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We study the S= 1 Ising model, equivalent to the three-state lattice-gas model, with nearest-
neighbor, pairwise interactions on a two-dimensional, triangular lattice. We pay particular atten-
tion to the antiferromagnetic phase diagrams. We show its relation to other well-studied models
(S=—,

' Ising, Blume-Capel, Blume-Emery-Griffiths), classify the ground states, and calculate finite-

temperature phase diagrams using transfer matrices and finite-size scaling for infinite strips of three
and six sites width. The phase diagrams are quite complicated, with surfaces of first- and second-
order transitions that intersect along lines of multicritical points of various kinds, providing a rich
laboratory for studying a number of first-order phase transitions, critical and multicritical phenome-
na within the framework of one single model.

I. INTRODUCTION

Transfer-matrix methods applied to finite systems and
finite-size scaling theory have been used with great suc-
cess to study the critical properties of Ising and lattice-
gas models. ' Experience has shown that transfer-
matrix models give numerical data for simple spin sys-
tems that rapidly converge, as a function of increasing
system size, to the infinite system values. These data,
e.g., the free energy, converge so rapidly, especially away
from critical regions, that we may often assume that the
results for small systems give reasonably accurate ap-
proximations to corresponding data for infinite systems.
The use of finite-size scaling to determine the position of
critical surfaces rounds out the calculational repertoire
available for practical modeling and understanding of ad-
sorption systems. The practical limitations of using these
techniques are generally determined by the size of the
transfer matrix, which must be diagonalized. The size of
the transfer-matrix depends on the multiplicity of spin
states, number of interactions, and symmetries of the
Hamiltonian. For these reasons most of the applications
of these methods have been confined to two-state models.
One should note, however, that the physical information,
i.e., coverage, free energy, correlation lengths, etc. , for
values of the parameters in noncritical regions is well ap-
proximated by even the smallest of strip widths for sys-
tems with infinite-length strips. In this way good results
may be obtained for the phase diagrams for more compli-
cated and physically interesting systems.

The model we analyze here has itself a multitude of
possible phase diagrams with topologies dependent on the
values of the parameters in the model Hamiltonian. In
particular, we consider the S= 1 Ising model (three-state
lattice-gas) that we have used elsewhere as a tnodel

(Rikvold et al. ) for multicomponent adsorption prob-
lems and for which we have obtained adsorption iso-
therm data having a good correlation with an experimen-
tal system. The resulting phase diagrams are quite com-
plicated and, in general, consist of surfaces of first- and
second-order phase transitions that intersect along lines
of multicritical points. We find that this most general
nearest-neighbor S =1 Ising model provides an unusually
rich laboratory for studying a number of phase transi-
tions, critical, and multicritical phenomena within the
framework of one single model.

In addition to the intrinsic interest due to its
statistical-mechanical and thermodynamic richness, the
S= 1 Ising model is useful as a representation of a variety
of physical and chemical systems. Some of these applica-
tions that have been suggested in the past include the
classical papers by Blume and Capel on magnetic and
electric phase transitions in crystals with local triplet
states, the k transition, and phase separation in He- He
mixtures, interfacial wetting in three-phase systems,
conformational phase transitions in amphiphilic mono-
layers at liquid-gas interfaces, ' binary alloys in equilib-
rium with a gas, " microemulsions, ' and multicom-
ponent adsorption. ' ' We do not intend this list of ap-
plications to be exhaustive, but merely to indicate the
model s wide applicability, and possibly to act as an in-
spiration for its application to new problems.

II. THE S = 1 ISING MODEL

We start with a Hamiltonian, Eq. (2.1), which, with
five interaction constants, is the most general form of the
Hamiltonian for an S = 1 Ising model with nearest-
neighbor, pairwise interactions.
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gas, adsorbate particles of two species, 3 and 8, may oc-
cupy the sites of a two-dimensional lattice representing
the absorbent surface. If the model is interpreted to
represent adsorption from a binary gas, a site that is oc-
cupied by neither 3 nor 8 is considered vacant. It it is
alternatively interpreted to represent adsorption from a
solution of 3 and B in a solvent, then the third state
represents a site occupied by a solvent particle. The
latter physical situation is considerably more complicated
than the former and, although encouraging experimental
results have recently been reported, ' ' we do not expect
it to be more than qualitatively described by this simplest
and most general three-state model. The lattice-gas
Hamiltonian for this model (in the grand-canonical en-
semble) is

