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Simulated equilibrium and nonequilibrium interfaces in a lattice model
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We have studied the properties of equilibrium and nonequilibrium (d —1)-dimensional interfaces
via Monte Carlo simulations of a d-dimensional solid-on-solid model with d=2 and 3. At equilibri-

um, we examine the intrinsic width of the interface and the interfacial profile as functions of both
the lateral size L of the system and the applied gravitational field g; we have studied also the
height-height correlation function as a function of both separation and g in two dimensions. Our re-

sults are consistent with theories of these properties relying on exact (in an appropriate limit) solu-

tion of the model for the case of d=2 and on capillary-wave theory for d=3. The nonequilibrium
interfaces studied are those which arise between a growing wetting film and a bulk phase. We look
at the intrinsic width of the interface and at the interfacial profile in the large-L limit as functions of
time and of the interaction between the substrate and adsorbate. For d —1 equal to both 1 and 2,
and for all adsorbate-substrate potentials used, the width grows at a rate which is independent of
this potential; the rate is consistent with fluctuation-dominated growth mechanisms. The profiles
have the same shape as the equilibrium profiles. In particular we find for d —1=1 that the width

varies with time as m —t ' ", which is the same as the rate of growth of the film thickness in the fluc-

tuation regime.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as I, we
presented the results of Monte Carlo (MC) simulations of
the growth of wetting films on a substrate as modeled by
a d-dimensional solid-on-solid (SOS) model. Emphasis in

that work was placed on the rate of growth of the films as
functions of time in the limit that the lateral size L of the
system is large enough to play no role. The results were
compared with the predictions of Lipowsky, based on
analysis of an effective interface model, and were found to
be in agreement. This paper is devoted to further MC
study of the SOS model with emphasis on the properties
of the interface between the growing film and the bulk
phase and also on the properties of an equilibrium inter-
face between two coexisting bulk phases. In the latter
case we look, in particular, on the interfacial properties
as functions of L and of the gravitational field g acting on
the system, and we are able to compare our results with
analytic calculations using this and other models. " In
particular, for the one-dimensional interface, there are
exact calculations, in the continuum limit, of some prop-
erties of the equilibrium interface in the SOS model.
Similar calculations exist for the Gaussian column mod-
el and for the Ising model. ' We have extended the cal-
culations of van Leeuwen and Hilhorst, in particular, to
include a prediction of the height-height correlation func-
tion and have carried the calculation of this function and
the profile shape through to obtain simple results at small
g. For the two-dimensional equilibrium interface, there
are approximate analytic theories, e.g. , the capillary-wave
model, ' '" which allow for the determination of proper-
ties such as the width, the profile, and various correlation
functions. Wherever feasible, we have compared our
simulations with the appropriate analytic predictions.

In the case of nonequilibrium interfaces, there are gen-
eral predictions of the behavior of the liquid-gas interfa-
cial width in the fluctuation-dominated regime also,
Scmidt and Binder have studied the problem of the inter-
face between a growing film and bulk phase within the
context of a time-dependent Landau-Ginzburg model. '

Section II of this paper contains a description of our
model and Monte Carlo methods, and Sec. III presents
the results. A summary is contained in Sec. IV. The Ap-
pendix presents a summary of the exact solution of the
model for an equilibrium one-dimensional interface.

II. MODEL AND METHODS

As in I, we use a solid-on-solid model with nearest-
neighbor ferromagnetic interactions J/2 on a (d —1 )-

dimensional square lattice parallel to the surface of the
substrate, or, more generally, perpendicular to the z axis;
d =2 or 3. At any site i of the lattice there is a column of
adsorbate atoms of height h;. In the case of adsorption,
h, =0, 1,2, . . . , and for the case of an interface between
two bulk phases, h, can take on any integral value. The
Hamiltonian is

where

U(h; ) = V(h;) —ph;

in the case of the adsorption problem, and

U(h, ) =gh,

for the interface between bulk phases. In these equations,

p is the chemical potential, V(h; ) is the adsorbate-
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substrate interaction, and g is the gravitational field;
(i,j ) denotes a sum over all nearest-neighbor pairs of
columns. Bulk two-phase coexistence obtains for p=0.
The substrate potentials used are either

3 I I I I

V(h)—=0 (4)

or

7.85J if h =0,
4.2J/h~ if h )0 . (5)

In the simulations of film growth reported here, we
have used primarily p =1 and 2. In two dimensions (in-
terface dimension of 1), the temperature used was
T=O.SJ/k, and in three dimensions, T=0.8J/k which
is we11 above the roughening temperature' T„=0.6J/k;
k is Boltzmann's constant. The system size L used
ranged from 50 to 1000 in d=2 and from 5 to 200 in
d =3.

