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We consider classical Hamiltonian systems in which there exist collective modes where the
motion associated with each collective mode is describable by a collective coordinate. The formal-
ism we develop is applicable to both continuous and discrete systems where the aim is to investigate
the dynamics of kink or solitonlike solutions to nonlinear Klein-Gordon equations which arise in

field theory and condensed-matter theory. We present a new calculational procedure for obtaining
the equations of motion for the collective coordinates and coupled fields based on Dirac's treatment
of constrained Hamiltonian systems. The virtue of this new (projection-operator) procedure is the
ease with which the equations of motion for the collective variables and coupled fields are derived
relative to the amount of work needed to calculate them from the Dirac brackets directly. Intro-
ducing collective coordinates as dynamical variables into a system enlarges the phase space accessi-
ble to the possible trajectories describing the system's evolution. This introduces extra solutions to
the new equations of motion which do not satisfy the original equations of motion. It is therefore
necessary to introduce constraints in order to conserve the number of degrees of freedom of the
original system. We show that the constraints have the effect of projecting out the motion in the en-

larged phase space onto the appropriate submanifold corresponding to the available phase space of
the original system. We show that the Dirac bracket accomplishes this projection, and we give an

explicit formula for this projection operator. We use the Dirac brackets to construct a family of
canonical transformations to the system of new coordinates (which contains the collective variables)
and to construct a Hamiltonian in this new system of variables. We show the equations of motion
that are derived through the lengthy Dirac bracket prescription are obtainable through the simple
projection-operator procedure. We provide examples that illustrate the ease of this projection-
operator method for the single- and multiple-collective-variable cases. We also discuss advantages
of particular forms of the Ansatz used for introducing the collective variables into the original sys-

tem.

I. INTRODUCTION

The purpose of this paper is to present a complete, ex-
act solution of the problem of the introduction of classi-
cal collective variables into nonlinear Klein-Gordon kink
equations' such as the sine-Gordon (SG), double
sine-Gordon ' (DSG), and P" equations" ' and ob-
tain a complete Hamiltonian theory for such systems. In
the collective-variable approach, one introduces particle-
like parameters such as the center of mass of the kink X,
or the separation R between the subkinks of a DSG kink,
and considers them as Hamiltonian dynamical variables:
X~X(t), R ~R (t). The introduction of N additional
dynamical variables requires the addition of 2N
constraints —one for each added dynamical variable and
one for its canonically conjugate momentum —in order
that the number of degrees of freedom the original prob-
lem is conserved. The nature of the possible constraints
is quite general, but we wi11 show that a particular form
of the constraints naturally suggests itself which has the
convenient (additional) feature of requiring much less cal-
culation to obtain the equations of motion than other
forms. We show that the theory of Dirac brackets' for
constrained dynamical systems applies directly to our

collective-variable treatment of nonlinear Klein-Gordon
kink equations. We use the Dirac bracket formalism to
derive the transformation from an unconstrained set of
Hamiltonian variables to set a constrained variables. For
the particular form of the constraints, the results of the
extremely lengthy calculation of the Dirac bracket equa-
tions of motion are equivalent to the equations of motion
obtained by simply applying projection operators to the
original nonlinear Klein-Gordon equations. The explicit
form of the projection operators are derived in the proof
of the equivalence. We stress that the amount of calcula-
tion required by our projection operator approach to ob-
tain the desired equations of motion for the collective
variables and accompanying radiation field is an extreme-
ly small fraction of the amount of calculation required
when using the Dirac brackets.

By introducing a collective variable, such as the center
of mass, X(t), one attempts to separate out the localized
collective phenomena of"the system from the nonlocal-
ized (propagating) phenomena to which the collective
variable is coupled in an attempt to render the problem
easier to understand physically. Thus, in general, one
aims to arrive at an equation of motion that governs the
time evolution of the desired collective variable in the
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presence of the other collective variables and fields. The
resulting equations, one for each collective variable, and
one for each field, are a set of nonlinear, coupled,
differential equations which are usually not analytically
solvable because of their complexity. In many problems,
however, there is only one propagating field weakly cou-
pled to the collective variables and so it is possible to
linearize the field equations and obtain equations for the
propagating field whose source depends on the nonlinear
motion of the collective modes.

Quantization of such a system, where the collective
variables appear explicitly in the theory, is then possible
using the Dirac bracket formalism. This is illustrated by
Tomboulis' where he introduces the center-of-mass vari-
able into a general nonlinear wave equation that admits
soliton solutions and uses the Dirac bracket formalism to
transform the singular Lagrangian system into a Hamil-
tonian system in order to quantize the field. We will not
deal with quantization in this paper. Flesch et al. have
used the center-of-mass variable, X(t), in condensed-
matter physics for the case of translational invariance
that has been broken by the presence of an impurity.
Other authors have used X(t) as a collective variable
in the case where the translational invariance is replaced
by the discrete periodicity of a lattice. In addition to
X(t) there are other examples of collective variables such
as R (r), the separation between the subkinks in a DSG
kink; ' the slope l(t) in a P kink;" ' particles X (t)
in the SG kink crystal' and the separation
X„(t)=X2(t) —X, (t) between two colliding DSG kinks, '

to name a few. In all of the above cases the important
consequence of the collective variable approach is that
situations arise where highly nonlinear motion of the col-
lective "particlelike" variable persists with little or no ra-
diation from the propagating (phonon, for example) field.
In these situations, the radiation can be computed with
linear field equations, as stated earlier, whose sources are
determined by the nonlinear motion of the collective vari-
ables.

Another class of problems where the collective variable
approach has proved useful is the statistical mechanical
formulation of kinks interacting with heat baths. ' ' In
these problems the original nonlinear field interacting
with a bath is replaced by a "particle" variable which un-

dergoes Brownian motion with a relaxation time deter-
mined by the interaction of the kink with the phonon
bath. The collective variable approach for kinks in in-

teraction with a heat bath is also important for those
magnetic problems where kinks play an important role.

We divide Sec. II into two parts. In Sec. II A we derive
the transformation to the collective variable equations for
the case of a single collective variable and illustrate the
simplicity of the projection operator approach. In Sec.
IIB we consider the multiple-collective-variable case.
This entails focusing on the fundamental nature of the
Dirac bracket which we explicitly show to be a projection
in symplectic space. Following the procedure in Sec.
II A, we derive differential equations that must be
satisfied by the original coordinates and momenta as
functions of the new coordinates (which are the collective
variables and the radiation field) and their conjugate mo-

menta, given the constraints. We solve these equations to
arrive at the canonical transformation; then derive the
Harniltonian and consequently, the equations of motion
for the collective variables and radiation field. The main
point of Sec. II B is then to show that these equations of
motion can be very simply obtained by operating on the
original equations of motion with projection operators
that emerge naturally from the structure of the Dirac
bracket and the form of the constraints. In an effort to
make things more clear, we point out now that there are
two projection operators that we will encounter both of
which are derived in this paper. The first is the projec-
tion operator in symplectic space which we will show de-

pends only on the structure of the Dirac bracket. The
second is the projection operator we use to operate on the
original nonlinear Klein-Gordon equation under can-
sideration in order to directly obtain the Dirac bracket
equations of motion.

We consider the DSG system in Sec. III where we in-
troduce two collective variables into the field, X(t) and
R (t) discussed earlier, in order to illustrate the ease with
which the equations of motion for the collective variables
and radiation field may be derived using the projection
operator formalism when there is more than one collec-
tive variable present. We incorporate relativity into the
problem and discuss some of the problems that arise in

doing so. We also expand the potential (the term non-
linear in the radiation field) as a power series in the radia-
tion field and rewrite the resulting equations in a con-
venient form that explicitly shows their linear and non-
linear contributions from the radiation Geld. We further
discuss the connection between the equivalence of the
Dirac bracket equations of motion and those obtained by
the projection operator method.

Introducing collective variables to dynamically
parametrize a field requires one to formulate an Ansatz,
for example, /=0+X. Here (() is the original field which
has been broken up into two functions o and X. o. is a
function that best represents the shape of the kink and
depends on the collective variables. J may or may not
depend on the collective variables. Much of the litera-
ture' postulates 0 as the continuum static solution to
the original nonlinear field equation. 7 then represents
the radiation coupled to the kink and any meson dressing
for the kink required by the particular conditions in the
problem. We show in Sec. IV that one can choose the
function o such that for small oscillation the function 7
vanishes. In fact, in a future paper we show that exact
agreement is obtained between molecular dynamics and
the theory of the present paper for the problem of the
small oscillation Peierls-Nabarro frequency of a trapped
SG kink. Previous Ansatze have led to results for the
small oscillation frequency that were off by a factor of 2.
Section V contains a discussion and conclusion.

II. COLLECTIVE-VARIABLE FORMALISM

A. Single-collective variable

We are studying systems with kink or solitonlike solu-
tions with one collective mode describable by a single col-
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L =—,
' g Q; ——,

' g(Q;+i —Q;) —g Vs(Q)) (2.1)

lective coordinate such as X, the center of mass for a SG
kink; or I, the length of a P" kink in the kink's rest frame
(corresponding to the kink's internal mode). The deriva-
tion done in this section is for a discrete system but gen-
eralizes straightforwardly to a continuum model.

We start with a system of unit masses harmonically
coupled to nearest neighbors and subjected to a substrate
described by a potential Vs(Q, ). For simplicity the chain
is infinite. The Lagrangian and Hamiltonian functions
for this system are

For the constrained system, the requirement of canonici-
ty can be expressed by requiring in variance of the
modified Poisson brackets (i.e., the Dirac brackets) under
the transformation which will determine the form of PI in
terms of the new variables. We now clarify precisely
what we mean by this.

Since the system is constrained when expressed in
terms of the new variables, we cannot simply utilize the
Poisson brackets but must follow Dirac's prescription
and invoke the modified brackets. In the new system of
variables the modified bracket of two functions A and B
of the variables qi, pI, X, and P is

and [A,B j =I X,B j —g t A, C;jC; 'IC, Bj, (2.6)

I=—,
' QP + —,

' g(Q;+i —Q;)'+ g Vs(Q;), (2.2)

where P; =dL/BQ, =Q, is the momentum conjugate to
Q;. Throughout the paper we use dimensionless units.

We are interested in systems which have an approxi-
mate static kink solution Q; =f, (X) where the parameter
X is the position of the center of the kink. In order to ob-
tain exact static solutions or complete dynamic solutions
for this system, we introduce new variables, q, , such that

Q;=f;(X)+q, (t) . (2.3)

C, = g f,'(X)q; =0, (2.4)

C2= g f (X)p;=0, (2.&)

where a prime denotes differentiation with respect to the
argument. The "="sign denotes "weak equality. " In
Dirac's terminology, a quantity which is weakly equal to
zero cannot be set to zero until all variations of the quan-
tity with respect to the dynamical variables, to obtain the
equations of motion, have been performed. The motiva-
tion for the form of the constraints is to minimize the qi
in the vicinity of the kink.

At this point we do not know the form of PI, the old
momentum, in terms of the new variables. It is not arbi-
trary, as we require the transformation to be canonical.

