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Impossibility of spontaneous current in equilibrium
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Eliashberg [JETP Lett. 38, 220 (1983)] and Tavger [Phys. Lett. A 116, 123 (1986)] have argued
that in structures where electric current is not forbidden by symmetry it should be observed. I show

that such current is forbidden by the nature of equilibrium.

Eliashberg' and Tavger have stated that it is possible
for electric current to flow without dissipation in thermal
equilibrium if the crystal symmetry permits it and time-
reversal symmetry does not hold. Eliashberg considered
crystals without mirror symmetry in a magnetic field B,
and predicted a current proportional to 8. He calculated
the appropriate tensor (incorrectly as will be shown
later). Tavger gives no calculation and hts argument is
essentially that if the current is not forbidden by symme-
try, including time reversal, it is compulsory.

The proposition sounds highly improbable and it is
easy to see that it violates the second law of thermo-
dynamics unless we postulate a peculiar interface with
normal metals.

Starting with a finite simply connected piece of the ma-
terial, we have to find a way to make the perpendicular
current density vanish at the boundary. This task is trivi-
al, requiring only that an electric field E be set up whose
ordinary conduction current cancels the anomalous
current. This is a simple problem with Neumann bound-
ary conditions. Since the anomalous current density is
constant inside the material, the result is that the total
current density vanishes inside.

At this point we could argue on the one hand that
there is no joule heating because there is no current. On
the other hand, we could maintain that the canceling nor-
mal current should itself produce joule heating. The
latter is clearly paradoxical as a steady state since it
violates conservation of energy. The former does not so
grossly violate thermodynamics, but if we now connect a
normal resistance between the two ends of a cylinder of
the material, some of the current will apparently go
through it producing joule heat. In consequence, the in-
tegral of j E in the anomalous material would be nega-
tive. This corresponds, in other words, to cooling a
"reservoir" at the anomalous materials and heating one
at the normal resistance. Thus, if the latter temperature
is higher, we violate the second law. We cannot rule out
the possibility of the temperatures being so related; thus,
we have to rule out anomalous materials absolutely, or
require that their interfaces with normal metals create
absolute barriers against current flow. Then the total
current is always zero, contrary to hypothesis.

The current under discussion is a bulk, not surface,
effect, and in Eliashberg's case it is a local response to the
field B.

I now want to show, directly, that there is no such
current. In standard transport theory the current density
is written as

j'=g f d k f„tv„)r.

In doing the integration, we remember that f„&is, in

equilibrium, a function only of the energy E„&,and that

U„& is BE„t,/Bk. Then the integral vanishes because of
periodicity in k space. This remains true in a uniform
magnetic field in the effective Hamiltonian formulation.

This is a rather glib discussion, and you might think
that a hole could be found in it if you really looked hard.
This is not the case, however; the argument can be made
as tight as necessary, but it seems excessive to overload
this paper with it.

The conclusion is that spontaneous currents in equilib-
rium are not possible and that Eliashberg's argument
must be incorrect. In the Appendix his error is dis-
cussed.

A consequence of this discussion is that if we take a
crystal of a material and form it into a ring, there can be
no bulk current around the ring in equilibrium. In
Eliashberg's case, the current forbidden is also related to
the local field B.

The preceding argument does not, therefore, apply to
superconducting rings, whose current is at the surface
and depends on the gross topology of sample. Further-
more, the persistent current of superconductors is not
strictly an equilibrium effect —it flows only in metastable
states.

It happens, however, that the fuller argument referred
to earlier also forbids any net current around a ring in
equilibrium in the limit of a very large ring. To reconcile
this with superconductors, we have to consider how the
material interacts with the magnetic field. The preceding
discussion, and that of Eliashberg, is based on a field
which is applied externally and not appreciably affected
by the material. This is totally inappropriate in the case
of superconductors, whose interaction with the field is
fundamental. They cannot be discussed without includ-
ing the self-energy of the field B /8m. , which is responsi-
ble for flux exclusion and quantization.

The final conclusion is that the spontaneous current in

equilibrium is forbidden fundamentally by the nature of
equilibrium, not just by symmetry.
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Note added in proof P. B. Littlewood has called my at-
tention to a paper by Volkov and Kopaev (Pis'ma Zh.
Eksp. Teor. Fiz. 27, 10 (1978) [JETP Lett. 27, 7 (1978)]),
in which it is claimed that a state of homogeneous
current can occur in certain cases of electron-hole pair-
ing. Specifically, they refer to the situation where the two
band edges involved are at the same point, ko, in k space.
At this point, the argument becomes a bit terse, but I
think that what they actually show is that after pairing,
the states at ko become current carrying. This may we11

be true for some models, but it is irrelevant. The current
for the state at the new band edge vanishes and the
preceding argument still applies, and there will be no
current.

I want to make clear the fact that this paper applies
rigorously only in the limit of a large sample, and that
Refs. 1 and 2 address only the same problem.

APPENDIX

Eliashberg's formula involves the integral R, where

R:—g f d k f„k(V„E)Vk XX„„.
Here, f is the Fermi function and X is a matrix arising in

the representation of x in band theory. Vk &X„„willbe

called Q„.Defining F as the integral off with respect to
energy

R =g f dS.Q„F„.

The integral is taken over the surface of the Brillouin
zone, where it vanishes because the integrand is periodic.

Actually, we must be more careful and consider the
effect of degeneracies between two bands. (Degeneracies
between more than two bands arise only in the cubic sys-
tem, where the current vanishes by symmetry. ) Near
such points the periodic parts of the wave functions de-
pend only on the direction from ko (the degeneracy) to k,
not on the distance. Therefore,

~

X
~

goes like
1/

~

k —kc ~, and Q like 1/
~

k —kc
~

. The contribution
from each spherical shell around ko is finite and ap-
proaches a constant as k —k0~0. The contribution of
each band does not, in general, vanish, but is cancelled by
that from the other band because F is a differentiable
function of energy, while 0 has the same magnitude but
opposite sign for the two bands at the point of contact. If
the two bands are degenerate on a line, similar arguments
apply, but the contribution of each band diverges loga-
rithmically, while the sum vanishes. This is an unusual
way of obtaining a vanishing result and it is unrelated to
symmetry.
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