
PHYSICAL REVIEW B VOLUME 38, NUMBER 10 1 OCTOBER 1988

Neutron-scattering spectra of noncubic cerium Kondo compounds

L. C. Lopes
Instituto de Fisica, Uniuersidade Federal do Rio de Janeiro, 21944 Rio de Janeiro, Brazil

B. Coqblin
Laboratoire de Physique des Solides, B&timent 510, Uniuersite Paris-Sud, Centre d'Orsay 91405 Orsay, France

(Received 5 May 1988)

Neutron-scattering spectra are computed for noncubic cerium Kondo compounds within the
effective resonant-scattering Hamiltonian which describes both Kondo and crystal-field effects, thus
extending to noncubic compounds a previous calculation [Phys. Rev. B 33, 1804 (1986)]. Both the
longitudinal and transverse susceptibilities are taken into account, and the results depend on the na-
ture of the ground state considered. The model is finally applied to the experimental neutron-
scattering spectra of CeA13 and CeCu2Si2 compounds.

I. INTRODUCTION

Many neutron-scattering experiments are currently
available in anomalous rare-earth compounds. ' In the
case of cerium Kondo compounds, two striking points
have been extensively studied in recent years. On one
hand, a very broad quasielastic line is observed in
neutron-scattering spectra; the deduced quasielastic
linewidth starts generally from a finite value at very low
temperatures and increases with temperature according
to different laws for the temperature dependence.

On the other hand, inelastic lines due to crystal-field
excitations have been observed in some cerium corn-
pounds. An inelastic peak has been observed in the two
cubic compounds CeMg3 (Ref. 5) at roughly 200 K and
CeB& (Ref. 6) at 530 K. Neutron-scattering spectra are
also available in hexagonal CeA13 (Refs. 7 and 8) or
tetragonal CeCu2Siz (Refs. 3 and 9): Two extremely weak
inelastic lines can be observed at roughly 50 and 100 K in
CeA13, while two weak, but clearly visible, inelastic lines
are observed at roughly 150 and 300 K in CeCu2Si2.

The calculation of the neutron-scattering spectrum'
within the projection operator method has been per-
formed for the effective resonant scattering Hamiltoni-
an" in the case of a cubic crystalline fieM up to second
order in the exchange integrals. ' The dynamical suscep-
tibility and the resulting neutron-scattering quasielectric
linewidth have recently been computed by several au-
thors using self-consistent perturbation theory' or the
I /Nf expansion technique, ' where Nf is the 4f level de-
generacy. In particular, Hohn and Keller' have comput-
ed the dynamical susceptibility for the degenerate Ander-
son Hamiltonian and they have derived a neutron-
scattering spectrum with broad quasielastic peaks in the
Kondo limit with a cubic crystalline field; however,
surprisingly they have found a really much larger quasi-
elastic linewidth than the value obtained by second-order
perturbation using the resonant scattering Hamiltonian. '

The previous calculation'" has been made only for cu-
bic cerium Kondo compounds, where the 4f '

configuration is split into a doublet I 7 state and a quartet
I 8 state. The purpose of this paper is to extend the previ-
ous calculation to the case of a noncubic crystal field,
splitting the 4f ' configuration into three doublets.

II. THE THEORETICAL MODEL

JMM'
I Vkf I'

+
2 EM EM'

(2)

where Vkf is the k fmixing potential. -In the present
case of noncubic cerium compounds, the 4f '

configuration is split into three doublets corresponding to

We discuss here the case of a cerium atom with a non-
cubic crystal field, which splits the 4f ' configuration into
three doublets corresponding to the quantum numbers
M =4—,', 6—,', +—,'. This calculation could be applied
directly to the case of hexagonal CeA13, but the applica-
tion to tetragonal CeCu2Siz would be less straightforward
since the ground state and the highest excited state are
linear combinations of +—,

' and +—,
' states, according to

neutron-scattering experiments on CeCu2Si2. We will
discuss this problem in the Sect. IV.

