at A, =1 have the same anisotropy
J, /J„». Yet another interesting parametrization for p =2
can be chosen in the following way:

Jxy Jxy Jxy ~ Jxy Jxy ~xyaa pp ap pa

JaP JPa g1 —qJ
(2.8)

where q is an arbitrary exponent.
At A, =O this model reduces to two decoupled spin- —,

'

XY models, while at A, =1 an anisotropic spin-1 Heisen-
berg model is recovered. Moreover, it is easily seen that
the model satisfies the duality relationship.

When the on-site terms with D ~ in (2.2) are included,
we will use two parametrizations. One possibility will be
to take

D if a=P
Dap

A,D if a&P . (2.9)

HD Dg (S,')—— (2.10)

The term D will give an uninteresting constant if the
o. operators are spin- —,

' operators and at A, =O the decou-
pled spin problems are recovered. At 1=1 the term with
D will act as a single-ion anisotropy

In this section we give a short account of the results
which have been obtained for infinite spin chains, either
discrete or in the continuum limit. We then extend the
continuum limit results to cover the composite spin mod-
el which is of main concern here.

Let us first recall that the only soluble Heisenberg
chain of the form considered here is that with spin S = —,'.
In this case the ground state and the excitation spectrum
of Hamiltonian (2.2) for a single spin species [the (cr')
term gives now a constant] can be solved exactly by using
the Bethe ansatz' or the quantum inverse method. ' For
J, (—J„y (0 the ground state of the model is an antifer-
romagnetically ordered Neel-like state with a finite gap in
the excitation spectrum. For —Jzy & Jz & Jxy the ground
state has a planar symmetry and there is a gapless excita-
tion spectrum, and for J, )Jzy )0 the ground state has a
ferromagnetic order and the excitation spectrum has a
gap

For general S the usual Heisenberg Hamiltonian is
rewritten in the form

H =Jg [SJ SJ+i+ySi'Si+i+p(SJ') ],
1

(3.1)

thus including both longitudinal exchange ( y ) and
single-site (p) anisotropy, and we will look for a continu-
um limit representation of it. As pointed out by Hal-
dane, one possibility is to use the classical angle repre-
sentation for the spins,

Si=( —1)JS(sin8 cosg, , sin8, sing, ,cos8 ), (3.2)

8, =8(x)+a ( —1)ja(x),

P, =P(x )+a ( —1)'P(x ),
(3.3)

where x—:ja, and 8, a, p, and p are assumed to be slowly
varying fields. A consistent continuum limit can now be
defined by expanding to second order in a and then let-
ting S~oo and a~0, and assuming that the sound ve-
locity e =2aS and the magnon mass gap

where a nearly antiferromagnetic alignment of spins is as-
sumed.

In the harmonic approximation the magnon spectrum
of the resulting Hamiltonian becomes soft both at k=O
and k =m when y-p tends to zero. To include both of
these soft modes continuum-limit variables 8(x), a(x),
P(x), and P(x) are defined by
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coo =—8S (y —p} (3.4) Defining momentum variables

remain finite. The spin length appears in the dimension-
less coupling constant g as

2
L (x)—= ——a sin8,

g

II(x)—:—P sin8,2
(3.6)

2g=s (3.5)
we can finally express the Hamiltonian (3.1) in the form

H =Hp+H»

a, ='Jfd g II+
sin8

'2

+—(V8)'+

'2

2
COp

+(VP) sin 8
c2

(3.7a)

(3.7b)

Hi= f dx'gcJ y+p g p 2 2 1I 2+ L cot 8 +—y(Vcos8) (3.7c)

where we have dropped an immaterial constant.
The first term Hp can be identified with the Hamiltoni-

an of the O(3) nonlinear sigma model. The variables in

Hp form canonically conjugate pairs of scalar fields
which obey the Poisson bracket algebra tg(x), L(x') j=

I 8(x), II(x') j =5(x —x'). If we define the vector field

n~ =(sin8cosg, sin8sing, cos8) (3.8)

so that nH =1, there will be a related momentum field pH
such that I n~(x),pg(x') j e"="nz(x)5(x —x') and
p~=il +(L/sin8) . With these variables the Hamil-
tonian Hp takes in fact the usual nonlinear O.-model form

'2
COp

(nz )2H
CJ 2 1 2Ho —— dx gpss+ —(Vn~)—
2 g

(3.9)

with an extra anisotropic term proportional to cop.