= —Jgpp, E—gqq,
(i j ) (ij )

~LG —
i A ~AN @BOB—N= —pAg g Ci CJ~

(i,j )

g (;",+;,")
&ij )

—PBB g Ci Cj
(ij )

—P A Qci PB+ci (3.1)

where the adsorption state of the ith lattice site is given
by the local concentration variables c; and c; . The local
concentration of A, c;, equals unity if the site is occu-
pied by an A particle and vanishes otherwise. The local
concentration of 8, c;, behaves analogously. Any site
can be occupied by at most one particle, so that c, c; =0.
The change in chemical potential when one X particle is
removed from the bulk phase and adsorbed on the sur-
face is —iud (defined to include the binding energy rela-
tive to the bulk phase). The total number of lattice sites
is N, and the density conjugate to pz is Ox N'g, c, , ——

the surface coverage by species X. The interaction ener-
gies /zan, EBB, and p„B describe effective interactions be-
tween particles adsorbed on the surface. In general they
depend on the substrate, and their determination from
first principles would demand quantum-mechanical cal-
culations beyond the scope of the present work. ' These
interaction energies, in general, may bear little or no rela-
tion to the interaction energies between the same parti-
cles in the bulk phase. The sign convention is such that
(tizzy & 0 denotes an effective attraction and pz ~ 0 denotes
a tendency for adsorption in the absence of adsorbate-
adsorbate interactions. In terms of a liquid solution in-
terpretation, all the interaction strengths and chemical
potentials are considered relative to the state in which
both the adsorbent surface and the adsorbate particles
are completely solvated.

The local concentration variables e; and c; are related
to the Ising variables by a linear combination

III. THREE-STATE LATTICE-GAS MODEL

L—g (q,p, +p, q, )+Dgq, H—gp, , (2.1)
&i j & I l

where the Ising spins are p; E [
—1,0, +I) and q;=p;.

The sums are g(; &
over nearest neighbors and g; over

all lattice sites. The macroscopic densities conjugate to
H and —D will be denoted respectively by P =N 'g;p;
and Q=N 'g;q;. The parameters J and H are analo-
gous to the usual interaction constant and field for the
S=—,

' Ising model with J&0 corresponding to the fer-

romagnetic case. The field D distinguishes between zero
and nonzero p; with D &0 denoting a preference for

q, =1. Positive values of E correspond to a preference
for nearest-neighbor spins being either + 1 or —1, ir-
respective of sign, whereas E g0 indicates a preference
for bonds involving at least one zero spin. Positive values
of the coupling term L correspond to a preference for fer-
romagnetic ordering with all p;=+1. The Hamiltonian
is invariant under the transformation (L ~ L, —
H~ H,p;~——p;). The actual structures of the or-
dered phases and the nature of the phase transitions that
separate them depend on the interplay between these five
parameters, the symmetry of the underlying lattice, and
the temperature, as discussed in detail in Secs. IV-VI.
We have chosen for our model the triangular lattice, cor-
responding to (a) various sets of adsorption sites on the

[ 111) planes of a three-dimension face-centered-cubic
lattice, (b) close packing of equal-sized spheres on a plane
surface, or (c) adsorption sites on the basal plane of
graphite.

This model is related to previously studied models of a
simpler nature. For E =L =0 it reduces to the Blume-
Capel model, and for L =0 to the Blume-Emery-
Griffiths (BEG) model. These special cases have been
studied previously by renormalization-group tech-
niques, ' ' domain-wall calculations and Monte Carlo
simulations, mean-field approximations, ' ' ' and
transfer-matrix finite-size scaling techniques. ' The ma-
jority of these studies are concerned with the ferromag-
netic model on a square of simple-cubic lattice. The most
comprehensive study of phase diagrams for the antiferro-
magnetic case seems to be Saito's mean-field calculation
on a simple-cubic lattice. " Two-component adsorption
on the square lattice has been studied by Huckaby and
Kowalski, ' who performed a full ground-state calcula-
tion, and by Lee and Landau, who performed a Monte
Carlo simulation. ' Recently Lee et a/. , have studied the
effects of domain-wall excitations in the antiferromagnet-
ic LF model on a triangular lattice. '