Thus, here we will compute the neutron-scattering
spectrum within the projection-operator technique' and
we will follow the method previously presented for the
cubic case. ' The effective resonant-scattering Hamil-
tonian appropriate for the 4f ' configuration of cerium is
given by"

kf X MM' k'M' kM( M M' fiMM'( M ) )
k, k'

M, M'

with the usual notations of Ref. 11: cM is the creation
operator for a 4f electron localized on cerium, of total
angular momentum j =—,

' and z component M =j, for
each 4f eigenfunction, and ck~ is the creation operator
for a conduction electron with partial wave number k,
j =—', , and z component M =j,. The exchange integrals

JM~ ( (0) are given, as usual, "
by
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M values equal to +—,', +—,', and +—,', respectively, and

there are three energies EM ( &0) from each doublet to
the conduction-band Fermi level. There are, therefore,
six different exchange integrals.

Moreover, the susceptibility involved in the calculation
of the neutron scattering is no more isotropic, in contrast
to the cubic case. ' The neutron-scattering spectrum is
given by ImX(co)coth(01/2T), where X(co) is the total sus-
ceptibility equal to

X(01)=—,'X„(01)+—', X +(~) . (3)

Jz T( K1/2 1/2 K —1/2 —1/2 )

+T K3/23/2 K —3/2 —3/2)

+Y( 5/2 5/2 K —5/2 —5/2

3

&. = X AM
M=1

(4)

Similarly, for the calculation of the transverse suscepti-
bility, the decomposition of j+ can be written as

Thus, we need to compute here both the longitudinal
susceptibility X„(co) and the transverse susceptibility
X +(co). ~e follow the method presented in Refs. 10
and 14 and we use Eqs. (3)—(14) of Ref. 10 for the calcula-
tion of the longitudinal susceptibility; for the calculation
of the transverse susceptibility, we change j, into j+ and
we decompose j+ as a function of KMM

I

M ) (M——'
I
.

For the calculation of the longitudinal susceptibility,
we write the decomposition of j, as a function of the
KMM. , where M is now one of the six states+ —,', +—,', +—,':

J+ 5/2 3/2 + 3/2 1/2 +3K 1/2 —1/2

+ gK —1/2 —3/2 + 5K —3/2 —5/2

5

J+= X AM.
M=1

(5)

(K„
I
K„)=5„„5 .T

nm

where co„=E„—E and p is the thermal occupation
of the state labeled by the index m.

The matrix element M„„(Z)of the memory function
defined by Eq. (23) of Ref. 10, i.e.,

M„„m (Z) = XkfK„Jkf K„m
1

0—Z

is given by' ' 0

Thus, as previously, ' we perform partial summations
belonging to the same transition energy and with a zero
expectation value; the resulting A„ terms given by Eq. (9)
of Ref. 10 are given either by

AM M(KMM K —M —M )

for the three AM terms corresponding to X„(01)or by

AM =&i (f +1)™(M—1)KMM 1—
for the five AM+ terms corresponding to X +(01).

The calculations follow then the method presented in
Ref. 10 and e recall here the main results. The scalar
product defined by Eq. (5) of Ref. 10 of two K„ is given,
at the lowest zero-order terms, by:

M.t. (»=
Z ~t ~- gl I JM I'~F.M(»+ I J.M I'~FM (»]—~ .~, I~., I'l~F.,(»+~F,.(»]T

M
(10)

In formulas (9) and 10, Xp and Xkf are the Liouville
operators corresponding, respectively, to the one-body
Hamiltonian Hp describing the 4f ' configuration and the
conduction electrons, and the Hamiltonian HAf given by
(1) and

P;;=(A IA ),

Mf;(ro)= Xkf A' Xkf A
0
—CO

(13)

(14)

b F„(Z)=F„(Z) F„(0)—
with

fk(1 —fk+q)Pm fk+q 1 fk)J2n
nm

k, q nm +Ck+q —Eg —Z
(12)

for the values corresponding to the longitudinal suscepti-
bility; the same formulas hold for the values correspond-
ing to the transverse susceptibility with the only change
of the superscript z to +.