H& can be neglected in the leading order in the cou-
pling constant, since all the terms in H& are of the order

g ~0 compared with the terms in Hp.
For coo & 0 the Hamiltonian (3.7) has two kinds of exci-

tations, the ordinary spin-1 Neel magnons with a gap of
cop and nonlinear kink-like excitations which have semi-
classically quantized gaps M„=coo(n +S )' . The pa-
rameter n is the eigenvalue of S' for kinks and it is an in-
teger for the integer spin models and a half-integer for
the half-integer spin models. Haldane then argues that
this picture is correct for finite anisotropies only. When
cop~0, the nonlinear vacuum fluctuations will renorrnal-
ize g to strong coupling. This leads to a "dynamic gen-
eration" of a gap ep,

1
nz, = 2S(sz, +t —Szj} *

1
pzi — (Sz)+i+ zj»2a

(3.11)

where we have assumed antiferromagnetic ordering to
give the scaling for the momentum variable p, and the
scaling of the field n is chosen such that n =1 in the lim-
its a ~0, S~ Oo. This follows from

S (nzi) +a (pzj) =S (3.12)

A careful expansion up to a of Hamiltonian (3.1), and
the use of (3.12},give within a constant

H =Hp+Hi, (3.13a)

it becomes soft at a finite anisotropy. The related transi-
tion is from a doubly degenerate antiferromagnetic
ground state to nondegenerate singlet ground state and is
thus of the Onsager type.

In the half-integer spin case the coupling constant is
also renormalized to a large value, but there is no "dy-
namic mass generation, " and both the magnons and the
kinks, M„&M+, zz

——coo( —,'+g )' -coo/2, become soft

only at the isotropic point cop
——0. The related transition

is thus to an infinitely degenerate gapless state and is of
the Kosterlitz-Thouless type. Notice that also in the
half-integer spin case the lowest excitations close to the
isotropic point are of the order destroying kink type,
namely the lowest M+, i2 kinks. In the integrable S =—,

'

model there are no spin-1 magnons and spin- —,
' kinks are

the only excitations.
Another variant' of the continuum limit of Harniltoni-

an (3.1) is provided by transformation

—2~ —'
Ep CJge (3.10)

in the magnon spectrum. Consequently, the collective
magnon excitations remain massive when the isotropic
antiferromagnetic point cop=0 is approached while the
lowest kink mass Mp ——2copg

' is renormalized such that

cJ 0Hp= 8x 'g p — VIl
2 4m

(Vn)—1

2

2
QPp

(nz)z
c

(3.13b)
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2

2
COOg (p')' +—y(Vn')'

8 g

cJ, 0H1= dx 'g f P — Vn

(3.13c)

e(p) =—sinp, 0 (p & m. .
2

(3.20)

The single-particle excitations of Hamiltonian (3.15)
with (3.16)—(3.18), i.e., the antiferromagnetic version, are
found' to be spin S =—,

' excitations with a gapless disper-
sion law

where

6I= 2mS (3.14)

H = g h, (SJ S, +, ),
J

(3.15)

where h, (x) is a polynomial of degree S. For special
choices of the polynomial the model becomes inte-
grable. ' ' Choosing h, (x) in the form

2S 2S

h, (x)= g f„'
n=1 m=O n m

(3.16)

where

x„=,' [n (n +—1)—2S (S + 1)],
an antiferromagnetic integrable model is obtained if

(3.17)

n 4f„'=4[/(n +1)—g(l)]=
m=1 m

(3.18)

is the topological angle.
The transformation (3.11) differs from the previous

transformation given by (3.2), (3.3), and (3.8) through its
gradient terms such that the term related with the topo-
logical angle appears in (3.13b) but not in (3.7b). Similar-
ly, the H, 's given by (3.7c) and (3.13c) are slightly
different but their structure is the same. By using the
same scaling argument as before, we can show that all the
terms in H, given by (3.13c) are of order g compared
with the corresponding terms in Ho of (3.13b). In leading
order in the coupling constant we thus have H =Ho as
before. This is the result given by AfBeck' provided the
sign misprint in the definition of coo is corrected for.

The role of the topological angle is to distinguish be-
tween the massive and massless versions of Ho. The
model is believed to have a gapless spectrum when 0 is an
odd multiple of ~, i.e., the spin is half-integer, otherwise
there is always a finite gap.

In order to compare the predictions obtained in the
continuum limit with the results of the lattice model, we
will consider now more general Hamiltonians. For arbi-
trary S the most general isotropic Hamiltonian with
nearest-neighbor coupling can be written in the form

Notice that the periodicity of e(p) is half of the Bril-
louin zone which is typical of kink-like solutions.

If we apply the transformation (3.11) to the integrable
Hamiltonians (3.15), we find easily that in each case the
continuum limit is given by Ho of Eqs. (3.13b) and (3.14)
with coo=0 and a modified sound velocity c. Because the
integrable Hamiltonians are known to be gapless for any
S, this transformation does not thus give the right critical
theory for integer spin.

For this reason AfBeck and Haldane' re-examined the
relation between quantum spin chains and continuum
field theories. Starting from a generalized Hubbard mod-
el with 2S orbitals, which in the U ~ ~ limit is
equivalent to the Heisenberg model, the mapping is now
to the Wess-Zumino-Witten (WZW) version of the non-
linear sigma model. Due to uncontrollable renormaliza-
tion effects, the exact equivalence between the parameters
of the continuum theory and that of the spin model can-
not be established. They argue that in general for integer
spin models the relevant operators of the WZW model
will be generated and a gap develops. The integrable
models with special choices of the couplings correspond
to multicritical points.