The S =1 Ising model (in the canonical ensemble) de-
scribed above is related to the three-state (A, 8, and a va-
cancy or solvent particle) lattice-gas model in a manner
analogous to the relation between and the S=—,

' Ising
model and a two-state lattice-gas model. " In this more
complex model, a three-state, nearest-neighbor lattice

c;"=—,'(q;+p;),

c; = —,'(q, p, ) . —B

(3.1a)

(3.1b)

The interaction constants are related to those of the Ising
model by
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P„„=J+K+2L,
Ps~ =J+K 2L- ,

4~a=& —J
p~ =H —D,
p& ———H —D,

or, equivalently,

4(PAL 24AB +EBB )

&=-.'(4~~+24~a+0aa»
L =-.«~~ 4aa»—

D = ——,'(u ~ +ra»

(3.2a)

(3.2b)

IV. ORDERED STATES
AND GROUND-STATE CALCULATIONS

Those ordered states on the triangular lattice that can
be reached by second-order phase transitions are deter-
mined by Landau-Lifshitz group-theoretical arguments.
The method is described in detail in the standard Ref. 22,
and the results are as follows: The lattice symmetry
group is p6mm, which, in addition to the identity repre-
sentation, has one two-dimensional, and one three-
dimensional representation. The ordered states generated
by the two-dimensional representation are denoted
(&3Xv 3) and correspond to a separation of the lattice
into three equivalent sublattices. The primitive unit cell
contains three sites, one from each sublattice, as shown in
Fig. 1. The ordered states generated by the three-
dimensional representation are denoted (2 X 2), and corre-
spond to a separation of the lattice into four equivalent

FIG. 1. Triangular lattice with primitive lattice vectors a and
b. The three sublattices corresponding to the (&3)&&3) or-
dered states are marked 1, 2, and 3, respectively, and the
(t 3 X &3) unit vectors are a and p.

Thus p;=1 means c;"=1,p, = —1 means c; =1, and

p; =0 means c;"=c; =0. Note that q, =c; +c; is the to-
tal local concentration variable. A preference for AA
bonds over BB bonds is indicated by L &0. Positive H
denotes a preference for single-particle adsorption of A

over B, and negative D corresponds to a preference for
high total coverage. As we further discuss the model we
shall refer alternatively to either lattice-gas or Ising nota-
tion.

sublattices. The primitive unit cell contains four sites,
one from each sublattice. Disordered states, denoted
(1 X 1), are generated by the identity representation.
Specific states are identified by their corresponding values
of P and Q as (XxY)g. The energy per lattice site of any
specific state is obtained by evaluating the Hamiltonian
for the corresponding configuration. Which one of these
states is the actual ground state depends on the values of
the five parameters, J, K, L, D, and H, in the Hamiltoni-
an. The boundaries between the regions in this five-
dimensional parameter space that correspond to a partic-
ular ground state are obtained by pairwise equating the
ground-state energies. The ground states are uniform in
the asymptotic strong-field limits. For large positive H
the ground state is (1X1)',, for large negative H it is
(1 X 1)'

&, and for large positive D it is (1 X 1)o. Proceed-
ing from each asymptotic strong-field region towards one
of the other two, we determine which of the ordered
states first becomes lower in energy than the uniform
state. In case of degeneracies between several ordered
states, we then determine which one of these has the
lower energy as the fields are weakened further. The
values of the fields H and D that mark the transition lines
between different ground states depend on the coupling
constants J, E, and L. Different values of the coupling
constants therefore lead to different ground-state dia-
grams in the H, D plane, as discussed in detail below.
The ground-state calculation described above is straight-
forward, but rather tedious. The result is that for the
general S =1 Ising model represented by the nearest-
neighbor Hamiltonian, Eg. (2.1), on a triangular lattice
only (1X1) and (&3X&3) states are realized as ground
states. These ground states together with their corre-
sponding values of Q, P, 8&, 8&, and energy per lattice
site are listed in Table I. The (2X2) states do not result
in ground states except for being degenerate with ( I Xl)
or (~3X &3) states along certain phase-boundary lines at
zero temperature. We choose the notation for identifying
ground states as (1 X 1)g for disordered phases and
(~3X&3)g for the ordered phases.