Note here q;(t) does not depend on the collective variable
X. (See discussion after Eq. (2.61) for the case when q,
depends on X. ) We note that since the sum f;+q; is to
be an exact solution of the general dynamical problem, f,
need not be an exact static solution since the presence of
the q, will account for any dressing of the kink or any ra-
diation coupled to the kink's motion. We will discuss
more about the choice of f, in Sec. IV. .

We want to treat the position of the center of the kink,
X, as a dynamical variable, X~X(t) This n. ecessitates
performing a canonical transformation from what we will
call the "old" variables, Q;, P; to a "new" set of vari-
ables, q;, p;, X, P where p, and P are the momenta conju-
gate to q; and X, respectively. However, by introducing
the dynamical variables X and P into the system, we have
increased the original number of degrees of freedom by
two. Therefore, in order to conserve the original number
of degrees of freedom we introduce two constraints:

where the sum on i,j is over all the constraints; the ele-
ments C;, of the matrix C are defined to be the Poisson
brackets of the constraints C;~

—= IC;,CJ j and where we
define the notation C, '=(C ');J. The Poisson brackets
(without the asterisk) in Eq. (2.6) are defined by

a~ aB aB a~'
f ~» j(„xr)=X

aa aa
BX BP

aB aW

BX BP

and (2.7)

tQ, , Q„j'= IP, ,P„j'=0 .

We will make no assumptions about the form of the
dependence of PI on the original variables. We assume
only that P( P&(p;, q;,X,P), and, ——as we shall show below,
the form of PI is determined by requiring that the canoni-
cal brackets, Eqs. (2.7), be satisfied. We now proceed to
evaluate the canonical bracket I QI, P„j"using Eq. (2.6).
We calculate the elements C, ' of the matrix C ', and
substitute into Eq. (2.6) to obtain

f Q( P j'=
I Q( P j —M( IQ) C2 j IC)» j

—tQ) CijIC2 P. j»
where M =

t C), C2 j = g; f plays the role of the kink
mass.

Evaluating the Poisson brackets in Eq. (2.8), and re-
quiring that I Q(, P„j in the new variables be equal to the
Poisson bracket jQ&,P„j in the original variables (i.e.,

for the discrete system. Note that in the definition of the
Poisson bracket, I A, Bj, the summation is over all of the
dynamical variables, including the collective ones. For
the continuous system, we have the analogous quantities
with sums replaced by integrals. Invariance under the
transformation thus requires that any functions A and B
of the positions and momenta satisfy

I ~ B j(g„t,)=I ~ BJ~'q, ,t, x, t)

In particular, if 3 and B are the Q&'s and P&'s„ this re-
quires that

(Q) P. j'=&).
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[ Q&, P„ I =5&„),we find that Eq. (2.8) reduces to

f,'f,' dP„dP„
+fi' (1—r)/M) =fii„, (2.9) a= [a,HJ'= {a,H [ —g [a,C;IC~. '[C/, HI . (2.14)

The equations of motion are derived by taking the
Dirac bracket of desired quantities with the Hamiltonian,
i.e.,

where we have defined ri= g; f;"(X)q;.
We solve Eq. (2.9) by first multiplying it by fi and

summing over l to obtain

The Dirac bracket equations of motion are derived for
the general X collective variable case in Appendix B. For
the single-collective-variable case they are

ap„
aP

Then, substituting Eq. (2.10) into (2.9) we obtain

P„ =&.i+fi'd.

(2.10)

(2.11)

gX
ql pl M fl

aH Xff
pi= X(~i.—Pi.—} —

M
Xf;"p;fl ll M

(2.15a)

(2.15b)

where d„must obey certain conditions given in Appendix
A when we require that [P&,P„)[' vanish. The general
formula for the momentum transformation is obtained by
integrating Eqs. (2.10) and (2.11). The desired general re-
sult is

P„=p„+ +h„(q, ,X) .
M 1 —v] M

(2.12)

p2H= + —,'gp;+V,
2M

(2.13a)

where the dressed mass is given by M:—M(1 —ri/M) .
See the discussion after Eq. (2.47) for the reason why the
cross terms in the new variable mornenta do not appear
in the Hamiltonian. In Eq. (2.13a) the potential V in-
cludes the harmonic coup1ing term as well as the sub-
strate potential, i.e.,

V—:g —,'(f, +i+q;+i f, —q, ) + g Vs(f, —+q; ). (2.13b}

The function hr must also obey certain conditions when
we require that [P&,P„I' vanish. We have not looked in

detail at the functions h& and d& but we show near the end
of Appendix A that the conditions on hI and dI are
satisfied if we set h& ——d, =0. That Eq. (2.12) is indepen-
dent of d& is not a consequence of choosing d& ——0 but is a
general result. We also find in Appendix A, that the
remaining bracket {Q&,Q„j =0 is identically satisfied
and, since it is independent of P&, imposes no conditions
onp

We have proved, therefore, that by assuming the form
of the constraints, C;, and the coordinate transformation
for the positions of the particles, Qi, and requiring the
transformation to be canonical (thereby assuring that
Hamilton's equations in the new system reduce to
Hamilton's equation in the old system), the form of the
old momentum in terms of the new variables is complete-
ly determined up to the function hI. We show in Appen-
dix D that if the momentum is given by some form other
than Eq. (2.12), then one of the assumptions in the previ-
ous sentence has to be modified.

We now obtain the Hamiltonian by substituting the
new variables, Eq. (2.3) for Q& and Eq. (2.12) for P„(with
h„=0), into the old Hamiltonian Eq. (2.2}:

(2.15c)

(2.15d)

where we have defined the projection operator P&„ to be

ln

1 n

M
(2.16a}

Eliminating the mornenta from these equations to get
second-order equations for the position variables is a fair-
ly tedious procedure. The results are

g (fii„—Pi„) q„+f„"X +
n ~qn

=0 (2.16b)

and

X+ g f„' q„+X f„"+
n Cn

=0. (2.16c)

It should be emphasized here that one of the main
goals of our formalism, developed in detail below, is to
show that the second-order equations (2.16b) and (2.16c)
can be obtained without having to explicitly find the
canonical transformation from the old variables to the
new and therefore without having to construct a Hamil-
tonian in terms of the new variables. The first-order
equations of motion (2.15a)-(2.15d) therefore never need
to be derived in order to find the equivalent second-order
equations of motion (2.16b) and (2.16c). We only need to
know the Ansatz function f& in Eq. (2.3), and the projec-
tion operator, P,„, defined in Eq. (2.16a) in terms of the
Ansatz function f&. We also require the constraints to be
of the form of Eqs. (2.4) and (2.5). Then Eqs. (2.16b) and
(2.16c) may be obtained directly. To be explicit, note that
Eq. (2.16b) is obtained by substituting the Ansatz, Eq.
(2.3), into the original equations of motion,
Q„+8V(Q„)/BQ„=O, operating with g„(5t„—P&„) and
using g„(5i„P&„)f„'=0.Likewise, Eq—. (2.16c) is ob-
tained by substituting the Ansatz Eq. (2.3) into the origi-
nal equations of motion, operating with Q„P&„and using

g„P&J'„'=fi'. This is truly a drastic reduction in the
amount of work needed to be done in order to obtain the
Dirac bracket equations of motion. The full derivation of
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the equivalence of this simple procedure to the Dirac
bracket method is given below.

B. Multiple-collective coordinates

In problems such as the double sine-Gordon kink or
the multikink solutions of the SG system, it is necessary
to define more than one collective variable. In the follow-
ing, we formulate the problem of multiple-collective vari-
ables along the lines of the preceding derivation.

The derivation below proceeds in several steps, some of
which parallel the single-collective-variable derivation.
First, the multivariable problem is cast into symplectic
notation. ' In this notation the Poisson bracket and
equations of motion take on a relatively simple form. We
then show that, in the symplectic notation, the modified
Poisson bracket, or the Dirac bracket, can be written us-

ing a projection operator defined in symplectic space
(which is different from the projection operator P&„we
have just encountered at the end of Sec. II A). The pro-
jection operator in symplectic space then simplifies con-
siderably when the constraint equations are linear (but
the form of the constraints are chosen for reasons other
than just to simplify the projection operator in symplectic
space}.

We then proceed to derive the canonical transforma-
tion to the new variables. First the form of the momen-
tum is calculated in much the same procedure as the cal-
culation of Eq. (2.12) of Sec. IIA. The Hamiltonian is
then expressed in terms of the new variables and the
equations of motion are calculated using the Dirac brack-
ets.

We conclude the section by providing the statement
made at the end of Sec. II A, that the equations of motion
for the new set of variables are, in general, easily obtained
by, first, substituting the new set of variables directly into
the original equations of motion rather than going
through the lengthy and tedious procedure of the canoni-
cal transformation. Then, the correct equations of
motion for the collective variables as well as the new
"phonon" variables qI are derived from this substitution
by appropriate application of the projection operator P]„
as described at the end of Sec. IIA (but appropriately
generalized to the multiple-collective-variable case).

We start, as before, with an infinite chain of particles
on a substrate, but now we investigate solutions contain-
ing for example, multiple kinks, kinks with internal
modes, or both. We thus have a system with X collective
coordinates. We define the collective coordinates X; and
the new particle coordinates qI by the ansatz

Ql f](x ] ( t » &2 ( t } ' +N ( t }}+ 'Vl ( t } (2.17)

We designate P, to be the momentutn conjugate to Q&

and call Q] and P& the old variables .The equations of
motion for the old coordinates, derivable from the origi-
nal Lagrangian

L = 2Q]Q-] I'(—Q]» (2.18)

are

Q]+ V'(Q] } (2.19)

where the summation over repeated indices is implied for
the rest of the paper. As in Sec. II A, V(Q& ) includes the
harmonic coupling potential as well as the substrate po-
tential. There are no constraints associated with the La-
grangian in Eq. (2.18); consequently P] ——BL/BQ] ——Q&.
The first time derivative of Q& is

(2.20}

In our notation an index after a comma stands for partial
differentiation with respect to the collective coordinate
denoted by the index. Any sum on an index before a
comma is over all particles; any sum on an index after a
comma is over collective variables.

As before, introducing the collective variables leads to
a system with more variables than degrees of freedom.
We therefore introduce 2N constraints,

C;=0, (2.21)

i = 1, . . . , 2X, where the C, are functions of the dynami-
cal variables.

For the case of many collective variables, we have
found that casting the problem into symplectic notation
makes the problem tractable. Noting that there are M
particles (with M~ 0O ) and N collective variables we
define the 2(M+N) components of a symplectic column
matrix n as

where the T superscript denotes the transpose matrix.
The quantities p, and Y; are the momenta conjugate to
the phonon variables q; and the collective variables X;,
respectively. We also define the derivative of a function
with respect to n as

T=n =~«qM +] ' +Npl ''' pM I'] ' I'~]

(2.22)

aa
Bn

B~ B~ B~ B~ a~ B~ B~ B~
Bq,

' 'Bq BX, 'BX 'Bp, ' 'Bp 'BY, ' 'BY (2.23}

and the 2(N +M) X 2(N +M) matrix:

0 I
—I 0 (2.24)

where each submatrix has dimension (N+M))&(N+M)
and I is the identity. J has the property

JJ =JJ =I .

