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Effective-medium theory of long-wavelength spin waves in magnetic superlattices
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We explore the theory of long-wavelength spin waves in superlattices which incorporate magneti-
cally ordered films that interact either through dipolar fields generated by spin motions or exchange
couplings at interfaces or those mediated by an intervening nonmagnetic film. We show that for
long wavelengths one may replace the superlattice by an effective medium described by a permeabil-
ity tensor composed of those of the constituent films. Our treatment applied to a semi-infinite lat-
tice of ferromagnetic films reproduces results obtained earlier in a full theory by Camley, Rahman,
and Mills. We also develop an effective medium theory of Y-Gd superlattices in the anti-phase-
domain configuration, with transverse field applied. We obtain a rich spectrum of surface spin
waves in this case. We also obtain Green s functions for the average medium description of the Y-
Gd system and use these to discuss surface-mode contributions to the spectral densities explored by
Brillouin scat tering.

I. INTRODUCTION

Superlattice structures form an intriguing new class of
materials, in that their macroscopic properties are subject
to design or control by varying the thickness or composi-
tion of the constituent films. They also can possess a
spectrum of elementary excitations that are influenced
strongly by both geometry and composition; one also en-
counters modes unique to superlattices. '

An important new class of superlattices is fabricated
with one or more films of magnetically ordered materials
in each unit cell of the structure. The simplest example
consists of films of a ferromagnetic metal such as Ni or
Fe, with nonmagnetic "spacers" in between. ' Recently
rare-earth materials, including spiral spin materials, have
been incorporated into superlattices. ' Modest magnetic
fields cannot only influence the frequency and dispersion
relations of collective excitations in such materials, but
can lead to major modifications in the ground-state spin
configuration, illustrated by recent experimental and
theoretical studies. ' Because the influence of small
magnetic fields can be so substantial, magnetic superlat-
tices will prove a rich field of study in the near future.

Theoretical studies of spin waves in magnetic superlat-
tices proceed by considering the nature of the solutions
for the appropriate wave field in each film, then linking
these together with appropriate boundary conditions, and
the assistance of Bloch's theorem. A semi-infinite super-
lattice can also possess an interesting spectrum of surface
modes. '

Many magnetic superlattices are fabricated from very
thin films, whose thickness is quite small compared to the
wavelength of spin waves excited in various experiments.
For instance, light scattering has proved a powerful
means of studying the collective spin-wave modes of su-
perlattices. ' The wavelength of the modes excited are in
the range of a few thousand Angstroms, while the films
can be as thin as 10 A. Under such conditions, a detailed
theory of the spin waves, with attention to each film in
the structure, should not be required, since the wave field

amplitudes are constant to very good approximation
across a given film. It should prove possible to describe
the superlattice as a uniform, homogeneous medium
characterized by a magnetic permeability tensor which is
an appropriate average over the response functions of the
various films within the superlattice unit cell. Such a
description will prove particularly convenient for materi-
als which incorporate rare-earth materials with complex
spin structures, since a detailed theory of spin waves of
the superlattice may prove complicated from the techni-
cal point of view.

The purpose of this paper is to address the issue just
described. The approach we use may be regarded as the
extension to gyrotropic media of the simple, but elegant
effective-medium description of the response of dielectric
superlattices given by Agranovich and Kravtsov. These
authors show how such structures may be described by a
suitable anisotropic dielectric tensor; their treatment
reproduces the results of more detailed theories, in the
long-wavelength limit.

We begin by considering a superlattice consisting of
ferromagnetic films, separated by nonmagnetic films. We
obtain an average magnetic permeability tensor which,
when applied to the description of the bulk and surface
excitations of the average medium, reproduces in the
long-wavelength regime results obtained earlier in a de-
tailed analysis by Camley, Rahman, and Mills. ' This
demonstrates that such an approach can indeed provide a
description of the collective modes of such structures.

We then turn to new results for a structure realized ex-
perimentally in the Y-Gd superlattice system. Of interest
to us is the anti-phase-domain configuration, where in the
magnetic ground state in zero external field, the magneti-
zation in the Gd films alternates in sign as one progresses
down the structure. Application of a magnetic field
transverse to the easy axis leads to a canted spin
configuration, quite similar to that realized in the unaxi-
al antiferromagnet in a transverse field. We have shown
recently" that such a structure has a most intriguing
spectrum of surface spin waves. The Y-Gd superlattices
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are a physical realization of a system where large canting
angles are induced by a weak external magnetic field, a
direct consequence of the fact that the interfilm exchange
mediated by the Y is quite weak. In this paper, we devel-
op an effective-medium description of the long-
wavelength dynamical response of the antiphase struc-
ture in a transverse magnetic field, and explore its spec-
trum of surface spin waves.