We redefine the temperature in units of k~ T/
~

J
~

and
introduce the reduced coupling constants j=J!

~

J ~,

Examination of the ground states for various values of j,
k, and I show that transitions between certain phases may
or may not exist, depending on the topology of the
ground-state diagram. Our calculation shows that in
terms of the fields d and h the model has 32 possible topo-
logically different ground-state diagrams, the features of
which depend on the values of the interaction constants j,
k, and l.

The first level of classification distinguishes between
the ferromagnetic (j =+1) and the antiferromagnetic
(j = —1) cases. For both ferromagnetic and antiferro-
magnetic systems the k, l plane is divided into four main
regions, I—IV. The defining inequalities of these four re-
gions are given in Table II, both in Ising and lattice-gas
terms. As noted by Saito, " the defining relations are par-
ticu1arly simple in lattice-gas language, depending only
on the homonuclear interactions P„„and P~~: region I
corresponds to both P„„and Pzz attractive, II corre-
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TABLE I. Ground states of nearest-neighbor S =1 Ising model on triangular lattice. An + denotes
states that may only be realized as ground states in the antiferromagnetic case, J & 0.

State Config. Q P 0„0& Degeneracy Energy per lattice site

(1x1)'

(1x1)',

(1x 1)(')

AA

BB
0
00

1 1

0 1

0 0 0

—3J—3E—6L+D —H

—3J—3E +6L+D +H

*(&3x &3)iy3

*(&3x&3)' „,
(&3x&3)'"

(&3x&3)'"

*(&3x&3)'"

(&3x &3),",',

(&3x &3)"i'/3

B
AA

A

BB
0

AA

0
BB
0

AB

0
AO

0
BO

I

3

2
3

3

0

J —3E —2L +D —
—,
'H

J—3E+2L +D+ —'H

—J—E —2L+ —D ——H

—J—E+2L + —D+ —H

J —E+—D

—'D ——'H

—,'D+ -,'H

sponds to P„„attractive and Pss repulsive, III corre-
sponds to P„„repulsive and Ps+ attractive, and IV cor-
responds to both P„„and Ps& repulsive. The remaining
subdivisions of the two k, l planes result from the toplogi-
cally distinct ways in which the ground states extending
from the three asymptotic regions (described in Sec. V) in
the h, d plane intersect. In Fig. 2(a) are shown the seven
regions in the k, l plane that correspond to topologically
distinct ground-state diagrams for the ferromagnetic
case. The k, l plane with 25 regions corresponding to to-
pologically distinct antiferromagnetic ground-state dia-
grams are shown in Fig. 2(b).

The general difference between the ferromagnetic and
antiferromagnetic ground-state diagrams can easily be
seen by considering the large, negative d behavior of the
model. In this region the Hamiltonian reduces to a S =—,

'

Ising model (see Sec. V). For j=+ 1 there is a ferromag-
netic Ising transition from (1 X 1)', to (1 X 1)I at h = —6l
in the h, d plane. On the other hand, for j = —1 there are
two (&3X&3)+,z3 ground states between the (1X1)'

1

and (1 X 1),' regions symmetric about the same line,
h = 61, in the —h, d plane. These (&3Xu'3)+, z3 states

are just the usual states expected for a S= —,
' Ising antifer-

romagnet on a triangular lattice.
The four major subregions of the k, l diagrams for ei-

ther j=+1 correspond similarly to the asymptotic be-
havior for either large —p„or for large —pz. In either
case the Hamiltonian, Eq. (3.2), again reduces to a S=—,

'

Ising model. For large —p~ this results in a phase dia-
gram that is symmetric about the line pz ———3J—3E
+6L = —3gss. For large —ps this results in a phase di-
agram symmetric about the line p z

———3J
—3K 6L = —3P„„. Ea—ch of these two asymptotic re-
gions may independently be ferromagnetic or antiferro-
magnetic, depending on k and l, leading to four possible
combinations of asymptotic behavior in the —p„,—pz
directions considered together.