In this notation the Poisson bracket of any two functions
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A and B of the dynamical variables is BCk 8Ck
PJ (2.30c)

I A, BI = J (2.25)

The usual Hamilton's equations therefore have the simple
form

0n=J
n

(2.26)

if the coordinates in the simplectic column matrix n are
independent.

We now use this result to put the modified, or Dirac
bracket, as defined in Eq. (2.6), into the symplectic form,

We see that P is a projectionlike operator. That is,
when operating to the right P projects in the direction of
J(aCk/an) and when operating to the left it projects in
the direction of (aCk/an) . Therefore, we call P a sym
plectic projection operator W. e see that if P were not
present in Eq. (2.28), the expression on the right-hand
side would reduce to the usual Poisson bracket. The
presence of P explicitly projects out the extra degrees of
freedom that arise when the collective variables are intro-
duced. We may express this more concisely by using Eq.
(2.26) to write

[a,B)"= J
no =(I—P)nr, (2.31)

~'ac, , ac,
J C; ' J

an an " an an

ac, , ac,.
'

I—J 'C, aB
'an

(2.27)

I A, B j'= (I—P)J
an an

(2.28)

where

ac, ac,
'

P=J C; ' (2.29)

Now using the definition

OC, 'aC,
c;.=—Ic, , ci I= J

We define the operator P by rewriting Eq. (2.27) as

where D and P refer to Dirac and Poisson. That is, cal-
culate the time dependence of the coordinates and mo-
menta according to the Poisson prescription and then
operate with (I—P) to obtain the physically meaningful
time dependence of the variables. This general result is a
property of the definition of the Dirac bracket and is in-
dependent of the form of the constraints.

Expressing Dirac's formula for his modified Poisson
brackets in symplectic notation has naturally led to a
symplectic projection operator interpretation of the new
bracket. Ultimately, when we write the Dirac equations
of motion explicitly in terms of the coordinates and mo-
menta in the more familiar function space (that is not in
symplectic space), out of P will emerge, for a particular
set of constraints, an ordinary projection operator—
ordinary in the sense that it projects in the same direc-
tion whether operating to the left or to the right. This
more familiar projection operator is the multiple-
collective-coordinate generalization of Pi„encountered at
the end of Sec. II A, and we will show that PI„ leads to an
enormous simplification in the derivation of the Dirac
equations of motion. (We will use the same symbol,
namely P,„, regardless of the number of collective vari-
ables. )

Our next step is to calculate the projection operator P
with a particular set of constraints. The form of the con-
straints is motivated by the same argument as for the case
of the single-collective variable: to minimize the ql in the
vicinity of the kink. We write the 2N constraints as

we find that P has the following properties:
c =fI, qi=0 c+x=fI, pi=0 (2.32)

P =P,

aC,
' ac,P=

Bn Bn

(2.30a)

(2.30b)

wherei =1, . . . , N.
Equation (2.32) is a convenient ordering of the con-

straints for the following reason. In order to calculate
the symplectic projection operator as defined in Eq. (2.29)
we must invert the following 2N &(2N matrix formed by
the Poisson brackets of the constraints:
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IC„C, j

[C„,C, j
C=

I CN+(&Cl j
0

ICON C(j

IC, , C(v j

I CN, C(v j

I CN + I ~ CN j

c,„,c(v

j C»C(v+, j

I C(v, CN+

I C(v+» CN+, j

[CzN, C

I c(~ C2(v j

I CN&C2N j

I CN+(r C2N j

[Cz~ C2xj

(2.33a)

M)) M1N

—M)) —M, 0

MNN

0

MN1 MNN 0

0 M
—M 0 (2.33b)

where the components of the N)&N matrix M, on the
right-hand side of Eq. (2.33b), are

Map=f(, ufl, p ~
(2.34)

where a,P=1, . . . , N. The inverse of this matrix is then

0C-'= —M

0
(2.35)

The existence of C ', made up of only second-class con-
straints, was proved by Dirac; consequently M ' exists.
We use roman boldface letters to denote matrices in both
the collective variable space (such as M } and in symplec-
tic space (such as J or n}. No confusion will arise since
matrices in the collective variable space never appear in

the same equation with matrices in the symplectic space.
We now substitute this expression for C ' into Eq.

(2.27). The block form of Eq. (2.35) now allows us to
separate the sum over the 2N constraints in Eq. (2.27)
into two sums, each over N constraints. To this end we

now label the constraints as

C(a =f(,aq(

and

Cza =f(,N(

(2.36}

where a = 1, . . . , N and Eq. (2.27) becomes
. Ti

I A, Bj'= I+J M p'
ac.. . ac„

Bn

BC2, BCip

Bn ~ Bn

aa
'an

(2.37)
Equation (2.37) is the form of the Dirac bracket we use to
generate the equations of motion for the new variables.

Because of the ordering of the constraints in Eq. (2.32),
when one evaluates the Poisson brackets, the matrix C
takes the block form.

IQ( Q. j'=0
I Q( P. j'=&(.

I P(,P„j' =0,

(2.38a)

(2.38b)

(2.38c)

where Q( is given by Eq. (2.17}. We solve for the conju-
gate momentum PI as a function of the new variables us-

ing Eq. (2.37). The derivation is done in detail in Appen-
dix A. The first condition, Eq. (2.38a), is identically
satisfied. The other two conditions lead to requirements
on the form of P(. The result is that Eq. (2.38b) leads to
an equation similar in form to the analogous equation for
the single-collective-variable case [cf. Eq. (2.9)]

aa„
(5(, —P„) + f( (I—b) =5(„,

a

where b is given by

(2.39)

b=M fi qI (2.40)

We see that b reduces to g/M for the single-collective-
variable case. PI, is a projection operator defined, in gen-
eral, by

Before we can derive the equations of motion however,
we must derive the canonical transformation to the new
variables. This is done by requiring invariance of the
Dirac brackets under the transformation.

First, we must introduce some notation that will make
the forthcoming formulas less cumbersome. The con-
straints in Eq. (2.36) can be written in column matrix
form:

C&
——fI gI C2 ——fIpl (2.36')

where the ath element in the column matrices, fi, C&,
and Cz are f, „C, , and C2, respectively. As previously
noted, an index after a comma, such as in C&, symbol-
izes taking the derivative of each element with respect toI . We will write the NgN matrix formed from the
columns C& as C(. (Note that C', is symmetric if q( is
independent of the collective variables, as we have as-
sumed. ) Y represents a column matrix whose elements
are the momenta, Y;. A derivative with respect to a
column matrix, such as BA /BY is again a column matrix
whose elements are BA /BY;. The same applies to X and
BA/BX. The particle index [such as I in Eq. (2.36')] is
left explicit in order to avoid mixing notation.

For a transformation to be canonical we require the
Poisson brackets of the old variables to remain invariant
when the new variables are substituted in for the old.
The Poisson bracket is modified in the presence of the
constraints and we require
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P„=f,;M;, 'f, , =fI M 'f,'

and using Eq. (2.34) we obtain

PrsPst Prt

P„,f,'= f'„,

P„,q, = f'„M 'f,'q, = f'„M 'Ci=0 .

(2.41)

(2.42a)

(2.42b)

(2.42c)

+ f' M '(I —b ) 'Y+ht, (2.43)

where ht ——ht(X, q; ) and the second equality in Eq. (2.43)
is obtained by taking the transpose of the middle term.
In writing the last part of Eq. (2.43) we have used
(M ) '=M ' and have written the transpose of
(I—b) 'as(I —b )

Equation (2.38b) puts no conditions on h&. For Eq.
(2.43) to satisfy Eq. (2.38c), ht must obey certain condi-
tions as given at the end of Appendix A and one choice of
hI which satisfies these conditions is hl ——0. The canoni-
cal transformation is therefore complete, with the mo-
menta given by Eq. (2.43) (with our choice of h, =0).

We write the Hamiltonian in terms of the new vari-
ables by substituting Eq. (2.43) into the original Hamil-
tonian given by

e= ,'P, P, +V(g-, ) . (2.44)

We find

PtPt ——Y (I—b) 'M '(I —b ) 'Y+ptpt

The expression for Pt„ in Eq. (2.41) reduces to that of Eq.
(2.16a) for the single-collective-variable case.

Equation (2.39) is a differential equation for the un-
known momenta PI in terms of the new variables. The
general solution, derived in Appendix A, is given by

PI ——p(+Y (I—b) 'M 'fi+hI

aC.. . aC„
an ~ an

aH
Bn

(2.48)

where we have substituted the Hamiltonian H in for B.
In Appendix B, we show the details of the calculation of
the equations of motion for the new variables. The re-
sulting equations are

aH(5t„—P,„) =0, (2.49a)

H
(&I. P(.) p.—+ ~~9n

~ BHx=

=0, (2.49b)

(2.49c)

Y+ =Ci M fi +p
"dH, BH

aql

t C;,H I
' =0 as a consequence of the equations of motion.

Therefore, adding to the Hamiltonian any terms which
are proportional to a constraint, C, , will not affect the
equations of motion. In effect this means that the equa-
tions, C;=0, may now be considered strongly equal to
zero (they may be put to zero before varying the Hamil-
tonian), and further, they need no longer be treated as
constraints, but rather as initial conditions. The formal-
ism then guarantees that they will be satisfied for all
times.

It is now possible to generate all of the equations of
motion by using Eq. (2.37) with this Hamiltonian. We
write Eq. (2.37) in the column matrix form of Eq. (2.31):

'T
ac.. . ac„

nD= I+J M tt'
Bn Bn

=Y'M 'Y+p(p(,

where M is the "dressed" mass and is defined by

(2.45) BH

p
(2.49d)

M—:(I—b )M(I —b) . (2.46)

Finally, we can write our Hamiltonian in the new vari-
ables:

H =—,
' Y'M 'Y+ —,'pipi + V,

where Vis defined by Eq. (2.13b).
The cross terms generated by substituting PI into the

Hamiltonian are proportional to C2 and are set to zero.
We noted earlier that one cannot set the constraints to
zero until all variations with respect to the dynamical
variables have been performed. But we have yet to per-
form that variation of the Hamiltonian to get the equa-
tions of motion. Herein lies the beauty of the Dirac for-
malism. The modified bracket guarantees that the con-
straint will be a constant of the motion, i.e., the Dirac
formalism guarantees that for a constraint, C;,

Compare this to the single-collective-variable case where
2

M=M(1 b) =M 1 ——
M

Ci ——C2 ——0 follows from Eqs. (2.49a) —(2.49d). Thus we
need only require C,(t =0)=Cz(t =0)=0.