Quantities calculated include the height-height correla-
tion function at separation k, H(k ); the intrinsic width of
the interface w; the intrinsic profile n (z ), and the cover-
age I . These quantities may be defined by the following
formulas:

1.3

0.8
4.5

In(L)

5.5 6.5

FIG. 1. The logarithm of w is plotted against that of L with
g=O and T=O. SJ/k for equilibrium interfaces in d=2; the
solid line is from a least-squares fit to the simulation results
(slope of 0.506+0.057).

w(t)= L' g[h;(t) —I (t)]

(6)
Figure 2 shows, for L =400, simulated profile n(z)

versus z and also the analytic function

(8)
f(z ) = [1—erf( z /&2w ) ]/2; (10)

and

n(z, t)=L' "+e[h;(t)—I (t)—z] . (9)

erf(x ) is the error function, see Eq. (A19). Equation (10)
is the expected form of the profile on the basis of analytic
calculations or capillary-wave theory. ' For m we have
used the value inferred from the simulations, i.e., 7.2.
Agreement of the simulated profile with the predicted

where e is a step function.
In the case of nonequilibrium profiles, each of these

quantities is a function of time and is determined from
the simulations by averaging over many runs starting
each run from an initial configuration with all h; set
equal to zero. Typically, some 50 MC runs of 10 MCS
(Monte Carlo steps per site) were utilized. For equilibri-
um profiles, m, H, and n are independent of time and may
be determined from a single sufficiently long MC run.
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III. RESULTS

A. Equilibrium interfaces
0.4—

We shall discuss in turn our results for d =2 and 3. In
two dimensions we consider first the case of g =0 which
is special in that the intrinsic width of the interface
diverges with the size L of the system. We have done a
series of simulations for w(L ) using values of L ranging
from 50 to 525 and T=0.5J /k. The results are shown in
Fig. 1 which is a log-log plot of w versus L. The solid line
is the result of a least-squares fit to the data (slope equals
0.506+0.057). From, e.g., capillary-wave theory' "or
exact treatment of the Gaussian column model, one ex-
pects m -L '

0.2—
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FIG. 2. The density n(z) of an equilibrium interfacial profile
is shown as a function of z for 2g/J=0, L =400, T=0.5J/k,
and d =2. The solid line is the theoretical prediction, Eq. (10),
using m =7.2 as inferred from the simulations.
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FIG. 3. The logarithm of m is plotted against that of 2g /J for
equilibrium profiles with L =400 and T=0.5J/k in 1=2. The
solid line is a least-squares fit (slope of —0.24+0.02) to the ten

largest-g points; the dashed line is the prediction from the exact
solution of the SOS model in the continuum limit and for
L —+ (x).

versus 2g/J at T=O. SJ/k. The solid line (slope of
—0.24+0.02) is the result of a least-squares fit to the
data for the ten largest values of g. One can see in the
simulation results a tendency toward saturation of w at
the smallest values of g. The g =0 width of the interface
at these values of I. and T is 7.2, cf. Figs. 1 and 2, and so
w will tend toward this value as g ~0. The dashed line in
the figure is the predicted value of w(g ) for L ~ ao, small

g, and in the continuum limit, taken from Eq. (29); the
agreement is less than perfect, most probably as a conse-
quence of size effects and perhaps also as a consequence
of the difference between the discrete model and the con-
tinuum limit. Figure 4 shows the profiles at T=0.5J/k
and L =400 for 2g/J=0. 001 and 2g/J=0. 0001; the
solid lines are given by Eq. (10) with widths w equal to
3.60 and 5.75, respectively; these are the values which
may be inferred from the simulations, Fig. 3. Once again,
agreement of simulated and analytic results is good.