Let us discuss the shape of the neutron-scattering spec-
trum given by ImX(m)coth(01/2T). The longitudinal part
ImX„(01) of the spectrum is the sum of three Longitudi-
nal functions, i.e.,

We follow the method presented in Ref. 10 from Eq.
(30) to Eq. (35) and in particular the analytical expres-
sions of F„(Z) derived in Ref. 14. thus, we use in the
following the notations

3 ImM;;(co)
ImX„(co)=—g

, co +[(P;;) 'ImM;;(co)]
(15)

The three Lorentzian functions are centered at co=0
and contribute only to the quasielastic line, each of them
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5,=4m
I
n(EF)J»

I
T, (17)

where n(FF) and J» are, respectively, the density of
states of the conduction band at the Fermi energy for one
spin direction and the exchange integral for the ground-
state doublet, independent of their M values. However,
the intensity of the maximum value at co=0 of the quasi-
elastic line depends at low temperatures on the nature of
the ground state. According to (15) and (16), the co=0 in-

tensity I of the neutron-scattering quasielastic line is
given by

having a width equal to (P,';) '1m';;(co). Each Lorentzi-
an function corresponds to elastic transitions within each
doublet and there is no inelastic transition with the longi-
tudinal part.

On the other hand, the transverse part ImX +(co) of
the spectrum is the sum of five Lorentzian functions, i.e.,

ImM;+(co)

~ (co —co;) +[(P;+) 'ImM;+(co)]

Among the five Lorentzian functions, there is one elastic
line labeled i =3 corresponding to the transition within
the doublet +—,'. The four other lines are inelastic ones
and are centered at energies co& ——E5/2 —E3/2 c02 E3/2
—E, /2, co4 ———co2, and co~= —co&. It results that, at very
low temperatures (T«

I
c0,

1
and

I co21), there is an
elastic contribution to the transverse susceptibility only if
the ground state is the state +—,'.

Since we are interested here only in positive co values,
the neutron-scattering spectrum has an elastic line and
two inelastic lines centered at b, , = Ice, I

=
I t@51 and

hz ——
I

co&
I

=
I
co41, except in the accidental case where

6, and 62 are equal to or close to each other. The elastic
line comes, therefore, from the transition from + —,

' to
——,

' for X + and from the three transitions of 7„,while

the two inelastic lines correspond, respectively, to either
the transition from + —,

' to + —,
' or from ——', to ——', (ac-

cording to whether co, or co5 is positive) and to either the
transition from +—', to + —,

' or from ——,
' to ——', (according

to whether co2 or co4 is positive).
Before presenting in the next section the numerical re-

sults for the neutron-scattering spectra, let us examine
here the low-temperature and the high-temperature limits
for the quasi elastic and inelastic linewidths.

At low temperatures, T &&5& and b2, the quasielastic
line is obtained by the four Lorentzian functions corre-
sponding to the three functions of X„and to the i =3
function of 7 +. At low temperatures, only the ground-
state doublet is occupied and the linewidths of the four
Lorentzian functions, which are, respectively, equal to
(P;;) ' ImM, ',.(co) (with i =1,2, 3) or to (P~+~ )

ImM33(m), become equal to each other. Thus, the quasi-
elastic linewidth, which is equal to their common value,
is given by

The last term of (18) is nonzero only if the ground state
is the +—,

' doublet.
Thus, the intensity I of the quasielastic line at co=0 is

equal to

I=
6y,

(19)

where we have considered only the zero- and first-order
terms in T and where the indices of J, refer obviously to
the two levels 1 and 2.

We see that y;„has a finite value at T =0, exactly as in

the previous cubic case, ' and that y;„ is linear in T at
low temperatures.