One can eliminate the momenta, p„and Y, from Eqs.
(2.49a) —(2.49d) to obtain second-order equations for q„
and X. This is a fairly tedious procedure. We will now
show that the second-order equations can be arrived at by
first substituting the Ansatz, Eq. (2.17), into the original
equations of motion for old variables Q&, Eq. (2.19).
Then, the second-order equations of motion for the new
phonon variables, qi, are obtained by operating on the re-
sulting equations with the projection operator (oI„Pt„). —
The equations for the collective variables are obtained by
substituting the Ansatz Eq. (2.17) into the original equa-
tions of motion (2.19) and operating with P&„. Then, from
this P,„equation, we will be able to generate an equation
of motion for each collective variable. (In the next sec-
tion we provide an example. )

We first consider Eqs. (2.49a) and (2.49b), the equations
of motion for the new variables q„and p„and start by us-

ing a result from Appendix C—that Eqs. (2.49a) and
(2.49b) are equivalent to
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(&i„—PI„) Q„—
n

=0, (2.50a)

BH(5I„—Pi„) P„+ (2.50b)

Q. — =Q„P„=O—.
n

(2.51a)

When we substitute the new variables [Eqs. (2.20} and
(2.43)] for the old in Eq. (2.5la) we obtain

fi X+qi [Y (I —b") 'M—'fr+pi]=0 . (2.51b)

The solution set of this equation is larger than the solu-
tion set of the original system. This is because Eq. (2.51b)
is a function of N more dynamical variables than our
original system. The solution set we are looking for is
that which satisfies the constraints. Now, by operating
with the operator (5,„—P,„) we effectively impose the
constraints by picking out only those solutions of Eq.
(2.51b) which also satisfy the constraints. The same argu-
ment applies to Eq. (2.50b).

Next, we proceed by directly eliminating the momenta
from Eqs. (2.50a) and (2.50b). We substitute P„ for
"r)H idP„ in Eq. (2.50a) and take the time derivative of the
result, which yields

(5I„—PI„)(Q„P„)—P,„(Q„—P„)=0 . — (2.52)

The last term is independently equal to zero from Eq.
(2.51a) and so Eq. (2.52) reduces to

(5I„—PI„)(Q„—P„)=0

Eliminating P„by using Eq. (2.50b) finally gives

(2.53)

(&i„—PI„) Q„+
ll

(2.54)

where we mean that the new uariables are to be substituted
for the old. [This is the only way Eqs. (2.50a) and (2.50b)
make sense since the projection operator PI„ is defined
only in terms of the "new" coordinates. ] We develop,
now, an intuitive understanding of the meaning of Eqs.
(2.50a} and (2.50b) before proceeding.

We first consider Eq. (2.50a) without the operator
Pt ), i.e.

Equation (2.54) is the second-order differential equation
that is equivalent to the first-order differential equations
(2.49a) and (2.49b). Recall that Eq. (2.54) is only mean-
ingful when the new variables are substituted in for the
old.

We now turn our attention to Eqs. (2.49c) and (2.49d)
and present an argument that will lead us to a second or-
der differential equation equivalent to Eqs. (2.49c) and
(2.49d). We note that the set of four equations
(2.49a) —(2.49d) must be equivalent to the set of equations:

Q (q, ;)+ (q, , ;)=Q,(q, , ;)+ (q, , ;)
I i

C) ——0 and C2 ——0 .

=0, g.ssa)

(2.55b)

Q„+ +Pi„A„+(51„—PI„)B„=0, (2.56)
n

where A„and B„are such that Eq. (2.56) is the second-
order differential equation that is equivalent to the two
first-order differential equations [(2.49c) and (2.49d)]. By
adding the PI„and (5I„—PI„) contributions of the Dirac
equations of motion [(2.49a) —(2.49d)] we inust recover
Eq. (2.55a). Since the PI„and (5,„—P,„) contributions of
the Dirac equations of motion are contained in Eqs.
(2.54) and (2.56) it must follow that

Equation (2.55a) are the original equations of motion in
terms of the new coordinates, i.e., with the Ansatz substi-
tuted in. We have explicitly indicated this dependence on
the new variables in Eq. (2.55a). Here, the constraints do
not follow from the equations of motion but are specified
as independent, auxiliary conditions. We will discuss at
greater length in the next section the auxiliary nature of
the constraints associated with Eq. (2.55a). The point we
wish to make now is that from the Dirac equations of
motion, Eqs. (2.49a) —(2.49d}, we must be able to recover
the form of the original equations of motion as a function
of the new variables, namely Eq. (2.55a). This is reason-
able since the original equations of motion were our start-
ing point. This observation allows us to find a more in-
tuitive form for Eq. (2.49d) which we write in the form
[assuming we have eliminated the momenta using Eq.
(2.49c)]:

T

dH ~ . dH dH
(5I Pl) Q+3— +Pl Q+ +Pl A +(5! Pl)B =Ql+8-

n n I

We conclude, therefore, that

Pi„A„+( 5i„PI„)B„=0 . — (2.57)

aa
Ill Qll +

gQ n

=0. (2.58)

Therefore, Eqs. (2.49c) and (2.49d) must be equivalent to
Eq. (2.56), which in light of Eq. (2.57), reduces to

Equations (2.54) and (2.58) are crucial to our paper and
they state the following. To obtain the Dirac bracket
equations of motion for the new variables qI and X,- in the
presence of the given constraints, first substitute the An-
satz, Eq. (2.17), into Eq. (2.55a). Then operate with P&„ to
project Eq. (2.55a) onto the "fI manifold, " thus giving
the equation of motion, namely Eq. (2.58), from which
will be generated a separate equation of motion for each
collective variable X;. To generate a separate equation
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for each collective variable X, from Eq. (2.58), operate
again on Eq. (2.58) with the "shape mode, "fl; associated
with the ith collective variable X,- whose equation of
motion is sought. This double operation —first operating
with Pl„and then with the appropriate shape mode —is
easily condensed into one operation since, by Eq. (2.42b),

f!Pln fn (2.59)

p(x, t)=o(x —X&,X2, . . . , Xlv)+X(x —X&, t), (2.61)

where o and X play the (continuum) role of our fl and ql,
respectively. Here, J,=I, is the center-of-mass coor-
dinate of the kink. Note that 7 now also depends on X, .
(We will always associate X& with the center-of-mass
coordinate of the kink. ) Parenthetically, we have not yet
been able to carry out the derivation for the discrete ana-
log of Eq. (2.61), namely

Ql=fl(i —Xl X2 ' X )+lvql(l Xl t) ~ (2.62)

Although certain derivations in this section and in the
appendices have to be modified because of the presence of
X, in 7, all the results of this section are still valid for the
Ansatz Eq. (2.61) for the continuum. That is, the second

Therefore, we need only operate on Eq. (2.55a) (after sub-
stituting in the Ansotz} with the shape mode fl; to obtain
the equation of motion for X, Next, to obtain the equa-
tions of motion for ql, operate on Eq. (2.55a) (after substi-
tution of the Ansotz) with (5l„—Pl„), which projects Eq.
(2.55a) onto a manifold orthogonal to the f', manifold.

The effect of invoking the constraints by operating
with Pl„and (5«—P«) is also apparent from a conserva-
tion of energy point of view. In fact, the new variables
are shown (at the end of Appendix B) to satisfy the fol-
lowing:

BH . BH
(5« P«)q„+— (5« —P«)p„=0, (2.60a)

Bql Bpl

BH BH BH . BHX+ Y+B P«~ +B
(2.60b)

Adding these two equations gives

BH BH BH . BH . dH
BX BY Bq,

'
Bp,

' dt
(2.60c)

Equation (2.60c) is the statement of conservation of ener-

gy. Its solution set, however, is too large because of the
N extra variables. Only those solutions of the variables

ql, X, , pl, and F; that also satisfy Eq. (2.60a) or (2.60b) as
well as (2.60c) are actual solutions to the original system.

In concluding this section, we make a few remarks
about the functional dependence of our Ansatz. All of
our analysis so far has been explicitly for a discrete lat-
tice. All formulas carry over to a continuum description
by letting the sum on the discrete index I be replaced by
an integral over the independent parameter x with I ~x.
Also, we have chosen qI to be independent of the collec-
tive variables. There are, however, other Ansa'tze in the
literature' [with Ql ~p(x, t)] of the form

C2;= f o;(y, X, 2, , Xtt)~(y, t)dy =o,
(2.63a)

where i =1, . . . , N. rr(x X„t) an—d II(x, t) are the mo-
menta conjugate to X(x X„—t) and lt}(x, t), respectively.
II(x, t) and the Hamiltonian are given by

' T

&(x, t)=ltl=rr+ Y —f m dx' (I—b) 'M
X BX

+h (x,X,X),
H = —,'YM 'Y+ —,

' f m (y, t)dy+ V,

I';= Y, —f rr(y, t)X, (y, t)dy,

(2.63b)

(2.63c)

(2.63d)

where F, is the momentum conjugate to X; and V is given
by

'2

V= ,' f —dy+f Vs(cr+X)dy . (2.63e)

Also

M, = fo, (y)cr, (y)dy

b; =M;l,
' f o „,(y )X(y, t)dy

(2.631}

(2.63g)

and M is defined as in Eq. (2.46). Note X;(x —X&, t) =0
for i &2. At the end of Appendix A we give the condi-
tions that h (x,X,X}must satisfy in order that the trans-
formation defined by Eqs. (2.61) and (2.63b) be canonical.
As in the discrete case, h (x,X,X}=0 satisfies these condi-
tions.

We have proved in this section that a powerful method
exists for calculating the Dirac equations of motion when
the constraints are of the form given in Eq. (2.32) [or Eq.
(2.63a)]. The method consists of substituting the Ansatz,
Eq. (2.17) [or Eq. (2.61)], into the original equations of
motion and projecting the equation onto orthogonal man-
ifolds in phase space using Pl„ to obtain the equations of
motion of the collective variables X; and using (6« Pl„)—
to obtain the equations of motion for the qi. That this is
at all possible is a consequence of the general structure of
the Dirac bracket which is itself the definition of a projec-

order in time differential equations of motion for the N
collective variables X, and 7 are generated by substitut-
ing the Ansatz Eq. (2.61) into the original equation of
motion P+BV(P)/BQ=O and operating with the con-
tinuous analog of Pl„and (5«—Pl„) [for example, see Eq.
(3.23)] in exactly the same manner as for the Ansatz in
Eq. (2.17). (Note that for the ansatz in Eq. (2.61) we have
the correspondence ql ~BXIBt and pl Brr/Bt. ) We will
use the Ansatz in Eq. (2.61) for the DSG kink as an exam-
ple in the next section. We have not investigated contin-
uum Ansotze of a more general form than Eq. (2.61),
where 7 is a function of more than one collective vari-
able.

For completeness we give the canonical transformation
together with the Hamiltonian induced by it and the con-
straints [where all integrals are from —~ to ~ with
respect to y =(x —X, )] for the Ansatz in Eq. (2.61). The
constraints are

C„=f o;(y, X2, . . . , Xlv)X(y, t)dy =0,
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tion in symplectic space. We have shown that this pro-
cedure can be carried out for the Ansatz in Eq. (2.17) and
state that similar calculations show that the projection
operator procedure works also with the Ansatz in Eq.
(2.61). We use the Ansatz in Eq. (2.61) for illustration in
the next section.