After this work was completed, a paper by Raj and Til-
ley' appeared which also addresses an effective-medium
description of magnetic superlattices. The spirit of their
approach is very similar to ours; indeed, results we
present in Sec. II are also found in their paper, and our
method of derivation patterned after that in Ref. 8, is vir-
tually the same as the one used in their paper. The appli-
cation we make of the effective-medium permeability ten-
sor of the ferromagnetic superlattice differ substantially
from those in the work of Raj and Tilley, and our treat-
ment of the antiphase ground state of the Y-Gd system is
an extension of the basic scheme, in a sense described
later.

In Sec. II, we derive the effective-medium description
of a ferromagnetic superlattice (the results actually can
be applied directly to a wider class of systems), and we re-
cover results found earlier by Camley, Rahman, and
Mills' through application to the description of surface
spin waves in the semi-infinite superlattice. In our view,
this provides us with an important check on the basic va-
lidity of the scheme. In Sec. III we derive the effective-
medium description of the Y-Gd system, incorporating
interfilm exchange transmitted through the Y films. Sur-
face spin waves on these structures are explored in Sec.
IV, and Sec. V derives the Green's functions which enter
the theory of light scattering, and uses these to explore
the nature of the spin fluctuations near the surface of the
structure. Our aim is to motivate the experimental study
of such surfaces by Brillouin spectroscopy.

II. EFFECTIVE MEDIUM THEORY
OF THE FERROMAGNETIC SUPERLATTICE

In this section, we consider the effective medium
theory of a structure such as that shown in Fig. 1(a).
Each unit cell of the superlattice contains two films, one
of thickness d, and one of thickness d2. Each may be a
ferromagnet, though the moment in film 1 and that in
film 2 need not be equal. Indeed, the development here as
given applies directly to the case where the magnetic mo-
ments of film 1 and film 2 are antiparallel, and also to the
case where one or both is an antiferromagnet. The key
assumption is that for each of the two films in the unit
cell, the spin quantization axis is parallel or antiparallel
to the z direction, an assumption not applicable to the an-
tiphase ground state of the Y-Gd system, when a trans-
verse magnetic field is applied. In the end, our explicit
application is to the system discussed in Ref. 10, where
film 1 is a ferromagnet, and film 2 is nonmagnetic.

We shall assume that within each film, the magnetic
field h and the magnetic induction b is spatially uniform,
although the value of each in film 1 may differ from that
in film 2. This means our attention is confined only to the
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FIG. 1. (a) An illustration of the superlattice structure con-
sidered in Sec. II. There are two films in each unit cell, one of
thickness d& and one of thickness d2. (b) An illustration of the
antiphase ground state realized in the Y-Gd system. This is the
topic of Sec. III.

low-frequency spin-wave modes where the spin motion
within a given film consists of a rigid precession of the net
magnetization. Exchange modes, for which the time
varying components of the magnetization possess one or
more nodes within a given film, are not contained in the
present description. Such modes have high frequency,
for the thin films we expect efFective-medium theory to
prove useful, and will be well separated in frequency from
the manifold of long-wavelength spin-wave modes con-
sidered here. We note that some years ago, for the isolat-
ed ferromagnetic film, the contribution of the exchange
modes to the light-scattering spectrum was described
theoretically, ' in a framework that made explicit contact
with experimental studies of rather thick ferromagnetic
films. '4

The present paper also ignores the influence of spin
pinning at interfaces, not only here but throughout the
discussion. In the thin-film limit, the influence of such
pinning fields may be represented by introducing effective
anisotropy fields whose strength varies inversely with film
thickness. The treatment here can readily be extended
to incorporate such effects, but we do not address this
question at present.

When a long-wavelength spin wave of frequency 0 is
excited, the various films in the superlattice each will
have a small amplitude magnetization I,- which oscillates
with frequency 0, and which lies in the xy plane, within
the framework of the linearized theory of spin waves.
Note from Fig. 1(a) that the coordinate axes are oriented
so the xz plane is parallel to the interfaces. Let h" and
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b"=h"+4am" be the time-dependent magnetic field
and magnetic induction in the ith film. These two fields
are related by a magnetic permeability tensor of gyrotro-
pic form. We write this as

(I) (2)
(g) Pa Pa

(f2i ." +f)V'.") (2.8a)

and

I (i) (i)g (i) (i)h (i)
y

—Pa y +'PI x

g(i) p (i)
Z 2

(2.1a)

(2.1b)

(2.1c)

(I) (2) + g (2) (1)

(f +())+f +(2) )

Continuing on,

(b ) f b(1)+f b(2)

(2.8b)

If film i is a ferromagnetic material, we have, omitting ex-
plicit use of the subscript i,

=(f)i2,"+f2P'a")(h„) iP—'b"f)h"' iP-'b 'fih' ' .