On the other hand, they claim that for half-integer
spins a special topological stability of the model with to-
pological coupling k=1 will lead to a behavior analogous
to that of the S = —,

' model. The integrable higher S half-

integer models are again multicritical points in the space
of couplings. This seems to be borne out by the numeri-
cal calculations' for S =—,'models. The absence of a gap
for half-integer spins is in agreement with the rigorous
argument given recently by ANeck and Lieb that if a
half-integer spin chain is in a phase with a unique ground
state it must have a vanishing mass gap.

Much of the continuum limit analysis described above
can be carried over to the composite spin model, Eqs.
(2.1) with (2.2). The two transformations, given by Eqs.
(3.2), (3.3), and (3.8), and by Eq. (3.11), respectively,
cannot be easily applied to the present case because of ex-
tra variables per lattice site. On the other hand, these ex-
tra variables make the 2 XS model, for example, conform
exactly with the nonlinear o. model in terms of variables
per lattice site. It is thus possible to construct a single-
site transformation '

where 1(j is the logarithmic derivative of the gamma func-
tion. The ferromagnetic version of the model has (3.16)
with a minus sign; within a constant the same result is
given by the choice'

1
p, =—(o, +~, ),

(3.21)

2S 4f„'= [4g(2S +I)—P(n +1)]=
m =n+1

(3.19) where cr,.=H=S(S+ 1), and the new variables satisfy
canonical commutation relations (CCR)
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[PJ ~pg']=«Pfa

[p, , ni!]=iE i'&n,&a
—'5,,'

2

[n, n ~]=i e ~~pra '5 ',J ' J 4S2 J JJ

(3.22)

which in the limit a~0, S~~ [a 5J~'~5(x —x )]
reproduce the CCR of the nonlinear cr model. The new
variables also satisfy relations (S~~ )

a p. +S n =S, p'n. =0 (3.23)

We can now make this transformation, for example, on
Hamiltonian

H.=" d-gp'+-'V ', (3.25)
2 g

where g =S '(1 —A, )
'~ and c:—2aS(1 —A, )'~ . The to-

pological angle 0 is found to be identically zero in this
case. We thus find that the continuum limit of the 2XS
model which has always an integer spin at the isotropic
antiferromagnetic point is given by the nonlinear 0 mod-
el with zero topological angle, and has therefore a gap in
its excitation spectrum.

The point A, =1 is a special point of the mapping be-
cause there c,g '~0 such that cg is constant. At that
point the model can be described by a classical two-
dimensional (2D) ferromagnet at a finite temperature,
which is known to have an exponentially decaying corre-
lation function. This means that the model has a gap also
at X=1.

If we add to Hamiltonian (3.24) anisotropic terms cor-
responding to those in Hamiltonian (3.1),

H2 =J g I y(o'o,'+, +HH+, )+p[(o') +(H) ]
J

+A[y(cr'H+, +Ho,'+, )+2po,'H]), (3.26)

the same transformation, Eq. (3.21), yields in the continu-
um limit an anisotropic term

'2

H„=JQ[o, o, +,+~, .r, +, +A(o, r, +,+r, o, +, )]
J

(3.24)

which is the 2)&S version of Hamiltonian (2.1) with (2.2)
at the isotropic antiferromagnetic point J„' =J, = —J,
D ~=0, and with parametrization (2.3): J

By expanding to second order in a and applying rela-
tions (3.23) we find that within a constant factor

be disregarded by the same argument as before, and
Hamiltonian H&+H2, provides the same continuum lim-
it description for the composite spin model as Ho pro-
vides for the usual anisotropic Heisenberg model with an
integer spin.

Since the topological angle does not depend on the an-
isotropy we would have to conclude that independently
of the anisotropy, the coupling between the two spin
species will generate a finite gap for all antiferromagnetic
couplings. We will return to this later.

An alternative continuum limit version of the compos-
ite spin model can be obtained by applying Abelian bo-
sonization of the fermion description of the S = —,

' opera-
tors. Following Luther and Scalapino and den Nijs,
Timonen and Luther have shown that the spin-1
Heisenberg model can be transformed, in the composite
spin representation, first into a fermion problem, and
then into a boson problem for the charge and spin densi-
ties. The J, ~ couplings between the spin species give rise
to backward and umklapp scattering between the fer-
mions. These couplings are relevant or irrelevant, de-
pending on the related correlation function exponents.
The J„~coupling between the two species gives rise to a
new term which has no exact equivalent in the fermion
problem; in a way it is related to the exchange of the two
kinds of fermions and is always relevant. By extending
the previous analysis beyond the planar phase of the
model, Schulz carried through the corresponding
analysis for 2S coupled spin- —,

' systems to predict the to-
pology of the phase diagram.

