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We have studied the properties of equilibrium and nonequilibrium (d — 1)-dimensional interfaces
via Monte Carlo simulations of a d-dimensional solid-on-solid model with d=2 and 3. At equilibri-
um, we examine the intrinsic width of the interface and the interfacial profile as functions of both
the lateral size L of the system and the applied gravitational field g; we have studied also the
height-height correlation function as a function of both separation and g in two dimensions. Our re-
sults are consistent with theories of these properties relying on exact (in an appropriate limit) solu-
tion of the model for the case of d=2 and on capillary-wave theory for d=3. The nonequilibrium
interfaces studied are those which arise between a growing wetting film and a bulk phase. We look
at the intrinsic width of the interface and at the interfacial profile in the large-L limit as functions of
time and of the interaction between the substrate and adsorbate. For d —1 equal to both 1 and 2,
and for all adsorbate-substrate potentials used, the width grows at a rate which is independent of
this potential; the rate is consistent with fluctuation-dominated growth mechanisms. The profiles
have the same shape as the equilibrium profiles. In particular we find for d —1=1 that the width
varies with time as w ~¢!/4, which is the same as the rate of growth of the film thickness in the fluc-
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tuation regime.

I. INTRODUCTION

In a previous paper,' hereafter referred to as I, we
presented the results of Monte Carlo (MC) simulations of
the growth of wetting films on a substrate as modeled by
a d-dimensional solid-on-solid (SOS) model. Emphasis in
that work was placed on the rate of growth of the films as
functions of time in the limit that the lateral size L of the
system is large enough to play no role. The results were
compared with the predictions of Lipowsky,? based on
analysis of an effective interface model, and were found to
be in agreement. This paper is devoted to further MC
study of the SOS model with emphasis on the properties
of the interface between the growing film and the bulk
phase and also on the properties of an equilibrium inter-
face between two coexisting bulk phases. In the latter
case we look, in particular, on the interfacial properties
as functions of L and of the gravitational field g acting on
the system, and we are able to compare our results with
analytic calculations using this and other models.>~!! In
particular, for the one-dimensional interface, there are
exact calculations, in the continuum limit, of some prop-
erties of the equilibrium interface in the SOS model.>~°
Similar calculations exist for the Gaussian column mod-
el” and for the Ising model.>® We have extended the cal-
culations of van Leeuwen and Hilhorst,? in particular, to
include a prediction of the height-height correlation func-
tion and have carried the calculation of this function and
the profile shape through to obtain simple results at small
g. For the two-dimensional equilibrium interface, there
are approximate analytic theories, e.g., the capillary-wave
model,'>!! which allow for the determination of proper-
ties such as the width, the profile, and various correlation
functions. Wherever feasible, we have compared our
simulations with the appropriate analytic predictions.

In the case of nonequilibrium interfaces, there are gen-
eral predictions of the behavior of the liquid-gas interfa-
cial width in the fluctuation-dominated regime;'? also,
Scmidt and Binder have studied the problem of the inter-
face between a growing film and bulk phase within the
context of a time-dependent Landau-Ginzburg model.'?

Section II of this paper contains a description of our
model and Monte Carlo methods, and Sec. III presents
the results. A summary is contained in Sec. IV. The Ap-
pendix presents a summary of the exact solution® of the
model for an equilibrium one-dimensional interface.