(2.9)

4mQMQH
I'a= + ~Z ~Z

=1+-
H

(2.2a)
Then expressing h»" and h»

' in terms of (h» ) and (h„)
as in Eq. (2.6), we find

and &b„&=p."(h„&—p„&h, &, (2.10)

4mAAM
Ps= ~2

H

(2.2b)

where QM ——yM, and QH =yH. Here y is the gyromag-
netic ratio, M, the static magnetization, and H an exter-
nal magnetic field we assume applied parallel to the z
direction. If film i is an antiferromagnet Eqs. (2.1) still

apply, and explicit forms of p, and pb are given else-
where. '

Now in our superlattice, i = 1 or 2, and we wish to find
the relationship between (b) and (h), the average value
of the magnetic induction in the unit cell. The tensor
response function which links these two is the effective-
medium permeability tensor. If f, =d(/(d(+d2), and

f2 =d2/(d) +d2 ), then

where

(
(1) (2))2

(1) (2) Pb Pb
P a =f)Pa +f2Pa f lf2 (1) ~ (2)

2Pa +f)Pa
(2.11)

The above results, and in fact the above derivation, ap-
pear in the work of Raj and Tilley. ' Our work and
theirs both follow that of Agranovich and Kravtsov, evi-
dently. The application of the expressions in Eqs. (2.8a),
(2.8b), and (2.11) we now make differs from those in Ref.
12, however.

We consider superlattices of the Ni-Mo type, where
film 1 is ferromagnetic Ni, film 2 is nonmagnetic Mo
(thus p,' '=1, p'b ' 0) and of——course, all ferromagnetic
films in the superlattice have their saturation magnetiza-
tion M, parallel. After a bit of algebra, one finds

f h(i)+f „(2) (2.3)

with a similar definition used for ( b ) .
Now conservation of tangential h at the interfaces re-

quires h„"'=h„' '=(h„) while conservation of normal b
requires b'"=b' '=(b ). Thus

and

4~f i QM(QH+4~f2QM )
@ll

QH(QH+4m f2QM ) —Q

4m f)QMQH
p'. =1+

QH(QH+4n f2QM ) —Q

(2.12a)

(2.12b)

(2)h (2)+1 (2) ( h )=Pa y
(2.4)

4+QMf) Q
ITb =

QH(QH +4m f2QM ) —Q
(2.12c)

which when combined with We can rewrite the relationships just obtained in a no-
tation that is perhaps more useful. We have found that

leads to

2

(2.5)
&b„)=p„„&h„)+p„,&h, )

and also that

(2.13a)

This may then be substituted into Eq. (2.4) to give

(b, ) =p."'(h, )+ip, &h„&, (2.7)

(2) (2) r (1)
)h(1) Pa

(h ) . & 2Pb J 2Pb
(h )» (f p(1)+f p(2))» (f p(1)+f (2))

(2.6)

&b, & =p„&h, &
—p„,& h„&, (2.13b)

where we make the identification pxx=pa, pyy fla and

Pxy = 'PI-
In ferromagnetic superlattices, for which the frequency

of long-wavelength spin waves lies in the microwave re-
gime, retardation effects are small. Magnetostatic theory
then describes the spin waves. In our average medium,

where VX(h)=0 (2.14a)
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so we may write ( h ) = —V@M, and we also have

V. (b) =0

from which one finds easilya'e, a'e
p +p

(2.14b)

(2.15)
4~(x) =@M~ exp(ik„x+ik, z —Py ) (2.17a)

a result which agrees fully with Eq. (2.28) of Ref. 10.
Consider next a semi-infinite superlattice which resides

in the half-space y &0, as described by our effective-
medium theory. Surface spin waves are described by a
magnetic potential of the form

In the infinitely extended superlattice, bulk spin waves
are described by seeking solutions of Eq. (2.15) with
4M-exp(ik x). After a few lines of algebra, one finds
the frequency Q~(k) of a bulk spin wave of wave vector k
is given by

in the half-space y & 0, and a magnetic potential

4~(x) =4M~ exp(ik„x+ik, z+k
~~y ) (2.17b)

k
+ 16m. f )f2 QM

k
(2.16)

k.'+k,'
n,'() )=n„(n„+ ~f, ~)+ ~f, n„nM in the half-space y & 0, where V h =0. We write

k„=klan cos~ and k, =k
Use of Eq. (2.15) gives one relation between P, k~~ and

the frequency of the wave which may be written as

p' »n'(0)[tnH(QH+4~f2QM ) Q']+—cos'(4)[QH(QH+4~QM )+16'if2QM —n']
QH ( QH +4rrnM ) —Q

(2.18)

As is standard in surface-wave theory, additional rela-
tions come from boundary conditions. Conservation of
tangential (h) is assured if 4M~ ——4M~, and conservation
of normal (b) leads to a second relation between P and
k

ii
~

p 4m cgofs&QQM+QH(QH+4n f2nsr ) —Q

kii Q QH(QH+4—m QM )

(2.19)

The frequency of the wave is found by requiring Eq.
(2.19) to be compatible with Eq. (2.18). After some alge-
bra, we find the surface-wave frequency is given by

QH
n, (k~~) =—' +(n +47tn ) cosy

cos
(2.20)

a result also obtained in Ref. 10. It is remarkable that the
result in Eq. (2.20) is identical to the expression which ap-
plies to a semi-infinite pure ferromagnet, which in our
present notation is described by choosing f, = 1 and

2
——0.
Our derivation of Eq. (2.20) applies only in the limit

whe«both k~~d, «1 and k~~d, «1, since it is only in
this limit that effective-medium theory is applicable. The
discussion in Ref. 10 shows, again remarkably in our
view, that the frequency of the superlattice surface wave
is given by Eq. (2.20) for all values of these ratios.