Based on these considerations we will try now to pre-
dict the phase diagram of the composite spin model. Us-
ing first the parametrization in Eq. (2.3) the expected
phase diagram in the (A.,J, /J„) plane is shown in Fig. 1.
At A, =1 the composite spin model has the same ground
state as the S=1 model, so we would have a Heisenberg
singlet state in an extended range of anisotropies. For
small A, the perturbations proportional to A, are relevant
both in the charge and spin-density sector if J, /J„&0.
The boundaries for small A, and for A, =1 are supposed to
be connected by a smooth curve satisfying the duality re-
lationship. If at A, =1 the boundaries of the singlet phase
are at J, /J„= —1.18 and J, /J, = —0.1, as it is sup-
posed from the finite size calculations, and not at points

2-

H2, —— f dx ——(1—A, ) (n')
2 g c

+g ( I+&) (p')'+ (V'n')'

(3.27)
0

antiferro-
magnet

singlet

0
Jz/Jxy

planar ferro-
magnet

S=1
model

The first term in H2, is the same coo anisotropy which
is included in Ho in (3.7b) and (3.13b). The other two
terms correspond to H, in (3.7c) and (3.13c). They can

FIG. 1. Expected phase diagram of the S =2X
2

model with

parametrization (2.3).
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2-

S=1

singlet planar

0
Jz/Jxy

FIG. 2. Expected phase diagram of the S =2X —,
' model witodel with

parametrization (2.8).

determined by symmetry, there is no reason why the
boundary should not depend on I, in the composite-spin
model.

U
'

now the parametrization in Eq. (2.8), a differentsing now
' . 2. At A. =Ohase diagram is expected, as shown in Fig. 2. tP

we have two independent XYmodels. For J, &0 bo th the
um app ankl d the backward scattering terms arising from

r small A,J, ~ become relevant and generate a gap. For sma
however, the velocity renormalization is small and anti-
ferromagnetism will appear only when &. J,qJ becomes
comparable to J„.Similarly the ferromagnetic boundary
is shifted to large anisotropies for small 1,. At A, = 1, how-
ever, the same boundaries have to be obtained as in Fig.
1, and again the boundaries have to be self-dual.

As we have seen, there are several ways to define a con-
tinuum field theory for the spin system and all of them
tend to lead to a topologically similar phase diagram,
within a variety of approximations. Because of renormal-
ization effects, it is not possible, however, to locate the
phase boundaries from the continuum limit, and the sub-
tle features of this limit call for independent, numerical
and analytical, evidence resulting from lattice models.
The composite spin models in particular provide a unique
way to look for crossover effects from a half-integer spin
to an integer spin behavior.

1 ln(lnN) 1

(lnN) (lnN)

(4.1)

The true asymptotic behavior is found only for chains
with more than 10 sites. It was found that if the points
for only small values of N are used in fitting the gap, the
best fit to the exact Bethe ansatz result is given by

7T 0.435 0.234~EN(~=0)= 1 —
i N

+
(1N)2

(4.2)

where we have omitted the small correction to 1 on the

suits are available for the infinite chain problem. Fur-
thermore, there is a recent analysis of the scaling behav-
ior of the energy levels for large but finite values of N. As
a reference point we can also use results from earlier nu-
merical calculations for this particular case. At A, =1 the
low-lying energy levels of the composite-spin model coin-
cide exactly with those of the S = —,

' Heisenberg chain.
The extra states introduced by having eight states per site
for the three S =—,

' spins correspond to replacing the —,
'

spins at some sites by spin- —,
' impurities. The energy of

these states is separated by a finite gap of the order J ~
from the ground state and are irrelevant when the
ground-state degeneracy is studied.

In Fig. 3 we show the energy gap between the ground
state and the first excited state as a function of A, for
different chain lengths in the isotropic antiferromagnetic
point J, = —J &0. At A, =O the gap, which is that ofz xy&
the S =—' Heisenberg chain, scales to zero roughly as

2

1/N. A straightforward 1/N scaling would, however,
predict a small but finite gap at N = 00. This is due to
logarithmic corrections in the finite chain calculations.
At the isotropic antiferromagnetic point an exact expan-
sion gives

IV. COMPOSITE-SPIN S =
2

MODELS

First we consider in more detail the numerical results
for composite spin models, which at A, =1 reduce to the
spin- —' Heisenberg chain. In this case there is now con-'"

2

sensus that the isotropic antiferromagnet behaves in the
same way as for S = —,', at least as far as the critical behav-
iOI is's concerned. The spectrum is gapless and t e isotro-
pic point separates the planar and antiferromagnetica y
ordered phases.