(ii) The second case corresponds to an inelastic line at a
positive energy A3& describing the transition between the
state n on the second- or highest-excited doublet (labeled
3) to the state m on the ground state 1. The half-width

y;„of this inelastic line is given, at low temperatures
(T «6»), by

)';.=2~~«F) [ I J311 ~31+ I J321 ~32

+(
I
J» I

'+
I J33 I

') T] . (21)

where y, is given by the low-temperature expression (17)
and the coefficient D~=37 for the +—,

' ground state.
DM =9 for the +—,

' ground state, and DM =25 for the +—,
'

ground state. We see that, for the +—,
' ground state, there

is a contribution of 36 from the transverse susceptibility
and of 1 from the longitudinal one, while DM originates
only from the longitudinal one for the +—,'and +—,

' ground
states.

In conclusion, at low temperatures, the half-width of
the quasielastic line is, therefore, always given by (17),
but the intensity of the quasielastic peak must be much
larger for the +—,

' ground state than for the +—,
' and +—,

'
ground states, if all the other parameters remain un-

changed.
Let us give now the low-temperature behavior for the

half linewidth y;„of the inelastic lines centered at b, , or
62 and corresponding to +—,

' 2—,
' or +—,

'
—,
' transitions;

there is no transition corresponding to +—', ~k —,
' in this

model. The low-temperature behavior of y;„depends on
the scheme of levels split by the crystalline field. In our
present case of three doublets split by the crystalline field,
there are three possible behaviors for the inelastic lines
and their widths:

(i) The first case corresponds to an inelastic line at a
position energy 52& describing the transition between the
state n on the first excited doublet (labeled 2) to the state
m on the ground-state doublet (labeled 1). The half-
width y;„of this inelastic line, which is given by
(P;+) ImM+(co) for the ith considered transition with
co=52„ is given, at low temperatures (T «h2&), by

r .=2~n «F )'[
I
J»

I

'~»+(
I J» I

'+ 1»z I

')T]

I= lim ImX(co)coth(co/2T)

, Im[M;, (0)+2M~+, (0)6,, ] .
3(yq, )'

(18)

The T =0 value of the half-width given by (21) is larger
here than in preceding case and differs from the result in
the cubic case. ' We can notice that the slope of the
linewidth versus T is the same for the elastic line and the
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y;„=2«(EF) (
I J„, I

+
I
J

I
+

I

J
+

I

J il'+
I
J ~I'+

I
J 31') . (23)

We see immediately that, at high temperatures, the
half-widths of all the lines become equal to each other
and are given by

y = 12m
I

n (EF )J
I

T (24)

if all the JMM values are taken equal to J.
Thus, we recover the previous result' that, if we take

all the JMM values equal to J, the ratio of the high- and
low-temperature slopes of the quasielastic line width
versus temperature is 3, i.e., exactly the ratio of the
effective degeneracies of the occupied 4f levels. More-
over, in the present case of three doublets, we find also
the same result for the ratio of the high- and low-
temperature slopes of the inelastic linewidths versus tem-
perature.

different cases for the inelastic line, if we take all the JMM
equal to one another.

(iii) The third case corresponds to a transition between
the state n on the second-excited doublet 3 and the state
m on the first-excited doublet 2. Since the two levels are
empty at low temperatures, there is no inelastic transition
corresponding to this transition at T =0 and very low
temperatures (T &&b,z, ). Clearly, this case is different
from the two preceding ones, since the inelastic line ap-
pears slowly with increasing temperature and its intensitiy
is, therefore, firstly increasing, while the intensity of the
inelastic lines in the two preceding cases is always de-
creasing with temperature.

Let us examine the high-temperature (T »b, » and
b, z&) behavior of the quasielastic and inelastic linewidths.
At high temperatures, the linewidths of the four
Lorentzian functions giving rise to the quasielastic line
are also equal to each other and the resulting half-width

yq, of the quasielastic line is given, for T &&5», by

l'q. =4««F)'(
I
Jii I

'+ Jiz I'+
I Ji3

I

')T .