III. EXAMPLE:
THE DOUBLE SINE-GORDON KINK

In this section we work out the equations of motion for
the DSG system where we consider the collective vari-
ables X(t) and R (t) to be the center of mass of the kink
and the separation between the two subkinks, respective-
ly. We will take R =R at equilibrium. Note also that R
is the time independent parameter in the DSG substrate
potential:

V&(P)= —4 sech (A) sinh (A)(cos(() —1)
Io

1+cos
2

We take as our Ansatz

P =o (y(x X),R ) +X—(y(x —X)),
where

(3.1a)

2m
cr(r(x —X),R ) =o'so 'y(x —X)+R

Io

21T
crso R—— y(x —X)

lo
(3.1b)

and

crso(x) =4 tan '[exp(x)] . (3.1c)

We have included the center-of-mass variable in the radi-
ation field X. The constraints are

Cx ——f cr'(y, R)X(y, t)dy =0,

C& =f cr&(y, R)X(y, t)dy =0,
(3.2a)

(3.2b)

where the prime in this section denotes the derivative
with respect to y =y(x —X} and era ——c)cr/c)R. The in-
tegrals are taken from —ao to oo.

L = ,' f—P (x, t)dx ——,
' f (x, t) dx

—f V($(x, t))dx, (3.3)

to be a (nonlinear) function of the acceleration X. As a
result, varying the action S = fL dt with respect to X
and requiring 5S=O, leads to equations of motion that
contain d X/dt . Hence, the complexity of the resulting
equations of motion is greatly increased and further, we
have not determined whether or not the projection opera-
tor method of the last section is valid for a Lagrangian
that is a function of acceleration. Therefore, in the
present section we treat y as a parameter, taking y'=0.
This is an excellent approximation for studying problems
such as, for example, the process by which untrapped
(nonrelativistic} kinks become trapped, ' the coupling of
the radiation field to oscillating trapped kinks, the
study of (nonrelativistic) kink-kink or kink-antikink col-
lisions' ' or any other process in which j may be re-
garded as small. (Note that the Ansatz frees X from hav-
ing to dress the kink to account for the kink's Lorentz
contraction. )

In the following derivation of the equations of motion
for the collective variables and coupled field of the DSG
system using the projection-operator method presented in
the last section, we will also perform manipulations that
yield more convenient or practical expressions for the
equations of motion. We will explicitly show what steps
are carried out throughout this section.

We begin by substituting the Ansatz, Eq. (3.la), into
the original field equation

Q2p + Vst ~(P)=0, (3.4)

where Vst &
——c)Vst/c)P. When we bring all terms con-

taining J' on the right-hand side we obtain

In order to obtain equations of motion correct to terms
of order X, it is necessary to introduce y into the An-
satz where

y =1/(1 —X ')'" .

We will show in a forthcoming paper, which investi-
gates the radiation mechanism of an oscillating, discrete
SG kink trapped in the Peierls-Nabarro well, that agree-
ment with simulation is much better when y is included
in the Ansatz Th. e presence of y, however, causes the La-
grangian obtained by substituting the Ansatz into

'2

2 I

rX~'+r'~" y'X '~"—+2yXR ~R R ~R R ~RR = r'X"+—V~.(~+X}, rXX'+—r'X 'X" 2rX—
at2 ai

where o zz ——c)o „/BR. Now we combine the y terms:

~ ~ ~ ~ ~ ~

2 =ax2 ~ ~ ~ ax I

yXcr'+2yXR cry —R cry —R erg/ —— —X"+[V/ (cr+X)—cr"]—yXX' —2yX
at2 ai

(3.6)

Before operating on Eq. (3.6) with the projection operator, we express Eq. (3.6) in a more convenient form. We note
that o. satisfies

o "(x,X,R ) = V„(cr(x,X,R ) ), (3.7)
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where the same R that appears in o appears in the potential. We can then rewrite the expression in brackets in Eq. (3.6)
in the following manner:

V~ (cr+X)—o"= V~ (o +X)—V~ (o )

and expanding in a power series in 7 we obtain

V~ (o)+ V~ (cr)X+A(cr, X) V—~ (o)= —S+ V~ (o )X+%(o,X),
where

(3 8)

(3.9)

Ã(o, X):—V~ (o+X)—V~ (o ) —Vg (o)X

represents the nonlinear dependence on g and

S—:Va (o(x,X,R))—V~ (o(x,X,R)) .

When we substitute Eqs. (3.8) through (3.10b) into Eq. (3.6) we obtain

2

yXo' +2yXR o ~ —R o „—R o ~a —— —X"—S+ Vg (cr )X+A'(o, X)—yXX'
at2 'r

~ ax'—2yX + Va (cr)X —Va (o )X,

(3.10a)

(3.10b)

(3.11)

where we have added and subtracted the last two terms on the right-hand side. Then defining the linear operator X:

+ V„(cr(x,X,R }),

Eq. (3.11) becomes

a'X - aX'

dt
+XX—S X+JV @XX—' 2y X—

where

~ ~ ~ ~ ~ ~

2=yXo'+2yXR o~ —R o~ —R o'~g +S, (3.12}

S =V„(o(x,X,R))—V~ (o(x,X,R)) .

Equation (3.12) was obtained by substituting the Ansatz Eq. (3.1) into the original equation of motion Eq. (3.3) and
neglecting y terms.

According to the general argument immediately preceding Eq. (2.59), to obtain the equation of motion for the collec-
tive variables we must multiply Eq. (3.12) by the shape mode associated with the desired collective variable and in-
tegrate. To this end, we define the bracket

(A ~8):—f A(y, R)B(y, R)dy .

When we multiply Eq. (3.12) by o (y(x —X),R ), and integrate with respect to y =y(x —X) we obtain the equation of
motion for X:

. . dMx(R)
yXMx(R)+yXR = o', +XX —o' S X—%+@XX'+2yX

c}t Bt
(3.13}

where

Mz ( R ) = ( o'(y, R )
~

o '(y, R ) }

and

because of parity. Equation (3.13), the equation of motion for X, is the same equation that the Dirac bracket theory
yields for X and we have obtained it with one integration. We now perform some further manipulations on Eq. (3.13) to
put it in a more convenient form.

We note that when the linear operator X operates to the left it gives 0 since o is an eigenfunction ofX with eigenval-
ue 0. Also, (cr'

~

S X) =(S'
~

X) = —(S
~

X'). Therefore, Eq. (3.13) becomes
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. . dMx(R) &}2X . ax'
»xM &z&+»xR = ' +&x'ls& — ' &&r +'»& —w)X

&it
~ Bt

(3.14}

. . dMJ(R ) . . . BX'
yXM (R)+yXR +yx&o'

i
X')+yx &T' +yX dR at

= o' +&X'iS) —yX o' +yXR&cr„' iX')+&&7'i~) . (3.15)
~ ~ ~

~ ~

a'x ax'
t' Bt

The term yXR & era I
X ) has been added to both sides of Eq. (3.15). The left-hand side of Eq. (3.1S) can be written as a

total time derivative:

[yMx(R }X+y &
o'

~

X' )X] .
dt

Integrating the last term in Eq. (3.16) by parts and using

&o-iX)
ME(R )

gives finally

(3.16)

d = BX' aX d
dt Bt

[yM, (—R)(1 b, )X]=—&X'&S)—yX o' +yXR&o', ~X'& Ro,' — ——[R&o„'iX&]+&o' W&
at dt

(3.17)

for the equation of motion for I in a more convenient form where we have eliminated &
o'

~

8 X/Bt ) by using the fact
that second time derivative of the constraint Cx ——& o

i
X) vanishes, namely:

BX ' BX d a2Xc» ——R & 0 '„
l

x & iR & rr g„ x l+&2R (e
' „)~ (rr'

)
=R (cr && )

+—[R & rr'„
l
x & & ~ (rr )=0 . '

A similar calculation yields the equation of motion for R. Multiplying Eq. (3.12) by o z and integrating gives

'R ' —-+&o„ IS&= o„+&X— &X IS&+ ~„~ yXX—' 2y-. qdMa(R) aX'

dR " "
&it~ BR a (3.18)

where M„(R)= & o„~ o z ) and & o„ i
o ~ ) =0 because of parity. We have used & o z i

S X) =(&}/BR)&X
~

S ) to arrive
at Eq. (3.18) which is the equation of motion for R. We perform some further manipulations on Eq. (3.18) to put it in a
more convenient fortn. We write Eq. (3.18) as

I

dt " BR
[M„(R)(1—btt)R]+ V—,~(R)=yX&o„~X')+2yX o~ +&&T„ i/X)+R &T„„—&&Ta

~

JV), (3.19)
Bt Bt

where

and

V,tt(R)= —&o.~ i
S)— [ ,'Mtt(R)R +—&X

i S)]M (3.20)

M„(R}

We have eliminated & o z ~

&} X/Bt ) in deriving Eq. (3.19}from Eq. (3.18) by using the fact that second time derivative
of the constraint Cz ——& &T„ i

X ) vanishes, namely

~ ~ ~ ~
2 ax ax2c~=z&~~~ lx&+R &~„, l&&+zz(~~R + R, )Bt Bt

ax d a'x =~RR + R ~RR ~ + ~Rat dt at2
(3.21)
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Equation (3.19) is the equation of motion for R in a more
convenient form.

Before deriving the equation of motion for the radia-
tion field 7, we give an argument that shows it is actually
not necessary to do so and that the Dirac equations of
motion are indeed equivalent to the three equations of
motion (3.12), (3.17), and (3.19).

Consider the symbolic set of equations:

E=0,
=0,

(1—P)E =0,

(3.22a)

(3.22b)

(3.22c)

where Eq. (3.22a) represents the original equations of
motion with the Ansatz substituted in; Eq. (3.22b), the
equation from which the equations of motion for the col-
lective variables may be derived by operating with the N
shape modes; and Eq. (3.22c), the equation of motion for
the field P. In general, these three equations correspond,
respectively, to Eqs. (2.55a), (2.58), and (2.54). Equations
(3.22b) and (3.22c) are the Dirac equations of motion,
that is Eqs. (3.22b) and (3.22c) are those equations of
motion that the Dirac bracket method yields. [For the
DSG case, Eq. (3.22a) corresponds to Eq. (3.12) with all
terms brought over to one side. ]

Now substituting, say, Eq. (3.22b) into Eq. (3.22c) leads
to Eq. (3.22a). Therefore, Eq. (3.22a) may appear to be a
consequence of the Dirac equations of motion; but it is
not because it does not contain all the information that
the Dirac equations of motion contain since it lacks any
information about the constraints. It is only the form of
Eq. (3.22a) that may be obtained by substituting one of
the Dirac equations of motion into the other, but Eq.
(3.22a) must be accompanied by the constraints (as auxili-
ary conditions, say) which must be satisfied for all time so
that the solution set of Eq. (3.22a) plus constraints is com-
pletely equivalent to the solution set of the Dirac equa-
tions of motion, namely Eqs. (3.22b) and (3.22c). In fact,
this is the content of Eqs. (2.55a) and (2.55b) where we re-
quired that the form of Eq. (2.55a), the original equations
of tnotion with the Ansatz substituted in (i.e., our starting
point), be recovered from the Dirac equations of motion
and where the constraints were applied as auxiliary con-
ditions.

In short, any pair of the three equations in
(3.22a) —(3.22c) is a necessary and sufficient system of
equations whose solution set is to be rigorously
equivalent to the solution set of the Dirac equations,
since the equation not included in the pair is always
derivable from the two that are, and therefore, the
effective application of the constraints via operating with
P is insured. [We point out that Eq. (3.22b) is actually
equivalent to the N distinct second-order equations of
motion for the collective variables that are derivable from
it.]