For the attenuation constant P, we have

4'(2f
&

—1)QM cos p+QH sin 1(t

(QH+4nnM ) cos g —Q.
H

(2.21)

The result displayed in Eq. (2.21) is more useful than the
explicit formulas which appear in Ref. 10. This result
can be obtained also by combining Eq. (2.17) and Eq.

I

(2.42) of Ref. 10 with its Eq. (2.41).
For propagation perpendicular to the magnetization,

where /=0, we have

p=kll(2f &

—1) (2.22)

a result quoted in Ref. 10. Equation (2.22) shows we have
surface-spin-wave solution only when f~ & —,', i.e., only
when the ferromagnetic films are thicker than the non-
magnetic films, in the superlattice. Finally, P~ ~ when
$~1(„where cos(g, )=QHI(QH+4rrnsr), as in the case
of the simple semi-infinite ferromagnet.

This discussion demonstrates that through use of the
effective-medium theory, we recover all of the results for
the long-wavelength limiting behavior of the more gen-
eral formulas derived by Camley, Rahman, and Mills, in
their discussion of spin waves in the semi-infinite lattice
of dipolar coupled ferromagnetic films. This demon-
strates the correctness of the approach, and we now turn
to development of an effective-medium description of a
more complex ground-state spin geometry, for which a
full theory would prove technically rather complex.

III. DYNAMIC RESPONSE OF THE ANTIPHASE
GROUND STATE OF Y-Gd SUPERLATTICES

Quite recently, very high quality superlattices formed
from alternating layers of Y and Gd have been syn-
thesized and characterized. ' In the bulk, Gd is ferromag-
netic with very little anisotropy, while Y is paramagnetic.
For a selected range of Y thicknesses, the magnetic
ground state of the superlattice is one in which the mag-
netization alternates in sign, from the +z to the —z
direction. From the macroscopic point of view, the
structure consists of sheets of ferromagnetically aligned
spins, between which exchange couplings of antiferro-



6702 N. S. ALMEIDA AND D. L. MILLS 38

M"=M, (z cosa+x sina)+m" (3.1)

and in film b we shall write

M' )=M, ( —z cosa+x sina)+m' ', (3.2)

magnetic character conspire to produce the antiparallel
alignment of rnagnetizations in adjacent Gd films. This
configuration, found only for selected thicknesses of the
intervening Y film, has been referred to as the antiphase
ground state. Application of an external magnetic field H
transverse to the z direction produces the canted ground
state illustrated in Fig. 1(b).

We have recently completed an analysis of surface spin
waves in antiferromagnets that consist of such antifer-
romagnetically coupled spin sheets. " Examples would be
the MnFz or FeFz structures with a (100) surface. We
found a rich and interesting spectrum of surface modes
when a transverse field is applied, to produce a ground
state such as that illustrated in Fig. 1(b). Surface waves
which propagate along the external field have a disper-
sion relation that is an even function of the wave vector

kII parallel to the surface, while those which propagate
normal to it display nonreciprocal propagation charac-
teristics: The dispersion relation for traveling from right
to left across the field differs from that for propagating
from left to right.

We argued earlier" that superlattices such as the Y-Gd
system in the antiphase ground state provide another
physical realization of a system within which such a
diverse spectrum of surface waves would be realized. The
virtue of such a material is that very large canting angles
can be produced with very modest magnetic fields. The
present effective-medium approach described here allows
us to make a precise connection between the dynamic
response of the superlattice structure, and our earlier
analysis of the uniaxial antiferromagnet in a transverse
field.

To construct an effective-medium description of the
Y-Gd structure described above, one notes there are four
films in each unit cell, two Gd films and two Y films. The
thickness of each Gd film is taken to be d, that of each Y
film is dz, and as before f (

——d) I(d(+dz) while

f2 =dz/(d(+d2). Variables that refer to one of the two
films in a given unit cell, that whose static magnetization
has a positive z component, will be designated by append-
ing the superscript a to various quantities, and those that
refer to the film whose static magnetization has a nega-
tive z component will be designated by appending a su-

perscript b. The magnetization in film a is then written

and

(a) ~ y(aa)(Q)h(a)+~ y(ab)(Q)h(b)
I ~ IJ J ~ 1J J

J J

(b) y ~(ba)(Q)I (a)+y y(bb)(Q y (b)
l lJ l 'l J

J J

(3.3a)

(3.3b)

a=+Q„(aXx)+Q, (bXa)+y(aXh") (3.4a)

and

b=+QH(bXx) —Q, (bXa)+y(bXh(")) . (3.4b)

Here, if y is the gyromagnetic ratio, QH ——yH and 0, is a
measure of the strength of the interfilm exchange.