Similarly, the half-width y;„of an inelastic line corre-
sponding to a transition from a level n to a level m is
given, at high temperatures, by

0.6-,
I
I

I

I

I

l

I

cv 04 (

3
I

I

Q
U

~ 0.2
I

E
1

0
0 40 80 120 160

~ (K)
200

FIG. 1. Plot of In@(co)coth(co/2T) vs co (in K) at 20 K for
four different crystalline field level schemes: case I corresponds
to the sequence (+—,', +—,', +—,

' ); case II to (+—,', + ' + ' ). ase III
+1 5 +3to (+—„+2,+—,); and case IV (plotted as a dashed line) to

( z, ~
—,', +—,'). The following parameters are used: the three(+3 ~5 ~1

doublets lie at, respectively, —450 K, —400 K, and —350 K
below the Fermi energy, Vkf ——700 K and n (E+ ) =0.93
states/eV atom. The values of I~(co)coth(co/2T) at ~=0 are
equal to 2.32 in cases I and III, 1.57 in case II, and 0.6 in case
IV.

0.6.l

Figure 1 shows firstly the neutron-scattering spectrum
ImX(co)coth(co/2T) versus co at 20 K with the preceding
parameters. The plots correspond to different crystalline
field level schemes: either the sequence +—' +=' +—' (case27 2' 2

I) (the levels are labeled according to increasing energy
+1and +—, is here the ground state), which gives only a peak

III. RESULTS FOR THE
NEUTRON-SCATTERING SPECTRUM 20K

Some numerical results for the neutron-scattering spec-
trum for a noncubic cerium Kondo compound are
presented in Figs. l —4. We use for these figures a reason-
able set of common parameters: the three doublets lie,
respectively, at —450 K, —400 K, and —350 K below
the Fermi energy; the hybridization parameter is

Vgf —700 K, so that the exchange integral J» for the
ground state is always equal to J11 ———0.094 eV; more-
over, the density of states of the conduction band is taken
equal to n (EF)=0.93 statesleV atom for one spin direc-
tion and the cutoff energy D is taken equal to D =850 K

i0, 11as previously. ' The two variable parameters here are
the nature of the different doublets and the temperature.

0
0 50 100 150

FIG. 2. Plot of Imp(co)coth(co/2T) vs co (in K) at different
temperatures, for a + —,

' ground state and the (+—' +—' +—,')2& 2' 2

crystalline field level sequence. The parameters used here are
the same as those of Fig. 1.
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at 50 K for the transition k—', ~k —,'; or the sequence
6—,', k —,

' 6—,
' (case II) which gives also a peak at 50 K for

the transition +—,
' +—,'; or the sequence +—,', +—,', +—,

'
(case III) which gives now only a peak at 100 K for the
transition +—,

' +—,'; or finally the sequence k —,', +—,', +—,
'

(case IV) (plotted as a dashed line) which gives two peaks

T,(K)

FIG. 3. Plot of Imp(co)coth(co/2T) vs co (in K) at 20 K and

40 K for a +
~

ground state and the (+ ~, + ~+ ~ ) crystalline

field level sequence. The parameters used here are the same as
those of Fig. l. The value of Img(co)coth(co/2T) at m=0 is

equal to 1.6 at 20 K.

at 50 K and 100 K corresponding to the two transitions
+—', ~+—,

' and +—,
' ~+—,'. The occurrence of these

different peaks corresponds obviously to the low-
temperature behavior described in the preceding section.
Moreover, two points must be emphasized: First, the
peak width observed at 100 K is much larger than that at
50 K according to formulas (20) and (21); second, the
heights of the co=0 peaks are equal, in Fig. 1 at 20 K, to
2.32 (cases I and III), 1.57 (case II), and 0.6 (case IV with
dashed line), which agrees with expression (19) with a
coeScient D~, respectively equal to 37, 25, and 9 accord-
ing to the considered ground state.