II. MODEL AND METHODS

As in I, we use a solid-on-solid model with nearest-
neighbor ferromagnetic interactions J/2 on a (d—1)-
dimensional square lattice parallel to the surface of the
substrate, or, more generally, perpendicular to the z axis;
d =2 or 3. At any site i of the lattice there is a column of
adsorbate atoms of height 4;. In the case of adsorption,
h;=0,1,2,..., and for the case of an interface between
two bulk phases, 4; can take on any integral value. The
Hamiltonian is

H—uN=(J/2) 3 [hi—hj[+2U(h,«), (1)
{(1,j) i
where
U(h;)=V(h;)—puh; (2)

in the case of the adsorption problem, and
U(h;)=gh} (3)

for the interface between bulk phases. In these equations,
up is the chemical potential, V(h;) is the adsorbate-
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substrate interaction, and g is the gravitational field;
(i,j) denotes a sum over all nearest-neighbor pairs of
columns. Bulk two-phase coexistence obtains for pu=0.
The substrate potentials used are either

V(h)=0 (4)
or

7.85J if h =0,

W=14 27 /mP it h 0. (5)

In the simulations of film growth reported here, we
have used primarily p=1 and 2. In two dimensions (in-
terface dimension of 1), the temperature used was
T =0.5J /k, and in three dimensions, T =0.8J /k which
is well above the roughening temperature'* T ~0.6J /k;
k is Boltzmann’s constant. The system size L used
ranged from 50 to 1000 in d =2 and from 5 to 200 in
d=3.

Quantities calculated include the height-height correla-
tion function at separation k, H(k ); the intrinsic width of
the interface w; the intrinsic profile n(z), and the cover-
age I'. These quantities may be defined by the following
formulas:

[()=L'"?3 h(t), (6)
w(t)= LI*dZ[hi(t)—F(t)]z iz @)
H(k,t)=L'"? 3 [h; 1 ()=T(O)[h(H-T@®)], @)
and

n(z,0)=L'"?3 O[h;(1)~T(1)—z] . 9)

where O is a step function.

In the case of nonequilibrium profiles, each of these
quantities is a function of time and is determined from
the simulations by averaging over many runs starting
each run from an initial configuration with all A; set
equal to zero. Typically, some 50 MC runs of 10> MCS
(Monte Carlo steps per site) were utilized. For equilibri-
um profiles, w, H, and n are independent of time and may
be determined from a single sufficiently long MC run.

III. RESULTS

A. Equilibrium interfaces

We shall discuss in turn our results for d =2 and 3. In
two dimensions we consider first the case of g =0 which
is special in that the intrinsic width of the interface
diverges with the size L of the system. We have done a
series of simulations for w(L ) using values of L ranging
from 50 to 525 and T'=0.5J /k. The results are shown in
Fig. 1 which is a log-log plot of w versus L. The solid line
is the result of a least-squares fit to the data (slope equals
0.506+0.057). From, e.g., capillary-wave theory!®!! or
exact treatment of the Gaussian column model,” one ex-
pects w ~L'72,
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FIG. 1. The logarithm of w is plotted against that of L with
g=0 and T=0.5J/k for equilibrium interfaces in d=2; the
solid line is from a least-squares fit to the simulation results
(slope of 0.506+0.057).

Figure 2 shows, for L =400, simulated profile n(z)
versus z and also the analytic function

flz)=[1—erf(z/V2w)]/2 ; (10)

erf(x) is the error function, see Eq. (A19). Equation (10)
is the expected form of the profile on the basis of analytic
calculations’ or capillary-wave theory.'® For w we have
used the value inferred from the simulations, i.e., 7.2.
Agreement of the simulated profile with the predicted
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FIG. 2. The density n(z) of an equilibrium interfacial profile
is shown as a function of z for 2g /J =0, L =400, T=0.5J /k,
and d =2. The solid line is the theoretical prediction, Eq. (10),
using w =7.2 as inferred from the simulations.
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FIG. 3. The logarithm of w is plotted against that of 2g /J for
equilibrium profiles with L =400 and 7=0.5J /k in d =2. The
solid line is a least-squares fit (slope of —0.24+0.02) to the ten
largest-g points; the dashed line is the prediction from the exact
solution of the SOS model in the continuum limit and for
L— oo,

one is seen to be quite good. Equally good agreement was
obtained for other values of L.