V. ASYMPTGTK' , RKSUI-TS

In the asymptotic, strong-field limits the Hamiltonian,
Eq. (3.2), reduces to that of the well-studied S=—,

' Ising
model with nearest-neighbor, pairwise interactions on a
triangular lattice,

&=—J g o,a, Hgcr; . —
&ij& i

(5.1)

Region

I
II
III
IV

Ising condition

—k —j &21&k+j
21 & —k —j and 21)k +j
21 & —k —j and 21&k+j

k+j &21& —k —j

Lattice-gas condition

y»&o»d y»&o
P„„&0and P~g &0
0"&0 and 0as &o
P„„&0and P &0

TABLE II. Main regions in the (k, 1) plane. The well-studied characteristics of the phase surfaces in
these regions are noted below, and are important to con-
sider since we expect the phase diagrams for the inter-
mediate field strengths to smoothly approach the asymp-
totic configurations. As D~ —~ the state p;=0 be-
comes energetically unfavorable, and the effective S=—,

'

Ising model is defined by
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0, =P, =+]
J=J, (5.2a)

o; =2q; —1,
J= —,'(J+K+2L ) = —,'P„„, (5.2b)

P=H+6L .

As H~+ ~, and D~+ ~ (pz —~), then p, = —1

(corresponding to adsorbed 8 atoms) becomes unfavor-
able. Thus p;~q;, and the model reduces to the two-
state lattice-gas model for single-component adsorption
of A. The corresponding effective S=—,

' Ising model is
de6ned by

8=—,'[(H D—)+3(J+K+2L)]=—,'(p„+3/„„) .

Analogously, as H~ —ao and D~+ao (p„~—~),
then p,.~—q, , i.e., adsorbed 3 becomes unfavorable and
the model reduces to the two-state lattice-gas model for
adsorption of 8. The corresponding effective S=—,

' Ising
parameters for this asymptotic limit are

- I/2 (k+I)

- Ir4(k+I)
I/2(k+I)

Ir4(k+I)
—Ir2(k+I)

I/2 (k+I)
(a)

-I/4 (k-7)

-I/2(k-I) I/2(kdl)

- I/4(k-~)
I/2(k+&)

I/2(k+ 5 )

I/2(k-I)

-I/2(k- I)

-I/2 (k+ & )

b-s
I/4(k-3)

-I/2(k+~)

Ir4(k-7)

Ir2(k-I) -I/2(k+II)
b)

FIG. 2. (a) The seven regions in the k, I plane that correspond to topologically distinct ground-state diagrams for the ferromagnetic
case, j=+ 1. (b) The 25 regions in the k, 1 plane that correspond to topologically distinct ground-state diagrams for the antiferromag-
netic case, j = —1.
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a. , =2q; —1,
J=—,'(J+K 2—L ) = —,'Pss, (5.2c)

VI. TRANSFER MATRIX RESULTS
AT FINITE TEMPERATURES —PHASE DIAGRAMS

We have obtained thermodynamic data for the S =1
model at finite temperatures and finite fields using the
transfer matrix method ' and finite-size scaling. In the
usual fashion a system in the shape of an infinitely long

H = —,'[ (—H+D)+3(J+K —2L)]=—,'(ps+3gss) .

Previous studies of the S=—,
' Ising model on the triangu-

lar lattice thus give us points of comparison in these
asymptotic limits, namely the positions and characteris-
tics of the phase-transition surfaces.

In the ferromagnetic (FM) case, J y0, the S=—,
' Ising

model on a triangular lattice has a first-order phase tran-
sition at 8=0. The line of the first-order transitions ter-
minates at the exactly known critical temperature for
the triangular lattice, ks f'," /J =4/(ln3) =3.640. . . ,

which point has, of course, the usual Ising critical prop-
erties.

In the antiferromagnetic case, J &0, the ground state
of the S=—,

' Ising model at 8=0 is infinitely degenerate
with a finite entropy at zero temperature. There is
therefore no phase transition at zero field and finite tem-
perature. The general shape of the 8,T phase diagram
was first conjectured by Domb. The critical surface
takes the shape of two humps that come to zero at
8=0,k6

~

J ~, and which are symmetric about 8=0,
since this Hamiltonian, Eq. (5.1), is invariant under the
transformation P~ H, o;~—cr; —For .lf =0 the anti-
ferromagnetic S=—,