There are two ways to construct an S =—,
' model: ei-

ther by having three spin- —,
' operators at each site, or one

spin- —' operator and one spin-1 operator. Let us consider'"
2

first the 3)& —' model with parametrization (2.3).
2

As discussed in Sec. II, at A, =O the model is decorn-
pose in oosed into three independent S =—,

' Heisenberg chains.
This is a model solvable' by a Bethe ansatz, and exact re-

0
0

I

0.5

FIG. 3. The primary energy gap of the isotopic S= X ~
S=3X—'

model as a function of A, for different chain lengths, using pa-
rametrization (2.3).
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right-hand side.
For A, ~0 the gap has a marked minimum whose loca-

tion approaches the origin roughly as 1/N while increas-
ing the chain length; otherwise the gap increases with A, .
We conclude that this initial decrease of the gap is a finite
size effect, and it can be understood as follows. For finite
chains a straightforward perturbational calculation can
be done for small k. As the ground-state wave function
for X=0 is a product of the singlet wave functions of the
independent chains, there is no correction of order A. to
the ground-state energy. For the first excited state on the
other hand, a degenerate perturbational calculation
should be done. Two chains are in their singlet ground
state while one chain is in its lowest triplet excited state,
yielding altogether a ninefold degeneracy. There will be a
correction to the excited state which is linear in A, and
lowers the gap. With increasing chain length the singlet-
triplet gap decreases as discussed above. The higher-
order perturbational corrections become more important
and in the limit N~ao the region where the gap de-
creases will vanish, leading to a A, dependent gap which is
nowhere decreasing. We know, however, that at A, =1,
which is the isotropic S =—', model, the gap should van-

ish, and therefore the only reasonable conclusion is that
the gap vanishes for any A, .

In fact near A, =l the gap seems to approach zero
roughly as 1/N. To see better how well the 1/N scaling is
satisfied, we plot in Fig. 4 the scaled mass-gap ratio. This
quantity, which should be unity if the 1/N scaling holds
exactly, deviates from this value by about 5% when
chains with six and eight sites are compared. That the
curve is fiat over a large region of A, is indicative of a crit-
ical behavior for any A, , in agreement with the gapless be-
havior mentioned above. A naive scaling without taking
into account higher order corrections would give a small
finite gap in the limit, but if there are corrections 1jke
those found at the A, =0 case, Eqs. (4.1) and (4.2), it would
easily explain the difference.

For small A, , however, there are large deviations from
unity in the scaled mass-gap ratio. These are due to the
marked minima in the gaps themselves in that A, region.

3

0 I I

2 A 3

FIG. 5. The primary energy gap of the isotopic S =3X z

model as a function of X, using parametrization (2.5b).

As argued before the initial decrease and the minimum in
the gap is a finite-size effect, it is due to the fact that in a
finite system the singlet ground state and the triplet first
excited state are separated by a finite gap and the A, per-
turbation acts differently on them. In fact, it is seen in
Fig. 4 that the dip in the scaled mass gap ratio moves to-
wards A, =O and as argued above, it should disappear as
N~ 00.

For comparison we have done the same calculations
with the parametrization (2.5b). The primary gap and
the scaled mass-gap ratio are shown in Figs. 5 and 6, re-
spectively. For small A, the gap does not scale as 1/N, in
fact the starting slope is roughly N independent but this
region is collapsing to the origin as the chain length in-
creases. The scaled mass-gap ratio is flat over the whole
A, range, except for very small A, , indicating again a criti-
cal behavior for all A, . It should be mentioned, however,
that the deviation of the scaled mass-gap ratio from unity
is again about 5%.

We have obtained similar results for other parametri-
zations of the 3 X —,

' model. We have also done analogous
calculations for the composite spin model which has a
spin-1 operator and a spin- —,

' operator at each site. The
overall behavior of the primary gap is the same as in the

0
~ 1.0
O.
gJ
Q)

CO

2.0-

t2

L

CL

U)

tA )5

09-

I I

0.5 + ~.0

I

0.5
I

1.0

FIG. 4. The scaled mass-gap ratio (N+2)bE&+2/NEER for
the isotropic S =3X —' model as function of k.

FIG. 6. The scaled mass-gap ratio for the isotropic S =3X 2

model as a function of A., using parametrization (2.5b).
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3&( —,
' model. In fact the interesting levels from parame-

trization (2.5b) are exactly the same for three S =—,
'

operators as for an S =—,
' and an S=1 operator such that

o. , is the S = —,
' operators, since for the relevant energy

levels the two equivalent S =—,
' operators in the former

case add up to form in effect an S= 1 operator.
From this calculation we have to retain two things

which will be of importance in the further analysis. The
starting slope which is almost independent on N and the
sharp dip in the scaled mass-gap ratio are finite-size
effects: they do not indicate an exponentially vanishing
gap. At the same time a deviation from unity by a few
percent of the scaled mass gap ratio at the usual chain
lengths is not significant: it does not prove that the gap
remains finite in the limit N~ ~.

V. COMPOSITE-SPIN S=1MODELS

D =(J,—J„)1+1,
(5.1)

This curve interpolates smoothly between the two limit-
ing cases, J, /J„» =1 at A, =O, and D =2(J, —J„») at A, = l.

For large D /J„» and J, /J„» the boundary is given by

In this section we will consider the spin S =2)& —,
' mod-

el using different parametrizations for the couplings. If
the on-site term D ~ is taken into account, in all the pa-
rametrizations mentioned there are three independent
coupling constants: A, , J, /J„, and D /J„.