We turn now to the g dependence of the equilibrium
width and profile for d =2. We have done simulations
for several values of g and for L =400 which is large
enough that the results are size independent at the larger
values of g. The interface width is predicted® (see Appen-
dix) to vary as g ~'/*. Figure 3 shows a log-log plot of w
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FIG. 4. The densities n(z) of equilibrium profiles for
2g /J =0.001(M) and g =0.0001( A ) are shown as functions of z
for L =400, T=0.5J/k, and d=2. The solid lines are the
theoretical prediction, Eq. (10), using w as inferred from the
simulations.
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versus 2g/J at T=0.5J/k. The solid line (slope of
—0.24+0.02) is the result of a least-squares fit to the
data for the ten largest values of g. One can see in the
simulation results a tendency toward saturation of w at
the smallest values of g. The g =0 width of the interface
at these values of L and T is 7.2, cf. Figs. 1 and 2, and so
w will tend toward this value as g —0. The dashed line in
the figure is the predicted value of w(g) for L — oo, small
g, and in the continuum limit, taken from Eq. (29); the
agreement is less than perfect, most probably as a conse-
quence of size effects and perhaps also as a consequence
of the difference between the discrete model and the con-
tinuum limit. Figure 4 shows the profiles at T=0.5J /k
and L =400 for 2g/J=0.001 and 2g/J=0.0001; the
solid lines are given by Eq. (10) with widths w equal to
3.60 and 5.75, respectively; these are the values which
may be inferred from the simulations, Fig. 3. Once again,
agreement of simulated and analytic results is good.
Figure 5 is a plot of In[H(k)/H(0)] versus k for
L =800, T=0.5J/k, and 2g/J=0.0001, 0.0005, and
0.001 in two dimensions; analytic calculations of H(k)
presented in the Appendix demonstrate that for
sufficiently small g it should fall off exponentially with
distance with an exponent proportional to kV'g. The in-
set in Fig. 5 plots In[H(k)/H(0)]/Bgh} (see the Appen-
dix for a definition of h;), where B=1/kT, for the same
three values of g, all data lie very nearly on a straight
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FIG. 5. The logarithm of the height-height correlation func-
tion scaled by H(0), is plotted against the separation k for
2g /J =0.0001(@®), 2g /J =0.0005( A ), and 2g /J =0.001(M), for
L =800, T=0.5J /k, and d =2. The inset shows the same, but
the quantity plotted along the ordinate is further scaled by Bgh}
to obtain a g-independent quantity as predicted by the analytic
solution; see the Appendix.
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FIG. 6. For d=3, we plot Inw vs In(InL) at g=0 and
T=0.8J/k for 5<L <200. The line is a least-squares fit to the
simulation results; it has a slope of 0.493+0.008.

line, demonstrating the expected g dependence.

For the equilibrium two-dimensional (d =3) interface,
one has approximate models, such as the capillary-wave
model,'®!! with which to compare the simulation results.
The predicted variation of w with L for g=0 is

w~VInL. At T=0. 8J /k we plot in Fig. 6 Inw versus
In(InL ) for values of L from 5 to 200; the solid line is a
least-squares fit to the data (slope equals 0.493+0.008).
The results of the simulations may be said to be in good
agreement with the theoretical prediction. Note, howev-
er, that the interface width is only of order 1. Figure 7
shows the profile n(z) versus z for L =50, and
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FIG. 7. For d=3, we plot n(z) vs z for g=0, L =50, and

T=0.8J /k. The solid line is the error function profile with
w =1.08 as inferred from the simulations.
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FIG. 8. For d=3 we plot lnw vs In[—In(2g/J)] at
T=0.8J/k and L=50. The data fit a straight line of slope
~0.4 at the larger values of g; the theoretical prediction of the
slope in the large-L limit is %, shown by the solid line.

T=0.8J /k; the solid line is the error function profile,
Eq. (10), with w=1.08, the value given by the simula-
tions.