' model is expected to belong to the
universality class of the XY model with a phase transition
at T =0 and a thermal exponent yz ——0. At the same
point the slope of the line of critical points versus A' is ex-
pected to be infinite, based on scaling arguments. For
0&8 &6

~

J
~

the ground state is (i/3Xv 3)i&i, and for
8 & 6

~

J
~

it is (1 X 1)i. For all nonzero fields the antifer-
romagnetic S=—,

' Ising model belongs to the universality
class of the three-state Potts model, with thermal ex-
ponent yr ———,'. At 8=+6

~

J
~

and T =0 is identical to
the exactly solved hard-hexagon model. The slope
versus field of the line of the critical points is related to
the critical fugacity of the latter, and given by

2/ln [—'(l 1+5—v'5)]= —0.8312. . . . The behavior of
the line of critical points for fields in the range
0 &8 & 6

~

J
~

has been well studied by a variety of
methods, including Monte Carlo simulation, the finite-
size scaling transfer matrix method, and variational ap-
proximations. These methods all give a maximum
value of the antiferromagnetic critical temperature in the
range 1.33

~

J
~

to 1.40
~

J ~, occurring at 8=+3
~

J
~

.
Our numerical results give, for the relevant asymptotic
regions, a maximum antiferromagnetic critical tempera-
ture of l.33

~

J
~

and values for the whole critical surface
which are in good agreement with previous finite-size
scaling results for the S= —,

' Ising model.

g'~ =—(ln
~

A, i /A, i ~
) (6.1a)

A second length, the persistence length, is similarly
defined

—:(1n~A, , /A,
~

) (6.1b)

Second-order phase transitions from the ordered
phases to the disordered phases have been located by the
Nightingale criterion

0"z/N = gw /N' . (6.2)

No second-order transitions exist between any two or-
dered phases since they are all of the same symmetry.

First-order transitions in this model involve discon-
tinuities in P and g when N = ~. For a finite-size system
this corresponds to a rapid variation in the region of the
first-order transition. The position of the first-order tran-
sition can also be determined by the requirement that

&~s~ g ~

~s&=&~s~ g ~

~s& (6.3)

in this region of rapid variation, where &A,„~ and
~

A. „&
are the left and right eigenvectors corresponding to the
eigenvalue A.„ofT

This estimate converges exponentially with N to its
infinite-system value, and the result for N =6 is presum-

strip was partitioned into layers of width N, parallel to
one of the primitive vectors of the triangular lattice. The
transfer matrix was block-diagonalized utilizing the in-
variance of the Harniltonian under one-step translations
in the direction parallel to the layers, represented by the
unitary operator U z, which is cyclic with period N. It
can be shown that, for this particular model, the block
T, corresponding to states invariant under U z, is a real,
symmetric matrix. Operators corresponding to the
single-layer (i/3Xi/3) order parameter transform under
U tv with a Phase factor e' "~ . The (v'3X&3) order Pa-
rameter correlation lengths are therefore given by the ei-
genvalues of the block T, corresponding to eigenvectors
of U z with eigenvalue e' . For this particular model
T is proportional to a complex Hermitian matrix. The
proportionality constant is a complex phase factor indi-
cating threefold symmetry under translations in the
direction parallel to the infinite strip. We have construct-
ed the matrices T and T for strip widths N=3 and
N =6 and diagonalized them using a Floating Point Sys-
tems Model 264 array processor with APMATH64 li-
brary routines RS and CH (based on EISPACK routines
of the same name). The diagonalization results in three
eigenvalues of interest. The largest eigenvalue of both T
and the total transfer matrix T is A, &. By virtue of the
Perron-Frobenius theorem, it is positive and nondegen-
erate. The other two eigenvalues of interest are A,z,
second largest of T, and A, „the eigenvalue of T with
the greatest modulus. These two eigenvalues alternate as
the second largest eigenvalues of the total transfer ma-
trix.