We apply this general argument to the DSG case. The
equations of motion for X [Eq. (3.17)) and R [Eq. (3.19)]
are, in general, derivable from operating on Eq. (3.12)
with P followed by the corresponding shape modes.
Therefore, Eqs. (3.17) and (3.19) are equivalent to Eq.
(3.22b) and so the set of equations, (3.12), (3.17), and

(3.19) completely determine the solution of the DSG sys-
tern in terms of the new variables. Therefore, we do not
need to calculate an equation of motion for the field 7 by
operating on Eq. (3.12) with (1 P)—according to the gen-
eral statement immediately following Eq. (2.59).

It is instructive, however, to calculate the form of the
projection operator, P, although we did not have to uti-
lize it explicitly. First, we recall the definition of the pro-
jection operator and adapt the notation for a continuum
description. Recalling Eq. (2.41) we let

+
Mx(R) Mq (R)

(3.23)

and identify the projection operators Px and Pz with

)(
Mz(R) ' " M~(R)

(3.24)

Thus we see that, because of the diagonal form of the ma-
trix M ', the projection operator P splits up into the two
projection operators in Eq. (3.24) and so P=PX+Ptt.

In this section, we have used the general theory
developed in Sec. III to obtain the equations of motion
for X [Eq. (3.17)], for R [Eq. (3.19)], and for X [Eq. (3.12)
in the sense described above] by projections of Eq. (3.12)
[or equivalently for Eq. (3.5)]. Equation (3.5) was ob-
tained by substituting the Ansatz, Eq. (3.1a) into Eq. (3.4).
Without the projection operator equivalence to the Dirac
bracket method, it would be necessary to carry out an ex-
tremely lengthy calculation of all the Dirac brackets
(each made up of many Poisson brackets) in order to ar-
rive at the Dirac bracket equations of motion. We note
that the system of equations for X, X, and R [namely,
Eqs. (3.14), (3.15), and (3.16)] in Ref. 7 are generalized
and corrected by the system of equations comprised of
Eqs. (3.12), (3.17), and (3.19) in the present paper.

IV. CHOICE OF ANSA TZ FOR o.

The constrained Hamiltonian Dirac bracket formula-
tion of this paper allows one to choose any Ansatz for o.
in

$(x, t)=cr(x —X„X2,. . . , X~)+J(x —X(,t), (4.1)

where only the center-of-mass collective variable appears
in X. We drop the y for brevity. (Usually, o will be a
stationary solution of the original problem. ) However, for
each collective variable, the constraints must take the
form

(4.2a)

where y =y(x —X). Suppressing the integration vari-
ables for brevity we find

r

1

Mx(R )

1

M~(R)
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differ appreciably from Pz and so Bo Dso/BR is not an ex-
act eigenstate. If the constrained Hamiltonian Dirac
bracket theory of this paper is to be valid in the limit
5R ~0 for small %, we must have a nonvanishing X in
order that P is a solution.

The nonvanishing X(x, t) is a nonpropagating phonon
dressing of o Dso. By inspection of Eq. (4.7} the resulting
solution for 7 has to be

(4.2b)

(4.8)X= p2 — 5R

in order that P is the correct solution of the DSG kink
equation in the limit 5R ~0, where the 5R term is the
nonpropagating part of X. We expect 7 to be nonzero for
large nonlinear deviations of the collective variables.
However, it is a disadvantage to have to dress even small
deviations. (Parenthetically, often o gives a good repre-
sentation of many features of a problem' for appreciable
nonlinear deviations of the collective variables even when
X=0.)

We now show that we can And a new Ansatz for cr in
those problems where exact bound states exist such that
we have a solution for P with X=O in the limit of small
deviations of the collective variables. As an example we
consider the DSG kink with a new Ansatz &.

(4.3)

We illustrate the general argument by considering the
particular example of a kink that is invariant under spa-
tial translations, e.g., the continuum SG soliton. Then
our Ansatz, Eq. (4.1), takes the form:

P(x, t) =o (x —X(t))+X(x X(t), t ) .— (4.4)

Consider an infinitesimal displacement X(t)~X(t)+5X
Then we can construct an exact solution with X=O for
small 5X:

y(x, t) =&Dso(x —X,R)+X(x X,t), — (4.9)

P(x, t) =cr{x X(t))+—5X Bo (x —X(t))
X

{4~) where

i.e., the constraint must be a function of the derivative of
cr with respect to the collective variable. If this is not
true, the projection operator method is not equivalent to
the Dirac bracket formalism —the projection-operator
method breaks down. There is no requirement that the
shape mode Bcr/BX; be a bound eigenstate of the linear-
ized equation for P. We show, however, that it is advan-
tageous to have the shape mode Bcr/BX; equivalent to a
bound state of the linearized equation for P. Then we
show that when there is a bound state, f;, of the linear-
ized equation for P, we can find a o such that

because the shape mode Bo /BX is an exact solution of the
linearized SG equation with eigenvalue zero, i.e.,

ax =P-sech[x —X(t}) .

The eigenfunction P is often referred to as the Goldstone
mode.

Next consider the case of the DSG kink where we have

R
o Dso(x X,R )—=—o'Dso(x —X,% ) + $2(R ')dR ',

~~DSG
=$2(R) . (4.11)

(4.10)

which has the consequence that the shape mode is the ex-
act eigenstate of the linear problem, i.e.,

P(x, t, X,R )=oDso(x X(t),R (t})— Consequently, in the limit 5R ~0 we have a solution

+X(x —X(t), t) . (4.6) P(x, t) =o Dso(x —X%)+5R $2(x —X,A) (4.12)

The translation of the center of mass X(t)~X(t)+5X
leads, in the same manner as above, to a solution for P
with 1=0. If instead we consider a small deviation of the
collective variable, R (t)~R (t)+5R, then P becomes

y(x, t,X,R ) =0 Dso(x X(t),R )—

with X=O. Generally,

P(x, t)=8+X=a(x —X&,Xz, . . . , Xz)
N X,

+ g f,f;(X )dX +X,
i=1

(4.13a)

+5R {x X(t),A)—a -.
BR

+X(x X(t),t) . — (4.7}

where P may or may not be a function of L, . In the
discrete case

Ql =fi+qi =f(t —Xi »2,

When the parameter A is sufficiently large (where, for
practical purposes, sufficiently larger means % &2), the
function Bo DsG/M approaches gz, where P2 is the
second of the two exact bound eigenstates of the
linearized DSG kink equation for P. Consequently, for
large %, we have a solution for P for small 5R even when
7=0 in complete analogy with the Goldstone mode case.
However, when A is small (R &2}, Bo Dso/BR begins to

+ g f,g, (X,')dX, '+q, ,
i=1

(4.13b)

where qi qI(t) and the —t—P; are the eigenfunctions of the
linearized discrete equations of motion.

The eigenfunctions, 1(;, are solutions of the linearized,
homogeneous equation for P, and therefore their normali-
zation is not determined. The normalization of the itt,. is
determined by the physics of each case. For example, in
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(
—

)
— DSG(

~)Pzl 4z = 42 (4.14a)

which leads to

2
Bo'Dso(R )

BR
(4.14b)

As another example, suppose we wish to normalize the
eigenfunction for the linearized equation for P for the
discrete SG system. Then the normalization is deter-
mined by the requirement that the lowest frequency
bound state in the discrete problem, gi, approach

g i
——1/losech[n /lo(l —X)]

which is the discretization of the continuum bound state
eigenfunction, which agrees well with P& when io is large.
The normalization of g, for the discrete SG kink can
then be invoked by using ( Pi l P, ) = ( P& l gi ).

In Ref. 6 we will show using the appropriate o' for the
discrete SG lattice that we get exact agreement with
molecular dynamics simulations for the small oscillations
Peierls-Nabarro frequency of a trapped kink. We observe
the & Ansatz is more complicated than the e Ansatz and
consequently have to do more work in evaluating quanti-
ties that depend on o'. However, in practice, the goal is
to choose an Ansatz o that embodies as much physics as
possible (including nonlinear variations of the collective
variables) so that the more complicated equations for X,
such as Eq. (3.12), can hopefully be treated perturbative-
ly. For example, we have found many situations'
where the radiation which is described by g and m is very
small even though the collective variables in o. undergo
very large nonlinear oscillations. In conclusion, all of the
derivations in the preceding sections of this paper remain
valid when a is replaced by &.

V. DISCUSSION AND CONCLUSION

In this paper we have developed a projection operator
approach for treating nonlinear field theories in which
there exist collective modes. We introduced X coordi-
nates to characterize the N collective modes, thereby in-
troducing 2N extra degrees of freedom into the system.
2% second-class constraints were applied to conserve the

the DSG system, for large % we know that for small os-
cillations

Bo Ds~P=o DsG((x —X, ),%)+5R ((x —X, ),A)az
with 7=0. Consequently, we have the requirement that
Moso/()R =$2 must approach B(TDso(R)/()R as R be-
comes large. Therefore, we first define $2= No—'

(where Nz
' is a normalization factor) and require P2 to

satisfy (gz l g2) =1. The normalization factor is then
gi~~~ by N2 = ( $2 l $2). We must now normalize 1t 2 so
that $2~()(TDso(R )/BR as A becomes large. One way to
accomplish this is by requiring

(5.1)

which leads to a fourth order equation for X, i e.,
d X/dt . In this case, there appears a new constraint in
addition to the ones already given for say, the SG case:
the inner product of Bo./ay with 7 which leads to

C = yo'y+y, tdy=O,

i.e., the first moment of the product o'7, which measures

number of degrees of freedom of the original system. The
system in terms of the new variables together with the
constraints was then able to be treated within the frame-
work of the Dirac bracket formalism in which a family
(with respect to the function hI ) of canonical transforma-
tions to the new coordinates and momenta was derived.

We showed that the lengthy procedure of deriving the
2(N+M) coupled equations of motion for the new coor-
dinates and mornenta can be circumvented by substitut-
ing the Ansatz [Eq. (2. 17) or (2.61)] into the original equa-
tions of motion and operating appropriately with the pro-
jection operator P&, defined by Eq. (2.41). Thus, the
second-order equations of motion for the collective vari-
ables X; and the field q& may be derived without having to
explicitly work through a variational procedure in terms
of the new variables. The variation of the Lagrangian
with respect to the old variables is all that is required
which simply gives QI+ V'(Q&)=0 which are the equa-
tions of motion into which the Ansatz must be substitut-
ed. Such a powerful simplification originates from the
general structure of the Dirac bracket which, as was stat-
ed earlier, defines a projection in symplectic space.

We must reemphasize the difference between the pro-
jection operators P and P&„. P is the projection operator
in symplectic space defined by Eq. (2.29) in terms of
which the Dirac bracket may always be written. When
the equations in symplectic space are decomposed and
written in the more usual function space [see, for exam-
ple, Eqs. (2.49a) —(2.49d)], P generaly splits up into a sum
of terms, one of which will lead directly to the projection
operator P&„[such as the first terin in parentheses on the
right-hand side of Eq. (A7)], only if the constraints are of
the form we have assumed them to be Theref. ore, the ex-
istence of P (which does not depend on the form of the
constraints) does not imply the existence of P&„(which
does depend on the form of the constraints).