We have also done simulations of the d =3 interface
for g£0. Because of the very small width of the g =0 in-
terface at the largest value of L that we are able to treat,
the results are not satisfactorily conclusive regarding the
expected!! w ~Vv —Ing behavior. Figure 8 shows a plot
of Inw versus In[ —In(2g /J)] for T=0.8J /k and L =50.
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FIG. 9. For d =3 we plot n(z) vs z for 2g /J=0.01(A) and
0.1(M) at T=0.8J /k and L =50. The solid lines are error func-
tion profiles with w =0.96 and 0.73; these are in each instance
the values inferred from the simulations.
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For the smallest values of g, the width tends to saturate
at the size-limited value; at the larger values, we are no
longer in the appropriate small-g regime. The data at the
larger values of g fit a straight line with a slope of about
0.4, rather than the expected i, indicated by the solid
line. The interfacial profiles at 2g /J/=0.01 and 0.1 are
shown in Fig. 9: the solid lines are the error function
profile, Eq. (10), with w=0.96 and 0.73, respectively;
these are the values determined from the simulations.
The fit is not as good as in other cases presented above
(and below).

B. Nonequilibrium interfaces

Our studies of nonequilibrium interfaces are concerned
with the interfaces between growing wetting films and the
coexisting bulk phase. We have done simulations of sys-
tems with d =2 and 3, but only for d =2 are the results
unequivocal; we begin our presentation with this case.
Using substrate potentials as given in Eqgs. (4) and (5),
with p=1 and 2 in the latter case, L =1000, T =0.5J /k,
and starting from an initial configuration with all 4, =0,
we have performed repeated runs of 10° MCS to obtain I'
(the results were reported in I), w(¢), and n(z,t). Figure
10 shows a log-log plot of w(¢) versus ¢ for the three cases
of V(h) given by Eq. (5) with p=1 and 2 and of V(h)=0,
along with a line of slope {. The three cases are separat-
ed in the figure by plotting w, 2w, and 4w, respectively; in
fact, the widths in all three cases are virtually indistin-
guishable. They all fit well the growth law w ~¢'/4. The
situation is distinctly analogous to that which arises in
connection with the growth of I'. Recall that in d =2
one is in the fluctuation-dominated growth regime? for T
when V(h) falls off faster than 4 !, and that I ~¢!/* in
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FIG. 10. In d =2, the logarithms of w, 2w, and 4w, respec-
tively, are plotted against the logarithm of ¢ for ¥ ~h 7 with
p=1 and 2 and for V(h)=0; we have used L=1000, and
T=0.5J /k. A line of slope 1 is included for comparison.

this regime; for the width, we can see from the simulation
results that the substrate potential plays no role in deter-
mining w(t). Even the case in the mean-field growth re-
gime for I, p=1, shows the same behavior of w as the
case of V(h)=0. Hence we are in all cases in the
fluctuation-dominated growth regime for w. Desai and
Grant'? have used fluctuating hydrodynamics to show
that the width of a liquid-vapor interface in such a situa-
tion should grow as V'Int in three dimensions; their argu-
ment applied to the case of two dimensions gives w ~t'/#
in agreement with our simulation results. Finally, we
note that the simulations were done using L =1000, for
which the size-limited width of the interface is about 12,
cf. Fig. 1, the results shown in Fig. 10 are essentially in
the L — oo limit.

The profiles of the interface between the growing films
and the bulk phase are shown for the case of p=1, at
times ¢t =1, 10, 100, 500, and 1000, in units’of 100 MCS, in
Fig. 11. In each instance the profile is fit by an error
function, Eq. (10), using the value of w(¢) inferred from
the simulations. One can see from the figure that the
profile appears to be fit quite well by this function. The
conclusion that may be drawn is that the profile attains
its eventual equilibrium form, if not its width, quite early
during the film growth process. The profiles for the other
cases treated behave in the same manner.