These three eigenvalues give rise to two important
lengths. The order-parameter correlation length for the
(i/3 X v'3)-ordered phase is identified as
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ably quite good. The single-layer operators P and Q that
correspond to P and Q are invariant under U z. As
pointed out by Bartelt et al. , the size of the discontinui-
ty in, e.g., Q can be estimated by fitting the eigenvalues

Qz of the matrix

(~', lgl~', ) (~slgl~s)
(X,'l g [X', ) (Xg

l g l

Zs)

to the form

model for the asymptotic (large —d) region comes from
large negative d into the intermediate region with little (a
few percent) variation in magnitude and shape until it
terminates in a line of critical endpoints at its intersection
with the first-order "wall. " This first-order surface
separates the (&3X&3)+,z3 and (1X1)+, phases from
the (1)&1)0 phase. In the intermediate region this first-
order surface rises vertically until it reaches its intersec-
tion with the second-order humps, whereupon it arches
slightly towards positive d and terminates in a continuous

g+ g+ + N —P/v (6.5)

The width of the region of finite-size rounding where the
off-diagonal elements in (6.4) are appreciably different
from zero vanishes exponentially with N. It therefore in-
troduces very little error to diagonalize (6.4) for both
N =6 and N =3 at the value of the transition field deter-
mined from (6.3) with N =6. Since only two stripwidths
are used, the ratio of critical indices p/v must be deter-
mined from a knowledge of the universality class of the
particular transition. As explained in Sec. V, the order-
disorder first-order transitions in the present model have
critical points in the universality class of the two-
dimensional S=—,

' Ising model, which has P= —,
' and v= l.

The temperature at which the discontinuity Q „—Q „
vanishes provides one estimate of the critical temperature
for the first-order transition.

The persistence lengths for N =3 and N =6 give a
second, consistent determination of both the first-order
surface and its critical edge. The persistence length has a
sharp peak, increasing as e, at the first-order transition.
This peak readily determines the location of the transi-
tion. As one crosses the first-order transition close to the
critical point P& peaks much less sharply than at lower
temperatures. At the point where g6/6=$3/3 become
tangent at their peaks rather tan g/6~&g/3 below T„
we interpret that the Nightingale criterion is being
satisfied at the critical edge of the first-order surface. We
find that our two determinations of critical temperatures
at the edges of the first-order surfaces agree to within
about 0.5%. Since the critical indices for the order-
disorder and order-order first-order transitions are
different universality classes the positions of the mul-
ticritical points have been determined solely by the
persistence-length scaling method.

We provide our numerical data for phase-transition
surfaces in graphical form with accompanying descrip-
tions for two sample systems whose parameters allow for
modeling enhanced (model E) and inhibited (model P, for
poisoning) adsorption, as discussed in detail in Ref. 5.
Their ground-state diagrams are shown in Fig. 3.

The first system, model E (j = —1, k =3.0, 1=0.5),
whose ground-state diagram is shown in Fig. 3(a), is par-
ticularly simple. We show a three-dimensional view of
the shape of the field-temperature space phase diagram in
Fig. 4(a) where the X, Y, and Z axes are h, d, and T, re-
spectively. A double-humped surface of second-order
transitions is illustrated with contours at constant d, and
a "wall" of first-order transitions is represented by con-
tours at constant h. In this system the second-order dou-
ble hump of the effective two-state antiferromagnetic
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FIG. 3. (a) Ground-state diagram for model F. (j = —1,
k =3.0, I =0.5), which exhibits enhanced adsorption. (b)
Ground-state diagram for model P (j = —1, k = —2.0, 1=3.0),
which exhibits inhibited adsorption (poisoning) of A by B. The
horizontal bars labeled A —D correspond to the cross sections
shown in Fig. 5.
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edge of critical points. As it extends towards either large
—p~ or large —p„ this first-order surface stands vertical-
ly and its critical edge quickly approaches the asymptotic
critical temperature for the equivalent, asymptotic, 5= —,

'

Ising model.
The second system, model P (j = —1, k = —2.0,

l =3.0), whose ground state is shown in Fig. 3(b), is more
complicated. We show a three-dimensional view of its
shape in Fig. 4(b). Here there are two sets of double-
humped, second-order surfaces; one extending from large
negative d, since j = —1.0, and the other extending from
large —p„corresponding to a negative Ps~. Their cross
sections quickly approach their asymptotic values. Ex-
tending from the large —p~ region there is a first-order

(a)

l 1 I I I

-IO -8 -6 -4 -2

(Ixl ) i

0 2 4

(b)