The equilibrium condition is found by setting h'", h'"'
to zero, then seeking time independent solutions of Eqs.
(3.4), with a=(a) =zcosa+xsina, and b= —z cosa
+x sina. One finds easily

a
sina=

e

(3.5)

We then linearize Eqs. (3.4) by writing a= (a)+5a, and
b=(b)+5b, with 5a small. When this task is complet-
ed, the relations in Eqs. (3.3) assume the form

m„"=gj cosah II' —ig2 cosahy"

—7, cosahII '+iX3cosah' ',
m„' '=g, cosahII '+i72cosah'"'

~+3 cosahy

m,"'=—14h
II

+i X2 sinahy'

+74h
II

' —i+3 sinahy ',
m' '=I h' '+ig sinah'"'

z 4 II 2

—+4h II" —i+3 Sinah' ',
m 'e' =7 h '~'+ r X h '~'+7 h ' '+ t'X

y 5 y 2 II 6 y 3 II

(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.6e)

In our efFective-medium theory, we endow each of the
four films in the unit cell with its own field, and then we
find the relation between (b) and (h) by averaging over
the four films in the unit cell.

Let M"' and M' ' be written M'" =M, a and
M' '=M, b, where a and b are unit vectors. Then the
tensor response functions defined in Eq. (3.3a) and Eq.
(3.3b) are extracted by analyzing the equations of motion

where M, is the static magnetization, and m", m' ' are
the time-dependent components associated with the spin
wave in the structure. We assume m" and m' ' are
small, and ultimately we linearize the equations of motion
given below with respect to these variables.

The magnetizations in the a and b films interact via ex-
change mediated by the intervening Y, so a driving field
applied to film a excites spins in film b, and conversely.
Thus, if the spins in the a films are exposed to an oscilla-
tory driving field h", and those in the b films are exposed
to h' ', we shall have constitutive relations of the form

and

and

h '"=cosah "—sinah,"
II

h' '=cosah, ' '+sinah, ' '
II z

with

my '=7&by ' —i72h
II

+76hy' —iX3h

where we have defined

(3.60

(3.7a)

(3.7b)
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QM(QH —2Q )

2Q(QH —Q )

QMQH

2Q(QH —Q }

QMQH

2(QH —Q )

QMQH sina

2(QH —Q )

MQe cos a
Q

(3.8a)

(3.8b)

(3.8c)

(3.8d)

(3.8e)

( b ) = ( b") = ( I +41TX, )h "+4srX h ' '

+4m.i (X2+Xs ) cosa( h„)
+4~i (X3 X—~) sina( h, ), (3.14a)

&b, &=&b» ') =(I+4nXs)h» ' 4m—i(Xz+Xs) cosa(h„)

+4nisina(X —X )(h, ) . (3.14b)

8ni(X2+Xs) cosa
h„1+4~(Xs X6)

(3.15)

Upon combining Eq. (3.15) with Eq. (3.12), we find

Upon equating the right-hand side of Eq. (3.14a) with
Eq. (3.14b), we have

and

Q~Qz sina Q~Q, cos a
~6

2(Q —Q ) Q

&b„&=p„„&h„&,

(3 8f} where

(3.16)

In these expressions, we define Q~ ——yM„with M, the
magnitude of the saturation magnetization in each film.
While these expressions are rather complex in nature, in
the end our effective-medium description of the structure
will be in terms of a rather simple effective-medium per-
meability tensor.

As remarked above, the magnetic field and magnetic
induction in the two ferromagnetic films within the unit
cell are written h", h' ', b", and b' ', respectively. The
superscripts c and d will be applied to the two nonmag-
netic films, for which we assume h"=1",and h'"'=b' '.
Thus, the average value (b ) of the ath Cartesian com-
ponent of the magnetic induction is written

32m f ()X2+Xs)
pxx =1

1+4m (Xs—X6)

Note that Eq. (3.16) gives p„=p„,=0.
Now we also have

Hence, we have

(3.17)

(3.18)

(3.19)

(b ) if (b(Q) +b(b) )+ I f (h(c) +h (d))

We have

(3.9)

(3.10)

a relation which may be used in Eq. (3.13). In addition,
Eq. (3.19) may be used with Eq. (3.15) to find explicit ex-
pressions for h„" and h„' ', in terms of the average fields.
After some algebra, we find

& b, & =p„&h, &+p„&h, ), (3.20a)

and

&b, & =p„&h, &
—p„&h, & . (3.20b)

(b„'")=(h„)—8X, cosasina(h, )

+4ni cosa{Xsh "—Xzh 'b'),

( b„' ') = ( h„)+8mX, cosa sina( h, )

+.4ni cosa(X2h»" —Xsh» '),
from which one finds

( b„)= ( h„)+4nif i cosa(X&+ Xs)(h "—
h» ') .