In three dimensions, the width of the interface is very
small, the size-limited width, Fig. 6, being of order unity,
and our simulations of the interface are not very informa-
tive regarding the rate at which w grows. For example,
we show in Fig. 12 w? as a function of Inz for L =100,
T=0.8J /k, and substrate potentials V(h)~h~! and
V(h)=0. Notice that at long times the width saturates
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FIG. 11. For d=2, we plot the density n(z,z) of growing
wetting films against z. The substrate potential is of the form
V~h~'; T=0.5J/k, L=400, and t=1(l), 10(A), 100(®),
500(#), and 1000( * ), in units of 100 MCS. The solid lines show
the error function profiles, Eq. (10), using values of w taken
from the simulations.
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FIG. 12. In d =3, w? is plotted against Int for growing wet-
ting films at L =100 and T=0.8J /k for V~h~"'and V(h)=0.

to the size-determined value. On the basis of the simula-
tions, we can say that w(¢) appears to grow no faster
than some nominal power of the logarithm of ¢, given the
potentials we have used. Also our results are at least con-
sistent with the theoretical prediction,'? although other
interpretations are no doubt equally possible. We tenta-
tively conclude that w grows at the appropriate rate for
the fluctuation regime in three dimensions. Results
found using other potentials, e.g., V(h)~h 2 are no
different.
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FIG. 13. For d =3 we plot the profiles n(z,t) of growing wet-
ting films against z. The substrate potential is of the form
V~h~%T=0.8J/k,L=50, and t=1(H), 10(A), 100(®),
500(4#), and 1000( * ), in units of 10 MCS. The solid lines show
the error function profiles using values of w taken from the
simulations.

Figure 13 shows the profiles of the growing films at
times 1, 10, 100, 500, and 1000 in units of 10 MCS for
L =50. The solid lines are the error function profile with
widths of 0.64, 0.88, 1.01, 1.08, and 1.08, respectively; the
width has saturated to the size-limited value at the longer
times.

IV. DISCUSSION

Our simulations of equilibrium interfaces have without
exception supported the predictions of exact and approxi-
mate analytic theoretical calculations of the dependence
of the width on L, the system size in directions parallel to
the interface, and on g, the gravitational field. In addi-
tion, we find that the profiles are in every case well-fit by
error functions, Eq. (10), faces between growing wetting
films and a bulk phase, we have found that the widths
grow (until size effects cause saturation) with time depen-
dences which are expected'? in the fluctuation regime. It
is interesting that this rate turns out to be the same, in
the case of d =2, as the rate at which I" grows in the fluc-
tuation regime. Hence the interface between the growing
film and the bulk phase is not well defined in the sense
that its width is of the same order as the film thickness.
Our conclusion appears to be well established by the
simulations in d =2 and less well so in three dimensions;
we can at least say in the latter instance that our results
are consistent with this hypothesis.

In no case that we have considered does the presence
or form of the substrate potential appear to have any
effect on the rate of growth of the interfacial width, in-
cluding those cases which are in the mean-field growth
regime for the coverage I'. The reason probably lies in
the fact that the adsorbate-substrate energy E, associat-
ed with having an interface of width w is of order

Ey~[w(t)/T())E¢ , (11

where E is the interface free energy arising from capil-
lary fluctuations. Consequently, the growth of the inter-
face is expected to be dominated by the fluctuations and
so to be independent of the actual form of V.

The profiles of the growing films are found to fit the er-
ror function form, Eq. (10), at essentially all values of the
time using w(¢) as found from the simulations via Eq. (7).
They become equilibrium, size-limited, profiles quite ear-
ly in the growth process, i.e., while the film is still grow-
ing at an appreciable rate. This behavior has previously
been found in the context of a time-dependent Landau-
Ginzburg model."3
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APPENDIX

In this appendix we reproduce as a matter of conveni-
ence, the analytic solution of the equilibrium d =2 model
in the continuum limit with g sufficiently small but not
equal to zero. The solution of this particular model was
originally given by van Leeuwen and Hilhorst;® a related
model was solved by Burkhardt.* We follow the exposi-
tion of the former authors and extend it to find both for-
mal and useful results for the height-height correlation
function.