First we will study the stability of the ferromagnetic
phase using the parametrization given in (2.3) and (2.9).
The boundary of the ferromagnetic phase in the (J„D)
plane is rather well known for the S=1 model, i.e., at
X=1 in the 2)& —,

' model. At X=O this boundary is in-

dependent of D, and consists of the line J, /J„= l. We
show in Fig. 7 the finite-size scaling estimates for this
boundary for different values of A, . A remarkable feature
of this boundary is that it goes through the point D=O,
J, /J„» = 1 for all values of A, . In the neighborhood of this
point the boundary can be described by

D =J,— =J—
4J, + A, (4D —2J, )

' 2(2+ k)J,
(5.2)

This expression comes from a perturbational calculation
assuming that for large J, /J the o.

&
as well as the cr2

spins are ordered ferromagnetically, but their mutual
orientation depends on the relative importance of HD and
H . Notice that when A, 0, the phase boundary ap-

proaches D =J„and not J, /J„= 1. This apparent
discrepancy with the D independent phase boundary for
the S = —,

' chains comes from the fact that the combined

ground state of the two decoupled chains is not necessary
ferromagnetic. The two chains can be polarized arbi-
trarily, relative to each other, and an arbitrary small A,

perturbation can lift this degeneracy.
A different situation is expected when the parametriza-

tion of Eq. (2.8) is used, and the resulting ferromagnetic
phase boundary is shown in Fig. 8 for q = —,'. Both here
and in the earlier case, the finite-size corrections are very
small, the boundaries obtained from chains with six or
eight sites differ by less than l%%uo.

These calculations show that the ferromagnetic phase
boundary can be determined with rather high precision
from finite chain calculations. The boundaries are A.

dependent, except in special cases, where the boundary is
determined by symmetries. This again will be important
in the further analysis.

We now turn to the most diScult region in the phase
diagram, i.e., the neighborhood of the isotropic antiferro-
magnetic point J,/J„= —1. If we accept the results of
earlier numerical calculations and the predictions for the
mappings of spin models to continuum field theories,
namely that for the S=1 model there is an extended re-
gion around the isotropic antiferromagnetic point where
the ground state is a singlet, then we expect for the
S =2X —,

' composite-spin model a phase diagram in the
(A, ,J, ) plane such as that shown in Figs. 1 or 2, depending
on the parametrization.

Figure 9 shows schematically the energy spectrum of
the model using Eq. (2.3): (a) for A, =O, where the spec-

2-

0-
pla

planar1-
ferro-

magnet

I

1

Jz/Jxy

FIG. 7. The phase boundary between the ferromagnetic and
planar phases in the (D,J, ) plane for difFerent A, parameters, us-

ing parametrization (2.3) and (2.9).

I

Jz/Jxy
FIG. 8. Phase boundary between the ferromagnetic and pla-

nar phases in the (k,J, /J ~) plane, using parametrization (2.8)
with q = —'.
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FIG. 17. The same as Fig. 15, for the isotropic antiferromag-
netic case.

same values of J, /J„as used before, i.e., for —0.05,
—O.S, —1, and —1.1 respectively. We find a strikingly
similar behavior in all these cases: the scaled mass gap
ratio is close to unity at X=O, as it should be in the S =—,

'

model, has then the deep minimum, which is a finite-size
effect, followed by a broad maximum at A, =1 very much
like in the 3&( —,

' case. The scaled mass gap ratio is larger
than unity near A, =l, except for J, /J„= —0.05. If we
assume that at this anisotropy the S=1 Heisenberg mod-
el has a planar ground state, and that the gap must be a
monotonic function of A, , we have to conclude that the
gap is zero for any A, . In general, whenever the gap is

zero at I,= 1, it vanishes for any I,. On the other hand,
whenever the gap is finite at A, = 1, the finite chain calcu-
lation indicates a finite gap for any finite A, . This would
mean a A,-independent boundary between the planar and
singlet phases.

A very similar situation occurs in the range
—1.18 & J, /J„& —1. Here again the finite-size calcula-
tions seem to indicate that if the gap is finite at A, = 1, it is
finite everywhere, yielding a A,-independent boundary be-
tween the singlet and the antiferromagnetic phase. As
mentioned before a A,-independent boundary is under-
standable only if this boundary is determined by symme-
try, otherwise there should be a dependence on A, . The
continuum limit results are not in agreement with our
finite-size calculations, unless the behavior of the gap
changes drastically at much longer chain lengths.

We argued that in the limit N~ ~ the gap is a mono-
tonic function of k, while for finite N there is always a
minimum at a small A, . Other parametrizations can be
used to support this conclusion. We show in Figs. 10—13
and 1S—18 the gaps and the scaled mass gap ratios for the
same anisotropies as before, but calculated with the pa-
rametrization (2.5a). These gaps have the following
features. At A, =O they vanish, since in this case the 0.