We showed in detail the derivation of the coupled
equations of motion for a DSG system where the useful-
ness of the projection operator formalism was made ap-
parent. In that example we included y in our Ansatz and
derived the equations of motion in the approximation
y=0. For many problems, this approximation will give
satisfactory results. However, in a highly relativistic
kink-kink or kink-antikink collision, the y terms become
important and cannot be neglected. One must then sub-
stitute the full Ansatz (with y) into the Lagrangian of Eq.
(3.3). The Lagrangian will be a function of X, and the
equation of motion for the coordinate X& is given by the
Euler-Lagrange equation:

aI. d aI. BL+
dt 2 BX dt BX aX
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the kink's distortion as it interacts with an impurity or
another kink, for example. We are currently investigat-
ing further the consequences of the more exact equation
of motion for X„Eq.(5.1).

We have motivated a particular choice for the Ansatz
o =a that has the property of Eq. (4.3) which we have
shown to be advantageous since o =o is a solution for
the linearized equation of motion for /=&+X in Eq.
(4.1) in the limit 5X;~0 and therefore X=O in the same
limit. Also, since the constraints must be defined with
respect to the Ansatz according to Eqs. (4.2a) and (4.2b)
in order that the projection operator method be
equivalent to the Dirac bracket formalism, then setting
o =o' amounts to requiring that the shape mode, even for
5X, ~0, is orthogonal to the radiation eigenfunctions.

APPENDIX A

I A, B j*=
T ' T

ac(~ ) ac2pI+J M~p'

In this appendix we first find the differential equations
that must be satisfied by the old momenta in terms of the
new variables by requiring the Dirac brackets to be in-
variant under the canonical transformation of the old
variables to the new. Then we solve the resulting
differential equations to obtain the form of the canonical
transformation. We show that the functional dependence
of the old momenta on the new coordinates and momenta
is defined to within a function hi which must obey certain
conditions which we calculate explicitly.

We use Eq. (2.37)

ACKNOWLEDGMENT

r

ac.. . ac„
an ~ an

aB
an

(2.37)

One of the authors (P.S.) would like to thank R. Flesch
for pointing out an error in a previous paper, the correc-
tion of which prompted much of the discussion in this pa-
per on the canonical transformation.

to derive the differential equations which must be
satisfied by the old momenta as functions of the new
coordinates and momenta. These differential equations
are

ap„ap„
(5' Pts)

a
—+ fI (I—b) =5«

aps
(Ala)

—(l~n) =0, (A lb)

where (l+-+n) symbolizes the entire preceding expression
with the indices I and n interchanged.

Before deriving Eqs. (Ala) and (Alb), it is helpful to
explicitly show what the matrix quantities in Eq. (2.37)
are:

aQ,
'

(5/1 ''' 51M fll '' flN 0
Bn 7

(A4)

ac,.
an

BC2

BIl

l, a

M, a
Cla, l

Cla, N

0

0
0

0

0

0
C2a, l

2a, N

fi,.
,a

0

aci
J

BC2J
Bn

0

0
0

0
f i,. —

M, a

Cla, N

l, a

,a
0

0
0

0—C2a, l

2a, N

(A2)

(A3)

For the transformation to be canonical, we require that
Eqs. (2.38a)—(2.38c) be satisfied. We see that

aQ,
' aQ„aQ, ' ac,.J J

an an an an
Tac„' aQ„J =0

an an
(A5)

T
aQ, ac,.J

an
=5t~f, .~ (A6a)

aC„' ar„aI„
(A6b)

Substituting these results back into Eq. (2.37) we obtain

by using Eqs. (A2) and (A4). Substituting the expressions
in Eq. (A5) into Eq. (2.37) we obtain I Qt, Q„]*=0.Next,
we require I Qt, P„J' = 5«. We substitute Qt for A and

P„ for B in Eq. (2.37). When we then evaluate the second
term in parentheses in Eq. (2.37), we obtain zero by virtue
of Eq. (A5). Evaluating the third term in parentheses of
Eq. (2.37) we find
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aP„aP„
[Qi P. i*=51.

~ +f1, ~y

aP„aP„
gf—,,W.p' f p~ + ip, ; ~ypr

(A7}

and interchange the expressions in parentheses (which are
"inner products") while at the same time taking their
transpose (which changes nothing) to give

' T ' T
aa ',aC„, ac2. ,a~J Mp' J
an an ~ an an

aP„ aP„
IQI P l'=(5l. 'Pl —)

g +fI, (5 —b ) I, (A8)

Using Eq. (2.41) and b; =M &'C&&; in Eq. (A7) we ob-
tain Using J = —J and M &' ——M& ', we obtain the desired re-

sult. Since 3 =PI and 8 =P„ this amounts to inter-
changing l and n. Calculating anew the components of
the second term in Eq. (2.37) we find

ai "J -M-BC

an an

' T
~Cip aa '

J
Bn Bn

In matrix notation, the right-hand side of Eq. (A8) be-
comes the left-hand side of Eq. (2.39) [or Eq. (Ala)].

Calculation of the bracket I P&, P„)' is made simpler by
noticing that the third term in Eq. (2.37) is equal to the
second term but with 3 and 8 interchanged. To show
this, take the third term

r

"dPI BC|J
Bn Bn

dPI dP
f~.a gy Cla i.

Ps l

and finally

BCip dP„dP„BP„
an an 't'i ar f"t' aq„'

(A9a)

(A9b)

BP, BP„dP, dP„BP, BP, , dP„dP„
a a +aX or+ a '+aI' "' ~ "t'a '~'aI'

qs ps Ps qr
'

J
(A10)

In matrix notation, the right-hand side of Eq. (A10) be-
comes the left-hand side of Eq. (Alb).

We now find the general solution of Eqs. (Ala} and
(Alb). Operating on Eq. (Ala) with fi from the left

yields

This allows us to write

aP„
=5,„+f,' d„(q„p„,X,Y, t), (A15a)

aP„
M(I —b) = f'„

since

f', (5I, PI, ) =0 .—

Solving for P„gives

BP„ =(I—b) 'M 'f„'
av

=

P„=YT(I —b) 'M 'f'„+g„(q„,p„,X),

(Al 1)

(A12)

(A13a)

(A13b) P„=p„+k„(q„,X,Y) (A15b)

where d„ is an arbitrary column matrix. We note that
f,' d„=d„f,'. [The last term in Eq. (A15a) is zero when
operated on with (5 —P„, ). ] When we integrate Eq.
(A15a) with respect to p„ the second term on the right-
hand side will be proportional to Cz which we strongly
set to zero in the presence of the Dirac bracket. Thus d„
does not enter into the momentum transformation. We
may then write

where g„ is a completely arbitrary function of the indicat-
ed variables. Next operate again on Eq. (Ala) froin the
left with (5„I P„i) to obtain— for some function k„. Consistency between Eqs. (A13b)

and (A15b) requires

or

aP„
(5„,—P„, ) —5,„=0.

S

(A14)

aP„
(5„,—P„, ) =(5„„P„„)—

Bp

P„=p„+Y (I—b) 'M 'f'„+h„(q„,X) . (2.43')

So far there are no conditions on hi or di but requiring

I PI, P„ I
' =0, however, puts conditions on hi and di.

Before using Eq. (Alb) to find the conditions on hi and
di, we simplify Eq. (A lb). Consider the terms in the first
set of parentheses of Eq. (Alb) and use Eq. (A15a) to ob-
tain
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T
BPI BP(

Bp
~ BY 1

= I If~T+ M —f' M
S

P) C'M-'
1

BPI
PTM 1(I— 1T)—l(1 bT)+ 1T+dT

BY
T 'T T

ap, , ap. . . ap,
'

(I—br)+ b'+dT= (A16)

ap„+" '"
a 'aYq,

Substituting Eq. (A16) back into Eq. (A lb) gives

BP( BP„BP( BP„BPI
aq„ap„aX aY aY

"+ ' "+ (l~—n) =0 . (A17)

We note that the term

BP, BP„

BY BY

We rewrite Eq. (2.43) as

P) ——P) +h),
PI pi+ Y——(I—1) 'M 'f', ,

(A20a}

(A20b)

ap,

Bqn

ap„ap, ap„,ap,
BX BY Bq,

' BY

+d„Cq (1+en—) =0-, (A18)

in Eq. (A17} is symmetric in the indices l and n and there-
fore vanishes by virtue of (l~n). Using Eq. (A15a) to
substitute for di f' in Eq. (A17), we find that Eq. (A17)
simpli6es to ap,' =Y (I—b) ' (I—1) 'M

Bq„Bqn

=Yr(I —1) 'M 'f„"(I—b) 'M 'fI

P)=Y (I—1) 'M 'f"
1l (A21)

and show that Pi satisfies I PI,P„)' =0 when d„=O. The
quantities in Eq. (A18) are calculated as follows:

where we have written the second term in Eq. (A18) in
component form. The reason is that taking derivatives as
indicated by Eq. (A18) would lead to three-dimensional
matrices whose manipulation would be cumbersome in
the matrix notation we have been using. Also we have in-
terchanged the indices l and n in the second term and
have written the inner product in the third term in re-
verse order. This will make certain forthcoming cancel-
lations easier to identify.

We now calculate the quantities on the right-hand side
of Eq. (A18). Until stated otherwise we take d„=O. We
use

BR
[A(R)] '= —[A(R)] ' [A(R)] 1

BR

Inserting the identity

I=f'f,' MS

gives

ap,' BPI=Y (I—b) 'M 'f' f' M 'f"
aq„= ' ' "aY

=(P, p, )f,'TM 'f'„'—

=P f' M 'f" P)
S S fl

(A22)

(A23)

(A19)

to calculate the derivative of the inverse of a matrix A.

where the second equality follows from Eqs. (A20b) and
the third from C2 ——0.

We now calculate

BP,'
BX

Bf)=Y (I—b) ' (I—1) 'M 'fi —Y (I—1) 'M ' M fi+Y (I—1)

=Y (I—1)
ac', BM

M 'C)+M ' —Y (I—b) 'M ' M 'f'+Y (I—b) Max. '+ ax. aY ax. BX.