Also, we can construct the relations

(b, ) =( I+8m f,X4sina)(h, )

+2mifi(Xz Xs}sina(h»" +h» '), —

One has
3.11a

2nf2(X2 —X3) sina
P =I+8mf) sina X4 1+4~,(Xs+X,)

(3.21a)

(3.11b)
4~f ((X's+ Xe }

Pyy = 1+ +4~f2(Xs+X6)
(3.21b)

(3.12) d

4~f i (Xs+X6)
I +4m f~(Xs+X6)

(3.2 1c)

When the explicit forms for the X; are used, we find

and similarly for the z components of h, and the y com-
ponent of the induction b. Using these statements, along
with Eqs. (3.8), we have
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32m f, QM
pxx =1+

8~0~0, cos e —0
4irf, QHQM sina

~» =1+
z 2QH+4nQHQMfl sina —Q

(3.22a)

(3.22b)

that described in our earlier theory of the dynamic
response of the uniaxial antiferromagnet in a transverse
field. Following the notation of our earlier paper, " we
write the diagonal components of the magnetic permea-
bility tensor in the form

4mQM f, (Qll+4m flQM sina) sina
p„=1+ 2Q H +477QH Q Mfl sina —Q

and

4aif, QMQ sina
PyZ

—+ 2Q„+4~Q„QMf, sina

(3.22c)

(3.22d)

CO=1+p~~
il

CO

~»= + ~z ~z

(4. 1a)

(4.1b)

The remaining elements of the permeability tensor van-
ish.

The permeability tensor displayed in Eqs. (3.22) is iso-
morphic in structure to that derived in our earlier treat-
ment of the easy axis antiferrornagnet in a transverse
field, although here we have no anisotropy included in
the treatment. The demagnetizing fields generated by the
spin motions in the films, whose strength is measured by
4mQM, stiffen the response of the system in a manner
similar to, but not identical to, the anisotropy fields of
our earlier analysis.

IV. BULK AND SURFACE SPIN WAVES IN THE
CANTED ANTI-PHASE-DOMAIN GROUND STATE:

THE NATURE OF SPIN FLUCTUATIONS
NEAR THE FUTURE

As remarked at the end of Sec. III, the magnetic per-
meability tensor displayed in Eqs. (3.22) is isomorphic to

and

Q7 ZZ

PZZ= + ~2
(4. lc)

Much of the discussion of our earlier paper may be used
quite directly in the present analysis, with these
definitions.

In what follows, we discuss the long-wavelength spin
waves of the superlattice structure, proceeding very much
as we did in Sec. II. We begin with the infinitely extend-
ed superlattice, and examine those waves which generate
a macroscopic magnetic field which, with retardation ig-
nored may be described through use of a magnetic poten-
tial 4M introduced between Eqs. (2.14a) and (2.14b). It is
a straightforward exercise to show that in the precent
case, there are two bulk spin-wave bands with dispersion
relation Qii+ ( k ) given by

k k k

k 2 k2 k2
'2' 1/2

2 22 2 2 2 ~ 2 f 2 2 ~ 2 P 2 z

Z Il l +
II l « l yy l zz l + ~« l +~yy l +zz

k k k k k k
(4.2)

a result identical in form to Eq. (3.3) of our earlier pa-
per. " in Eq. (4.2), k =k„+k +k, is the square of the
total wave vector.

It is a straightforward matter also to generate the im-

plicit dispersion relation for surface spin waves. The dis-
cussion proceeds exactly as in Ref. 11, and thus we omit
the derivation. However, before we turn to the results,
we review the special features of the present geometry,
which is very interesting from the point of view of surface
spin-wave propagation.

A striking aspect of surface spin waves is their nonre-
ciprocal propagation characteristics. Let Q, (k~~) be the
dispersion relation of a surface spin wave, where k~~ is its
two-dimensional wave vector. Then if

( + k~~ )&Q ( k~~ ), the propagation characteristics for
the direction +k~~ differ from those for the direction —

k~~.

The term nonreciprocal describes this feature of the
waves. The surface spin wave discussed in Sec. II is an
example of such a wave. There the frequency Q, (k~~) is in

fact an odd function of k~(, i.e., Q, (+k~~)= Q, ( —k~~)—
[consider Eq. (2.20), and let /~/+A. ]. This means that
the wave crests only have one sense of propagation across
the magnetization, from right to left. The combination

k~~ 'x~[ Q (k~~ )r can never describe crests which propagate
in the reverse sense. In the light scattering spectra, this
feature of the surface spin-wave dispersion relation has
the consequence that if the wave is seen on the Stokes
side of the spectrum, it is missing from the anti-Stokes,
and conversely.