2

spins are free and can be flipped without cost of energy.
At X=1 the gaps are identical with those of the S=1
Heisenberg model. b,E(A, ) satisfies the duality relation-
ship and is a monotonic function of A, , except for a slight
decrease for very large values of A,. However, as the
chain length increases, this slight decrease of the gap gets
smaller and the positions of the maximum scale towards
infinite k. So, for infinite chains these gaps appear to be
monotonic functions of A, . Moreover, comparing with
the gaps obtained for the parametrization (2.3) (dashed
and solid lines in the figures), we see that a gap for pa-
rametrization (2.3) is never smaller than the correspond-
ing gap for parametrization (2.5a), and that they coincide
at A, =1. Combining these results with the general ten-
dencies of the curves, we would again conclude that if at
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A, = 1 the gap is finite, it is finite for any A,&0, while if at
A, =1 the gap vanishes, it vanishes for all A, .

All pararnetrizations we have used thus far have con-
served the J, /J„anisotropy of the model. To test
whether this has been essential for the kind of behavior
we have found, we shall next use parametrization (2.8)
which at X=O reduces the problem to the S = —,

' XY mode-

ll, and the expected phase diagram which follows from
the unrenormalized boson model is shown in Fig. 2. For
this model we have calculated the ground state and two
relevant excited states which are the lowest state in the
S;„=+1,k=0 sector that will indicate a planar phase
and the lowest state in the S'„,=O, k =~ sector that will
indicate an antiferromagnetic phase. In Figs. 19-21 we
show the result of the finite chain calculations. At the

isotropic antiferromagnetic point and at J, /J„z ———0.5
both gaps seem to remain finite as N ~ 00 for all A, & 0, in
agreement with the continuum limit prediction. At
J, /J„= —1.2 we find, however, a different behavior.
Whereas the boson model predicts a singlet state for
small enough A, , and a transformation to an antiferromag-
netic state with A, increasing, we find that the gap in the
St« ——O, k =n sector vanishes for any A, as N~ oo. The
level crossing between the S'„,=0, k =m and
S'„,=+1,k=0 levels seems to scale to a small but finite
value of A, , which would indicate that for small A, the gap
in the S«, ——kl, k=0 sector vanishes also. While this
could be a finite-size effect, the vanishing of the other gap
does not seem to be questionable. For anisotropies
J, /J„„&—1.18 the singlet phase does not appear for any

Either the antiferromagnetic phase is realized for all
A, & 0, or a planar ground state for small A, becomes an an-
tiferromagnetic state at a finite A,

The general features of the A, dependence of the gaps
are such, that the conclusion is again that if the gap van-
ishes at A, =1 it vanishes for any k and if it is finite at
A, =1 it is finite for all A, &0, i.e., the phase boundaries
seem to be, at least roughly, independent of k. We would
like to point out, however, that our numerical results
cannot exclude the possibility that there is no singlet
phase at all, and that all the existing evidence for it
should be judged with an unbiased mind.

VI. DISCUSSION AND CONCLUSIONS

I

0.5

FIG. 20. The same as Fig. 19, for J, /J„~ = —1.

As discussed in Sec. III, there are a number of possibil-
ities to map lattice-spin models onto continuum field
theories. In a sense the most rigorous of these mappings
uses non-Abelian bosonization and relates the spin mod-
els to Wess-Zumino-Witten —type field theories. These
mappings tend to generate a number of relevant opera-
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tors, but analytical and numerical results on half-integer
spin models on a lattice indicate strongly that there is a
kind of "topological stability" of the WZW model with
topological coupling k=1 and the generic nonintegrable
half-integer spin models belong to this universality class.
Their spectrum is therefore gapless for —1 &J, /J & 1.

Our numerical results for the composite-spin model
which interpolates smoothly between the spin- —,

' and
spin- —, cases is in agreement with such a behavior. An ex-
act Bethe ansatz calculation for finite spin- —, chains gives
logarithmic corrections to the N ' scaling of the gap. If
the spin- —, model is described by the same critical theory
we would expect it to display similar scaling behavior. If
we fit N ' scaling with logarithmic corrections to our
spin- —,

' data, we indeed find a vanishing gap, while a N
scaling would give a small but finite gap.

For small k finite size corrections are more important,
the scaled mass gap ratio deviates from unity appreci-
ably, but the range, where this happens shrinks to zero as
the chain length increases. At the same time we find fur-
ther away from this region that with the available chain
lengths a deviation from unity by a few percent in the
scaled mass-gap ratio is still compatible with a gap that
scales roughly as 1/N.

In the integer spin case all the various mappings lead
to a massive singlet phase for antiferromagnetic exchange
couplings of the spin models, and there seems to be no
"topological conspiracy" to prevent this from happening.
For the spin-1 model at the isotropic antiferromagnetic
point the numerically calculated scaled mass-gap ratio
differs from unity by more than a few percent (it is about
10% at the lengths N-8, 10, 12), and even if logarithmic
or higher order corrections to the N ' scaling are taken
into account, the numerical results indicate a finite gap
for infinite chains.