Figure 5 is a plot of ln[H(k)/H(0)] versus k for
L =800, T=O. SJ/k, and 2g/J=0. 0001, 0.0005, and
0.001 in two diinensions; analytic calculations of H(k)
presented in the Appendix demonstrate that for
sufficiently small g it should fall off exponentially with
distance with an exponent proportional to kV'g. The in-
set in Fig. 5 plots ln[H(k )/H(0) j/Pgho (see the Appen-
dix for a definition of ho), where /3=1/kT, for the same
three values of g, all data lie very nearly on a straight

one is seen to be quite good. Equally good agreement was
obtained for other values of I..

We turn now to the g dependence of the equilibrium
width and pro61e for d=2. We have done simulations
for several values of g and for L =400 which is large
enough that the results are size independent at the larger
values of g. The interface width is predicted (see Appen-
dix) to vary as g

' . Figure 3 shows a log-log plot of w
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FIG. 4. The densities n (z ) of equilibrium profiles for

2g /J =0.001(E) and g =0.0001( A ) are shown as functions of z

for L=400, T=0.5J/k, and d=2. The solid lines are the
theoretical prediction, Eq. {10),using w as inferred from the

simulations.

FIG. 5. The logarithm of the height-height correlation func-

tion scaled by H(0), is plotted against the separation k for

2g/J =0.0001(~), 2g/J =0.0005( L ), and 2g/J =0.001(8), for
L =800, T=O. SJ/k, and d =2. The inset shows the same, but

the quantity plotted along the ordinate is further scaled by Pghq
to obtain a g-independent quantity as predicted by the analytic

solution; see the Appendix.
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FIG. 6. For d=3, we plot lnw vs ln(lnL) at g=0 and
T=0.8J/k for 5 & L (200. The line is a least-squares fit to the
simulation results; it has a slope of 0.493+0.008.

FIG. 8. For d =3 we plot 1nw vs 1n[ —1n(2g /J ) ] at
T=0.8J/k and L=50. The data fit a straight line of slope
=0.4 at the larger values of g; the theoretical prediction of the
slope in the large-L limit is ~, shown by the solid line.

line, demonstrating the expected g dependence.
For the equilibrium two-dimensional (d =3}interface,

one has approximate models, such as the capillary-wave
model, ' '" with which to compare the simulation results.
The predicted variation of w with L for g =0 is

w -"(/lnL. At T=0.8J/k we plot in Fig. 6 into versus
ln(lnL ) for values of L from 5 to 200; the solid line is a
least-squares fit to the data (slope equals 0.493+0.008).
The results of the simulations may be said to be in good
agreement with the theoretical prediction. Note, howev-
er, that the interface width is only of order 1. Figure 7
shows the profile n (z } versus z for L =50, and

T=0.8J/k; the solid line is the error function profile,
Eq. (10), with w=1.08, the value given by the simula-
tions.

We have also done simulations of the d=3 interface
for g&0. Because of the very small width of the g =0 in-
terface at the largest value of L that we are able to treat,
the results are not satisfactorily conclusive regarding the
expected" w-& —lng behavior. Figure 8 shows a plot
of lntt/ versus ln[ —ln(2g /J )] for T=0.8J /k and L =50.
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FIG. 7. For d=3, we plot n(z) vs z for g=0, L =50, and
T=0.8J/k. The solid line is the error function profile with
w =1.08 as inferred from the simulations.

FIG. 9. For d=3 we plot n(z) vs z for 2g/J=0. 01(+) and
0.1(Q) at T=0.8J/k and L =50. The solid lines are error func-
tion profiles with w =0.96 and 0.73; these are in each instance
the values inferred from the simulations.
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APPENDIX The eigenvalue problem can be converted to a discre-
tized Schrodinger problem with the form

In this appendix we reproduce as a matter of conveni-
ence, the analytic solution of the equilibrium d =2 model
in the continuum limit with g sufficiently small but not
equal to zero. The solution of this particular model was
originally given by van Leeuwen and Hilhorst; a related
model was solved by Burkhardt. We follow the exposi-
tion of the former authors and extend it to find both for-
mal and useful results for the height-height correlation
function.

Our starting point is the Hamiltonian

[—~2+ V(h )]6=&6

where

~2( h =Oh —) 24h+4h+)

V(h ) = —2X 'sinh(PJ/2)exp[ i3U(—h )],

and

(A9)

(A 10)

(Al 1)

N N

&=(J/2) g ~
h; —h;+, + g U(h;) . (A 1) E = —4[sinh(P J /4) ] (A12)

The free energy is given by

F= kT ln—g exp[ —P&( [ h, I ) ]
Ih,,

I

and the statistical average of any quantity A ( [ h; ) ) is

( 3 ) = g A(Ih„I )exp[PF —)t3&(Ih;])] .