This behavior is very different from that exhibited by
the bulk spin waves in the same system. For a given
choice of k, we have two bulk-spin-wave frequencies from
Eq. (2.16), +Qii(k) and —Qs(k). If the first choice de-
scribes wave crests moving from right to left, the second
describes wave crests moving from left to right. The
propagation characteristics of the two waves are identi-
cal. For example, the magnitude of the group velocity of
the two waves is the same.
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It is intriguing that nonreciprocal propagation charac-
teristics are found for surface spin waves, but never bulk
spin waves. Thus, the origin of the phenomena is not re-
lated to the fact that time-reversal symmetry is broken by
the presence of the spontaneous magnetization, as one
might first think. Some years ago, it was pointed out'
that the breakdown of reflection symmetry at the surface,
in combination with the pseudovector character of the
magnetization in regard to reflections, can account for
this fact, and the fact that nonreciprocal behavior in
surface-wave propagation occurs only in the presence of a
net spontaneous magnetization, or a magnetic field.

The argument just cited shows that in the present sys-
tem, for propagation parallel to the external magnetic
field and net magnetization (the x direction), the surface-
wave propagation characteristics cannot display nonre-
ciprocity, i.e., for this direction, 0,(+kl):—0, ( —kl).
For all other directions, nonreciprocal propagation will
be the rule. Thus, we have an interesting example of a
magnetic system which presents both reciprocal and non-
reciprocal propagation characteristics.

With these remarks in mind, we turn next to our re-
sults for the Y-Gd system, in the antiphase ground state
with canting produced by an externally applied field.
Here the magnetization in each film is taken to have the
value 2.06 kG. The only other parameter is the interfilm
exchange coupling Q„which we choose to be 433 G,
which reproduces the canting angles formed in Ref. 4.
We have varied f„but kept the value of 0, fixed, so the
calculations refer to a set of structures whose Y film
thickness is fixed.

As f, is varied, say from 0.25 to 0.75, we do not find
qualitative differences in the surface magnon spectrum, in
contrast to the semi-infinite ferromagnetic superlattice,
where the surface magnon exists only for f, & —,'. Here
the differences are quantitative, not qualitative, as f, is
varied. There is, however, a strong dependence on the
canting angle a. Thus, we present explicit results only
for f& ——0.75.

In Fig. 2, for two values of the canting angle a, we
show the frequency regimes in the k -k, plane occupied
by the bulk-spin-wave bands projected onto this plane as
shaded areas. The upper of the two bulk-spin-wave
bands extends to rather high frequency, and is not shown.
The angle p is defined by writing k„=k

l sing and

k, =kl cosp; the symmetry argument cited earlier'
shows the surface spin-wave dispersion relation to be an
even function of the angle P. Thus, we need only show
results for P in the range 0 & P & 180'.

For small canting angles, such as a=20' illustrated in
Fig. 2(a), there is a surface magnon with frequency out-
side the bulk bands, but the nonreciprocal character of
the propagation shows dramatically. For 0(/ &90', we
have the branch SM2 below the bulk-spin-wave bands,
while for 90 & P & 180', we have the branch SM, between
the two bulk bands. The calculations show that SM,
joins the bulk-spin-wave manifold at P —= 100 .

As the canting angle increases, the points P where the
bandwidth of the lower band vanishes move toward the
boundaries /=0' and /=180', and at larger canting an-

(a) (b)

6.0

C9
M 4.0

C9
W 4.0

2.0 2.0
SMp

0.0
Qo

SMp a= 20'
I I I

90' I 80'

0=50'

00
Qo 90' I80O

FIG. 2. For the case where the filling factor f, =0.75, and
for the Y-Gd superlattice in the field induced canted state, we
show the frequency regimes occupied by the bulk spin waves
(shaded areas), and the dispersion relation of the surface mag-
nons as a function of propagation angle. We have k„=kl sing
and k, =kl cosp, and the surface-wave frequencies are an even
function of P. We give results for two values of the field in-

duced canting angle a: (a) a=20' and (b) a=50'.

gles the mode structure illustrated in Fig. 2(b) is realized.
We again have two surface magnon branches, but both lie
in the regime 0(P & 90', so we have a situation reminis-
cent of the semi-infinite ferromagnet, where surface-wave
propagation is possible in one sense across the magnetiza-
tion.

These calculations show that for the Y-Gd superlattice
in the antiphase ground state, we have a rich spectrum of
surface spin waves, whose form is influenced strongly by
the canting angle a induced by the external magnetic
field. As remarked earlier, it would thus be most interest-
ing to explore such materials by the Brillouin scattering
method. The reader will also note that the surface-wave
spectrum is very different in nature than that found in
our earlier study of the two sublattice, uniaxial antifer-
romagnet in a transverse field. While the magnetic per-
meability tensors for the two cases are very similar in
structure, here we are in a very different parameter re-
gime.