The composite-spin models that interpolate between
half-integer and integer spin models provide a unique
way to study how exactly the gap opens in the integer
spin case, information which is needed to complement
continuum limit results which thus far are plagued by un-
controllable renormalization effects. To this end we con-
sidered the phase diagram in the (A, , J, /J„) plane of the
2)& —,

' model, whose unrenormalized version from the bo-
sonized model was given in Figs. 1 and 2 for parametriza-
tion (2.3) and (2.8), respectively. Drawing on the discus-
sion in Sec. V, we show in Fig. 14 the corresponding ex-
pected behavior of the gap as a function of A, for different
values of the anisotropy J, /J~~.

In fact we never find in our numerical calculations a
gap that as a function of A. would display the expected be-
havior as shown in Figs. 14(a) and 14(c). From the gen-
eral features of the A, dependence we find for the gap, we
can infer that whenever the gap vanishes at k = 1 it van-
ishes for all A, &0, and a gap such as the one in Fig. 14(c)
is never realized in the composite spin model. The possi-
bility which is shown in Fig. 14(a) and should be realized
in the anisotropy range —1.18 & J, /J & —1 for parame-
trization (2.3) cannot be categorically excluded, even
though there is no indication on the available chain
lengths for a nonmonotonic behavior of the gap.

An obvious way to resolve the discrepancy between ex-

pected and numerical results is to claim that the chain
lengths we have used are too short for the true asymptot-
ic behavior to show up. The longest chain we could han-
dle numerically had twelve lattice sites which is a typical
length in this kind of problem, and gives quite reliable es-
timates in most cases. Another and we think a more
probable way of resolving the discrepancy is to assume
that the continuum limit theories gain significant correc-
tions from renormalization effects. This is, in fact, what
happens to the planar-ferromagnetic phase boundary: for
parametrization (2.3), e.g., it stays at J, /J„= 1 for all 1,,
even though the bosonization result is J, /J» =n. /(4
+2k, ). Similarly the boundaries between the ferromag-
netic, planar and antiferromagnetic phases turn out to be
independent of A. in the S =3)(—,

' model for parametriza-
tion (2.3), contrary to the prediction of the unrenormal-
ized boson model. This can easily be understood if we ac-
cept that in all these cases the phase boundary is deter-
mined by symmetry, the phase transition is always at the
isotropic point, while in the boson transformation this
symmetry is lost.

On the other hand in the cases where symmetry argu-
ments cannot be used, the renormalization effects cannot
be easily evaluated. There does not seem to be any
reason, however, why the A. dependence should complete-
ly be eliminated. One case where finite-size calculation
converges well is the location of the ferromagnetic-planar
phase boundary for parametrization (2.8). As shown in
Fig. 8 there is a marked A, dependence of the boundary in
agreement with the expectation. The current belief is
that in the 2X —,

' model the boundaries of the singlet
phase go through J, /J„» = —0.1 and J, /J„= —1.18 at
A, = l. Since these points are not determined by symme-
try, the boundaries of the singlet phase are expected to be
A, dependent, as shown in Figs. 1 and 2. The fact that our
finite chain calculation indicates a A.-independent bound-
ary for the singlet phase poses a problem. It would be in-
teresting to compare our numerical findings with the re-
normalization group results for the bosonized model, but
the latter calculation is beyond the scope of the present
paper.

A word of warning is in place here, however. We have
tested numerically the boson predictions for a particular
choice of couplings in the 2)& —,

' model, where symmetry
properties can be used to deduce some general properties
of the phase diagram. We find that not even the topology
of the phase diagram is given correctly by the bosonized
model. It seems that some of the relevant operators in
the model are not treated properly in the bosonization,
and more analysis is needed if bosonization results are to
be extended reliably beyond the planar model as argued
before. It is evident that in this respect the inclusion of
Hartree-Fock terms is only a minor correction. A more
detailed account of these results will be given elsewhere.

In conclusion, we have shown that the composite spin
models allows us to consider the properties of integer and
half-integer spin models in the same framework. We
have pointed out that the results of the bosonized models
exemplifying continuum limit theories which were brieAy
described for comparison, have to be taken with care be-
cause of strong renormalization effects that are not con-
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trolled in this particular case. Similarly the results of
finite-size scaling on spin chains have to be considered
with caution because finite-size corrections on the avail-
able chain lengths can make the extrapolation procedure
questionable. In particular, the discrepancy between the
continuum limit prediction for the interpolation parame-
ter dependence of the singlet phase boundaries and our
numerical findings makes it plain that even though, on
present evidence, the existence of this phase is plausible,
more work is clearly needed to iron out a consistent pic-

ture. Extension of the present analysis to models which
interpolate between integrable and nonintegrable models
with higher spin lengths is now in progress. We hope
that this analysis will clarify some of the very subtle
features which seem to make antiferromagnetic models so
unexpectedly diScult and interesting to study.
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