Figure 2 shows the neutron-scattering spectrum versus
cu at different temperatures with the sequence +—,', +—,',
+—,

' for the crystalline field level scheme; at low tempera-
tures, there are two inelastic peaks at 50 K and 100 K
corresponding to the +—,

' +—,
' and +—,

' +—', transitions.
We see that the intensities of the peaks decrease with in-
creasing temperature and that the spectrum is flat at 200
K. This situation is similar to that previously observed in
the cubic case. '

Figure 3 shows the neutron-scattering spectrum versus

~ at 20 and 40 K with the sequence +—,', k —,', +—,
' for the

crystalline field level scheme; at low temperatures, there
is only one peak at 100 K corresponding to the transition
from the highest excited level +—,

' to the ground state +—,';
the intensity of this peak decreases with increasing tem-
perature. On the contrary, there is no inelastic peak at
the co=50 K energy at very low temperatures, but the in-
tensity at co=50 K increases with increasing temperature
and a very weak peak is visible at T =40 K.

Finally, Fig. 4 gives the plots versus temperature of the
quasielastic half-widths y, for the same parameters and
for either a+ —,', or a +—'„or a +—,

' ground state. We have

not plotted in Fig. 4 the different yq, values when we
change the two excited states without changing the
ground state, because the observed differences on y, are
almost negligible. Moreover, as shown in Fig. 4, the tem-
perature dependence of yq, is not greatly dependent on
the nature of the ground state. But, as in the cubic
case, ' the half-width y, of the quasielastic line starts
from zero at T =0, presents a positive curvature at low
temperatures, and behaves linearly with temperature at
high temperatures.

IV. COMPARISON WITH EXPERIMENT
AND CONCLUDING REMARKS

20 40 60 80
T (K}

100

FIG. 4. Plot of the half-widths yq, (in K) for a + —,
' or a +

~
or

a +
~

ground state. The parameters used here are the same as

those of Fig. 1.

Thus, the neutron-scattering spectrum for noncubic
cerium Kondo compounds presents one or two inelastic
peaks, the second case occurring at low temperatures
only if the ground state is the +—,

' doublet.
The typical neutron-scattering spectrum shown in Fig.

2 can account qualitatively for the experimental neutron
spectra of hexagonal CeA13 and tetragonal CeCuzSiz,
where two weak inelastic lines have been observed. In
fact, the theoretical parameters used in Figs. 1 —4 have
been chosen to fit the case of CeA13, where the ground
state is known to be the +—', doublet, and where also the
two experimental inelastic lines are located at roughly 50
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and 100 K, and finally in order to take the theoretical and
experimental values of y, equal to each other at 100 K.

The case of CeCuzSiz is more delicate, since the
ground-state level 1 and the second-excited level 3 are
linear combinations of +—,

' and +—,
' states, while the first-

excited level 2 is a pure +—,
' state, according to magnetic

neutron-scattering experiments of Horn et al. Thus,
there are additional elastic and inelastic transitions
occurring from both the longitudinal and transverse sus-
ceptibilities, with respect to the present analysis. Howev-
er, there appear two inelastic peaks at low temperatures
at roughly 150 and 300 K, corresponding to the transi-
tions +—,'~+—', and —,'~+—', between, respectively, the
states 2~1 and 3~1. A more complete analysis of the
case of CeCu2Si2 could be straightforwardly performed in
view of more detailed experimental neutron-scattering re-
sults.

But, the shape of the y, versus T curve is not the
same, since the theoretical one is linear above 40 K as
shown in Fig. 4 and the experimental one clearly has a
negative curvature. Moreover, the very low-temperature
experimental value of yq, has a finite value; but, the

present model is no more valid at very low temperatures
below the Kondo temperature Tk in cerium Kondo com-
pounds, and a finite residual linewidth is obtained within
the spin-fluctuation model' which is certainly more ap-
propriate in such systems below Tk. Indeed, the remarks
on the validity of the model previously presented for the
cubic case' hold also in this case.

Despite its deficiencies, our model can, therefore, ac-
count for the neutron-scattering spectra in noncubic ceri-
urn Kondo compounds. Further experiments, such as,
for example, the study of the occurrence of one or two
peaks as a function of the considered ground state and of
the temperature dependence of the linewidth in noncubic
cerium Kondo compounds, would be interesting to check
the present theoretical model.
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