Our starting point is the Hamiltonian

N N
H=UJ/2)'S |hi—h; 1|+ 3 Ulh) . (A1)
i=1

i=1
The free energy is given by

F=—kTIn |3 exp[—BH({h}]]|,
{hi}

(A2)

and the statistical average of any quantity A({h;}) is

(A4)=3 A({h,})exp[BF —B#({h;})] . (A3)
{h;}
Define the transfer matrix as
M, =exp[—(BJ/2)|h—h"| —BU(K")] . (A4)
Now we have an eigenvalue problem,
M, b,=1r, (AS)
m
such that the free energy is given by
F=—NkT InA,,, (A6)

as N — . In this equation, A, is the largest eigenval-
ue; let the eigenvector corresponding to this eigenvalue
be ¢%.

It can be shown, Eq. (1.13) of Ref. 3, that the profile is
given by

zh [¢;lnax]2e —BU(h)
>z
= Eh[¢;1naxl28 —BU(h)

n(z)={O(h;—z)) (A7)

Similarly, we have found that the height-height correla-
tion function can be written as

H(k)=C(hih; ) =(App)~ 1177
. 2
Ea(}“a)“_ll Ehhe ~BU(h)¢ﬁ¢2‘nax

X zh(¢213x)2e—BU(h) ’

(A8)

where A, is the a™ eigenvalue with corresponding eigen-
vector @j.
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The eigenvalue problem can be converted to a discre-
tized Schrodinger problem with the form

[—A,+V(h)1$,=E9, , (A9)
where

Bybp=bn_1 =204+ 41 (A10)

V(h)= —2A"'sinh(BJ /2)exp[ —BU(h)] , (A11)
and

E = —4[sinh(BJ /4)]* . (A12)

Following Ref. 3, we make the continuum limit ap-
proximation in which one replaces A, by d*/dh?. For
U(h)=gh? and sufficiently small g, exponential functions
of U(h)/kT may be expanded to first order in Bg. As a
consequence of these two approximations the Schrodin-
ger equation becomes

2
—d—z+y2 dy)=€dly), (A13)
dy
with
A=[coth(BJ /4)](1—PBghle) , (A14)
and
h=hyy , (A15)
where
ho=[2sinh(BJ /4)]~ X Bg)~1/*. (A16)

Equation (A13) is the Schrodinger equation of a har-
monic oscillator; the ground-state energy eigenvalue cor-
responds to the largest eigenvalue A,,,. Given the well-
known eigenvalues and eigenvectors of the harmonic os-
cillator problem, one can easily find the profile of the in-
terface and the height-height correlation function. We
find for the profile

n(z)=[1—erf(z/V2w)}/2, (A17)
where the width w is
wi={hh;)=h3/[2(1+Bghd)], (A18)
and the error function is
2 x _¢2?
= . Al
erf(x) e fo dte (A19)

Further, we find that the correlation function is given by



H(k)=wf(k)

—w?B -3 > 1—PBghi
=0 | 1=Bghd4n+3)
(2n + 1) .
———FF(1—1/B ,
X (2n )M ( /B)

(A20)

where B =1+ Bgh}.
In the limit of small Bgh} << 1, we have more simply
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—~2pghdk & I
Fk)=(1+Bgh)~¥2 Pk 5 2n+ LI
neo (2l
_ 2
X (Bghle ~PE"d<yn
—2Bghlk —k
me P M (A21)
where we have defined the correlation length

L,=(2Bgh%) '<g~!/2. Our result for the correlation
function predicts that a plot of In[f(k)]/Bgh}3 versus k

should be a straight line, independent of g, with a slope of
—2.
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