J=l
k=-2
II=3

-29 -22 -15
I

-8

FIG. 4. (a) A three-dimensional view of the shape of the
field-temperature space phase diagram for model E (j = —1,
k =3.0, I =0.5), where the X, Y, and Z axes are h, d, and T, re-

spectively. Two second-order humped surfaces are illustrated
with contours at constant d, and a first-order "wall" is
represented by contours at constant h. Further details are dis-
cussed in the text. (b) A three-dimensional view of the shape of
the field-temperature phase diagram for model P (j = —1,
k = —2.0, I =3.0), where the axes are the same as in a. There
are two sets of second-order double-humped surfaces; one ex-
tending from large negative d, and the other extending from
large —p„. Extending from the large —pz region there is a
first-order wall dividing the (1&1)p phase from the (1)&1)&
phase. Further details are discussed in the text.

wall, corresponding to positive p„„,dividing the (I X 1)o
phase from the (1X1)', phase. We illustrate how this
first-order wall progresses until it disappears at
d = —24.0, h = —18.0 by taking cross sections of it, plot-
ting it for p~ versus T at selected values of p~, Fig. 5.
The values of p~ and ranges of p ~ for which these cross
sections have been plotted are indicated by horizontal
bars in Fig. 3(b). It is quite striking how small the region
of the phase diagram is where the phase boundary sur-
faces deviate significantly from their asymptotic, limiting
shapes. From between the (1 X 1)0 and (1 X 1),' phases the
first-order surface continues along to separate the
(&3X&3)'~|&3 phase from the (1X1)', phase, Figs. 5(a)
and 5(b), and further still to separate the (&3X&3)',z3
and (&3X&3) z&3 phases from the (&3X&3)I&3 phase,
Fig. 5(c). It finally appears to vanish (T, ~0) at the junc-
ture of the (&3X &3) &&3, (&3X v'3)

I &3, and (&3
X &3)' »3 ground states. As p„ is increased at constant

pz at finite temperature, 0„ increases continuously giv-

ing no numerical evidence of a first or second-order tran-
sition between the (&3X&3) &&3 and (&3X&3)'

&&3

phases at finite temperature. We argue that the critical
temperature for this transition is zero. For low tempera-
tures this transition is effectively that of a noninteracting
gas of A' s, being isolated from each other by two sublat-
tices fu11 of B's. The critical temperature for such a tran-
sition is exactly zero. Since there is no symmetry change
between these two ordered phases we also would not ex-
pect a second-order transition dividing the two phases at
finite temperature. Consistent with this interpretation we
find that the isotherms in this region agree exactly with
the theoretical result for a noninteracting lattice-gas
model for A with chemical potential (p„—6) (i.e., for
noninteracting adsorption of A with reduced single-site
binding energy due to the repulsive interaction with the B
"cages"). Also consistent with this interpretation, the
upper critical surfaces for these two phases are smoothly
and continuously joined, as shown in Fig. 5(d).

In Fig. 5(a) the first-order line terminates at a critical
point and meets the second-order line at a critical end
point. In Fig. 5(b) the numerical accuracy is not
sufficient to determine whether the first- and second-
order lines join at a tricritical point or whether a critical
point and a critical end point are located very close to-
gether. In Fig. 5(c) the first-order line seems to join one
second-order line at a tricritical point and meets the oth-
er at a critical end point. Our present calculation does
not afford sufficient numerical accuracy to determine the
higher-order critical points that presumably exist where
these clear-cut cases merge (at some value of ps between

ps =9 and ps =22).

VII. SUMMARY

We have fairly exhaustively determined the physical
attributes of the 5 = 1 Ising model with nearest-neighbor,
pairwise interactions on the triangular lattice. In its most
general form the Hamiltonian has three coupling parame-
ters and two independent, spatially constant fields. We
find (&3X&3) ordered phases and (1X1) disordered
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then the second-order surfaces join smoothly and con-
tinuously.

Overall, we find that the resulting phase diagrams are
quite complicated, and the surfaces of first- and second-
order phase transitions intersect along lines of multicriti-
cal points of various kinds. We find that this most gen-
eral nearest-neighbor 5 = l Ising model provides an
unusually rich laboratory for studying a number of phase
transitions, critical, and multicritical phenomena within
the framework of one single model. At the same time the
model is widely applicable to a number of interesting
physical and chemical problems.
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