(A2)

(A3)

Following Ref. 3, we make the continuum limit ap-
proximation in which one replaces 52 by d /dh . For
U(h }=gh and sufficiently small g, exponential functions
of U(h )/kT may be expanded to first order in Pg. As a
consequence of these two approximations the Schrodin-
ger equation becomes

(A13)

Define the transfer matrix as

Mh h
——exp[ —(PJ/2)

~

h —h'
~

PU(h—')] .

Now we have an eigenvalue problem,

(A4)
with

i(, = [coth(PJ /4) ](1—Pgh Oe), (A14)

g ~h, h'( h ~Oh
h'

such that the free energy is given by

(A5) and

h =boy, (A15)

F= —NkT ink, ,„ (A6)
where

[ymax]2e —PU(h )

n(z)=(e(h; —z)) =
[ymax]2e —PU(h )

(A7)

as N~ ao. In this equation, k,„ is the largest eigenval-
ue; let the eigenvector corresponding to this eigenvalue
be /max

It can be shown, Eq. (1.13) of Ref. 3, that the profile is
given by

ho =—[2sinh(PJ/4)] ' (Pg) (A16)

Equation (A13) is the Schrodinger equation of a har-
monic oscillator; the ground-state energy eigenvalue cor-
responds to the largest eigenvalue A, ,„. Given the well-
known eigenvalues and eigenvectors of the harmonic os-
cillator problem, one can easily find the profile of the in-
terface and the height-height correlation function. We
find for the profile

Similarly, we have found that the height-height correla-
tion function can be written as

H(k)=(h;hj) =(A, }
'2

j—i
( y h PU( h )ya ymax—

( ymax )2 —PU( h )

(A8)

n(z) =[1—erf(z/&2(() )]/2,

where the width m is

t() =(h;h;) =ho/[2(1+)(3gho)],

and the error function is

erf(x ) = —f dt e
V'n o

(A17)

(A18)

(A19)

where k is the o.'" eigenvalue with corresponding eigen-
vector ((~h ' Further, we find that the correlation function is given by
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H(lc)=w f(jc)

2g —3/2
oo 1 —Pgh o

=o 1 P—gho(4n+3)X
—k

f(k) (1 p hz)
—i3g&,'k ~ (2n+1)!!

(2n )!!

—2P h2kZPghok 2„

(2n + 1)!!(1
(2n )!!

where B= I+Pgho.
In the limit of small Pgh o ((1,we have more simply

—2pgh Ok —k /L=e '—=e (A21)

where we have defined the correlation length
L, =—(2Pgho) '~g ' . Our result for the correlation
function predicts that a plot of 1n[f(k)]/Pgho versus k
should be a straight line, independent of g, with a slope of
—2.

Z. Jiang and C. Ebner, Phys. Rev. B 36, 6976 (1987).
R. Lipowsky, J. Phys. A 18, L585 (1985).
J. M. J. van Leeuwen and H. J. Hilhorst, Physica 107A, 319

(1981).
4T. Burkhardt, J. Phys. A 14, L63 (1981).
5A. Ciach, Phys. Rev. B 34, 1932 (1986).
A. Ciach and J. Stecki, J. Phys. A 20, 5619 (1987).

7D. Bedeaux, J. D. Weeks, and B.J. A. Zielinska, Physica 130A,
88 (1985).

D. B.Abraham and P. Reed, Phys. Rev. Lett. 33, 377 (1974).

D. B.Abraham, Commun. Math. Phys. 49, 35 (1976).
F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett.
15, 621 (1965).
D. Bedeaux and J. D. Weeks, J. Chem. Phys. 82, 972 (1985).

t~R. C. Desai and M. Grant, in Fluid Interfacial Phenomena,
edited by C. A. Croxton (Wiley, New York, 1986), p. 135.
I. Schmidt and K. Binder, Z. Phys. B 67, 369 (1987).
J. D. Weeks, in Ordering in Strongly Fluctuating Condensed
Matter Systems, edited by T. Riste (Plenum, New York,
1980), p. 293.