BP, BC, BP, , BM, Bf
+ s s BX BY s s Bg I s s Bg

where the last equality follows from insertion of Eq. (A22) in the same manner as for Eq. (A23).
The third term in Eq. (A24) may be written

(A24)
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apl—P f' M ' M 'f'= P—f' M ' (I—b)(I —b) 'M 'f'= P—f' M ' (I—b)
BX ' ' ' BX ' ' ' BX BYQ a a

The term proportional to b in Eq. (A25) cancels the first terin in Eq. (A24) and so we have

(A25)

=p, f,' M pO f & TM —1 +pO f t TM —1 (A26)

We now have expressions for BPt /Bq„[Eq. (A23)] and BP& /BX [Eq. (A26)]. Substituting both of these into Eq.
(A18) (with d„=O) yields

BP, '. . . ac', aP„. . . BM aP„. . . ar'„' aP,
"BY ' ' BX BY ' ' BX BY ' ' BX BYa a a a

ap„,ap,
(A27)

We see that the first term of Eq. (A27) cancels the last term in large parentheses. The first term in large parentheses is
symmetric in the indices l and n and so it cancels itself by virtue of (l~n). That leaves us with

0 0 . .. , aM BP. BPI . .. , „BP. ,„BPt
BX~ BY BY

where we have expanded BM/BX, in the first term. The second term in parentheses is symmetric in l and n as is the
sum of the remaining two terms and so the right-hand side is zero. Therefore [Pt,P„]' =0 when d„=O. If we relax the
condition d„=0 we merely retain the last term in Eq. (A18) and so I P&,P„ I

' becomes

{Pt,P„I'=d„Cz —(l~n) . (A28)

(A29)
Bq„

Equation (A29) is satisfied if we take ht ——0 and d„=O.
For the transformation defined by Eqs. (2.61) and (2.63a) and (2.63b) where the center of mass appears in the X field,

we find that through an analogous calculation we can derive conditions that must be satisfied by h (x,X,X) and
d(x, t, X,P,X,m) We wil. l .abbreviate h(x, X,X), d(x, t, X, PX, i)r, X(x X, , t), and o—(x —X„Xz, . . . , X~) by h(x, t),
d(x, t), X(x, t), and cr(x), respectively. If we define IIO(x, t) by

To obtain the general condition which ht(q„, X) and d„must obey we substitute Eq. (A20) into Eq. (A18). Since we
have just proved that Pt satisfies Eq. (A28) we are left with

ahI ah„aPi Bh„BPi BPI

aX aY+aq„" aY+ " 'aY

II(x, t) = rr'(x, t)+h (x, t),
where

(A30a)

110(x t) ~+ Yr f~ dx' (I—b) M (A30b)

then we are able to show

tII (x, t), II (y, t)}*=d (y, t)C2 ' —(x~y) .
Y

We find, as above, that requiring [ II(x, t), II(y, t) I
' =0, leads to

(A31)

ah(x)
ax

Bh(y) BII (x, t) i Bh(y, t) Bcr(z) BII (x, t)
aX aY ~ BX(z t) aX

"
aY+ dz

T 0Bh(yt) BX(zt)
d

BII(xt)
( ), BII xt

( )
anz t) aX

'
aY + ' ' aY
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which can be satisfied by the choices h =0 and d=0. We
notice the presence of the fourth term in Eq. (A32) due to
the dependence of X on X&. This term is not present in
Eq. (A29).

APPENDIX B

We use Eq. (2.48} to derive the Dirac equations of
motion Eqs. (2.49a)—(2.49d). We recall Eq. (2.48):

Using Eqs. (A2) and (A3) from Appendix A we find

ac2p BH BH BH
an an 'P'aY, 'Paq, '

acip BH BH BH
an Bn 'P

Bp, P' BY,
+C)

(B1)

(B2)

ac.. . ac„
n~ —— I+J M p'

Bn Bn

BCz~, BCip

an p an
aH
Bn

(2.48)

Substituting Eqs. (Bl) and (B2) into Eq. (2.48} and using
Eqs. (A2) and (A3) and the definition of nD whose tran-
spose is given by Eq. (2.22), Eq. (2.48) may be put in the
following form:

q,

qM

X)

+N

PM

Yi

Y

aH/ap,

BH /BpM
BH/BY(

BH/BY
BH/Bqi—

—BH /BqM
BH/BXi—

—aH'/ax„

0

0
0

0
fi, —

fM,. —

Cla, N

BH BH
M p C2p, BY f p

qs

l, a

M, a
0

0
0

0
—C2a, i

2a, X

C
BHMp' fp + ip;

Ps
(B3}

The equations of motion can now be read off of the above
matrix equation and written concisely as

flql+C', X=C& ——0

fIp(+CzX=C2 ——0,
(B6a)

(B6b)
' = BH —f' M-' f' BH +C', BH"=

ap,
' 'ap + 'av

aH .. . , aH, aH
aq,

' 'av 'aq

(B4a}

(B4b)

Equations (B6a) and (B6b) verify that the constraints are
indeed constants of the motion.

Using Eqs. (B5a) and (B5b) to eliminate the explicit
constraint terms in Eqs. (B4a) and (B4b) leads to

~ HX=

~ BH, T i,BH, BH

(B4c)
, BH—f' M 'f' +f' M 'f'q

Pl s

f M —f f,„M f BH
Jl ~ + l SPS+ l s ~

aql Bq,

(B7a)

(Bjb)

+C' M fg +C',,r i, BH, BH
B

(B4d) BH

s
=0, (B8a)

and these equations may be written in the following form:

We now manipulate Eqs. (B4a}—(B4d) into the form of
Eqs. (2.49a) —(2.49d). Operating on Eqs. (B4a) and (B4b)
with fl gives, respectively,

BH
(&(. 'P(, } p, + a—

B
=0, (B8b)

, BH
fl ql

———C
&

———C',X
BY

, BH
flPl ———C2 ———C2X,

BY

(B5a)

(Bsb)

Bringing everything onto the left-hand side of these two
equations gives

where we see P„ is the projection operator defined in Eq.
(2.41). Equations (B8a) and (B8b) are Eqs. (2.49a) and
(2.49b).

Equation (B4c) is a comparatively simple equation.
This is because the constraints are independent of Y and
so the terms containing the constraints in Eq. (B3) (for
the X; rows) have zero as their coefficients.

When we use Eqs. (B5a) and (B5b) to eliminate the
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terms C&BH/BY and CzaH/BY, respectively, in Eq.
(B4d) we obtain

Y =C' M 'f'+ ax 1 I a +Pl

(B9)

may be written as

aa
(&i.—PI.} Q. —

n

(5,„P—,„) P„+ aa
n

=0,

(Cla)

(C lb)

First, we write the fundamental Ansatz Eq. (2.17) as
which is identical to Eq. (2.49d).

So far we have derived the Dirac equations of motion
for the canonical variables. We end this appendix with a
derivation of Eqs. (2.60a}—(2.60c}which project out the N
unmeaningful degrees of freedom from the equation for
the conservation of energy. First, multiply Eq. (B8a) by

pi and Eq. (B8b) by q& and subtract. This lead directly to

q. =Q. —f.
and take its time derivative:

q„=Q„—f'„X .

Second, we write

(C2)

(C3)

(5(„—P(„)q„+ (5t„—P(„)p„=0 .BH . BH

Pi
(2.60a)

BH

apn

BH BP,

BP, Bp„

aH aH
BP, '" BP„

(C4)

Writing this as

aH. aH. aH . aH
ql+

B
Pl

B
Plnqn +

B
PlnPn

PI O'I PI

and substituting into

BH BH BH . BH . dH
Bx

X+
aY

Y B, q+B, p =
dt

(B10)

P + f&TM —l(1 bT) —1Y (C&)

Solving this for pn and taking the time derivative yields

and substitute Eqs. (C3) and (C4) into Eq. (2.49a) which
gives Eq. (Cla).

Dealing with Eq. (2.49b} is slightly more complicated.
We recall the momentum transformation with h„=O:

which must always be true (even on the manifold in phase
space that subsumes the trajectories of the N unmeaning-
ful degrees of freedom), we obtain

aa
'

aa '. aH . aHX+ Y+ Pinqn+ a PIZn =o .

(2.60b)

P =P —X f" M '(I —b) 'Y

—f' —[M (I—b ) Y].
df

(C6)

From Eq. (2.49c) and the Hamiltonian in Eq. (2.47) we
calculate

APPENDIX C
X '=V'M -' (C7)

We show in this appendix that the Dirac equations of and substituting Eq. (C7) into Eq. (C6) gives
motion

H
(5,„—P,„) q„—

aPn

aH
(~i.-Pt. ) p. +

aann

=0,

=0,

p =P —Y'M 'f" M '(I —b ) 'Y

—f' —[M '(I —b ) 'Y]
dt

We also need the following expression for BH/Bq„:

(C8)

= ——'Y'M ' M 'Y+ = ——,'Y'M ' [(I—b )M(I —b)]M Y+avaQ. . . a, —, av
Bq„' aq„aq„' aq„ag, aq„' aq„ag„

=—,'Y'M ' M(I —b)+(I—b )M M 'Y+ab —, aHaq„aq„ag„
=-'Y'M —'[f"M—'M(I —b)+(I—b )MM-'f" ]M -'Y+ aa

n Bg

'f'„'(I—b)M 'Y+ =Y'M 'f"M '(I —b ) 'Y+BQ„" Bg„
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Substituting Eqs. (C8) and (C9) into Eq. (2.49b) gives Eq.
(C lb}. C2 ——g f,'(X)p,. P—2—

I

(Dl)

APPENDIX D

In this appendix we investigate modifications that need
to be made of the statements in Sec. II A if the momen-
tum is given by some form other than Eq. (2.12). We do
not want to change the coordinate transformation, the
constraint C&, or the canonicity requirement. We may
however wish to change C2 in order to allow us to put
the momentum into some desired form. There is no ap-
parent a priori reason why we should not do this. For in-
stance, we are free to choose the momentum to be

Pfi'
Pl P1 M

(where M = g, fi' ) as was incorrectly derived and used
in Eq. (2.7) of Ref. 4. The requirement of canonicity
determines the form of the second constraint. For this
particular choice of P1 it turns out that requiring

j Qt, P„J' =St„ leads to the result that C2 must satisfy the
following Poisson bracket equation:

ft IC), C2I = —M(1 ri/M)[—qi+ft, C2I .

Explicitly writing out the derivatives and simplifying, we
obtain

The bracket of the constraints I C„C2 J is now what we
define to be the dressed mass, M, instead of the bare mass,
M: t Ci, C2 I =M(1 —ri/M):—M.

In our paper, Ref. 4, we asserted [see Eq. (2.10) of Ref.
41 that in the new variables the canonical brackets are
Iqt, p„I*=5t„ft'f„'—/M, IX,PI'=I and that all other
brackets vanish, i.e., brackets between X and q1, p1 and

p„, P and p1, etc. This is not the case. We actually must
explicitly calculate them all according to the Dirac
prescription. We have worked them out and find the fol-
lowing results for the brackets.

I X,P I' =1/(1 —ri/M)

fi'f.' f!f.'
M (1—v]/M)

" M

where M appears instead of M. Some of the other brack-
ets do not vanish.

f! n
(qt PI'= ——,

M

f,' BC f,"P
~~"'I'= —

aX + —
MM M

aC, ac,
ft g f,' +M(1 —ri/M)

t)pi dpt

BC2fi'M—
and

Ipt p. j'= —fI 'f.' —f!f."

C2

Bp;

M t)Cz

(2 —r]/M) dP

This equation is satisfied if we let the second constraint
be

Then multiplying by ft', summing over l, and solving for

g; f dCz/"c}p;, we obtain
fttp„x)'= — (2 q/M) . —
M

The remaining brackets do vanish.
We could carry out the derivation of a rigorous Hamil-

tonian theory using Eq. (Dl). However, we prefer to use
the simpler constraint Eq. (2.5) instead of Eq. (Dl); con-
sequently using Eq. (2.12}for the momentum transforma-
tion instead of Pt ——pt Pft'/M. —
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