Dispersion curve plots such as those displayed in Fig. 2
outline the nature of the surface-wave propagation
characteristics, for any choice of canting angle, but pro-
vide one with little feeling for whether they contribute
importantly to the total mean square spin-fluctuation am-
plitude near the surface of the material, and thus will ap-
pear as prominent features in the light-scattering spec-
trum. Spin fluctuations near the surface are driven by
both the thermally excited surface waves bound to the
surface, and also by thermally excited bulk waves which
propagate up to and reflect off the surface. The answer to
this question requires one to assess the relative strength
of these two contributions.

In earlier papers, ' ' this issue is addressed within
the framework of a Green's-function approach, struc-
tured as follows. One begins by assuming the system is
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driven by an external magnetic field h&(x, t), and con-
structs a dynamic susceptibility tensor X &(x,x';t —t')
which describes the response of the semi-infinite structure
to the external field. The fluctuation-dissipation theorem
is then used to relate the dynamic susceptibility tensor to
the amplitude of the thermally induced spin fluctuations
near the surface. Given this information, one may com-
pute the Brillouin spectrum. The results of such analyses
have provided a fully quantitative account of the shape
and relative intensity of bulk and surface mode contribu-
tions to the Brillouin spectra of semi-infinite ferromag-
nets, ferromagnetic films and superlattices. ' '

A full theory of the Brillouin spectrum of the Y-Gd su-
perlattice in the canted state is technically complex, be-
cause of the low symmetry of the ground state. Here we
shall be content with a more schematic discussion which

does provide one with an adequate feeling for the relative
importance of the bulk and surface-wave contributions to
the spin fluctuations near the surface.

Let m (x, t ) be the ath component of the magnetiza-
tion fluctuation near the surface, and form the correla-
tion function (m (xt)m&(x', t'))r, which depends on
only (t t'—), and the differences xi x~~ Within our
average medium approach, such a correlation function
may be constructed through use of the fluctuation-
dissipation theorem as just discussed, once the Green's
functions associated with the average medium permeabil-
ity tensor are known. A derivation of these Green's func-
tions is given in the Appendix of the present paper.

For the cases explored earlier, the Brillouin intensities
may be expressed in terms of certain spectral density
functions S~&(k~~, Q), given by

S &(kiQ)= f "dz f "dz'f d2xi f +"dt e' "'*' ""'e '"" "e' ' '+ ' ''(m~(x~~t)m&(x~'~t')) . (4.3)

If k' ' and k'" are the wave vectors of the incident and
scattered light in the vacuum outside the sample, and 0' '

and 0" their frequencies, then k~~
——

k~~
' —k~~' and

Q =Q' ' —Q'", while k I
' and k I' are the complex wave

vectors of the incident and scattered light inside the ma-
terial. A proper discussion of light scattering from the
Y-Gd structure in the antiphase ground state will require
not only the correlation functions given in Eq. (4.3), but
also a new set involving the staggered magnetization pro-
portional to a —1, in the notation of Sec. III.

To obtain a feeling for the surface magnon contribu-
tions to the spin-fluctuation amplitude near the surface
of the structure, we have calculated S„„(ki,Q ) and

S„(ki,Q), with both ki ' and k~" replaced by i /5, with 5
an estimate of the skin depth. The physical meaning of
these two functions is the following. Consider the outer-
most portion of the structure, a slab with thickness 5.
Then S„„(k~~Q), considered a function of Q for fixed ki,
gives the frequency spectrum of the square of the ampli-
tude of the thermal spin fluctuations within the optical
skin depth with the wave vector k~~, in the direction paral-
lel to the surface and to the external magnetic field. Simi-
larly, S„(ki Q) is tile frequency spectrum of tile fiuctua-
tions in the skin depth parallel to the surface, but perpen-
dicular to the applied field. As remarked earlier, the fre-
quency spectrum of both sets of fluctuations contains
contributions from thermally excited surface magnons,
and from bulk modes which propagate up to the surface,
and reflect off it.

In Figs. 3—5, we show plots of the two spectral func-
tions S„„(k~~,Q) and S„(ki,Q), for various propagation
angles, and for the magnetic fields used in the dispersion
curve plots given in Fig. 2. In the calculations, we have
taken k~~

' ——k~" =i/5, with 5 a measure of the skin
depth, chosen here equal to 0.1k~~. With k~~ chosen equal
to that employed in typical Brillouin scattering experi-
ments, this corresponds to averaging the spin fluctuations
over a skin depth of a few hundred Angstroms. In the
figures, the structures labeled with the symbol B de-
scribed structures in the spectral density produced by the

bulk spin waves in the shaded region of Figs. 2(a) and
2(b), while the lines labeled SM, and SM2 are lines asso-
ciated with the various surface spin waves. Strictly
speaking, the surface spin waves introduce Dirac-delta
functions into the spectral densities, and these have been
broadened artificially by endowing the frequency 0
which enters the Fourier transform of X &(x,x', t t')—
with a small imaginary part.

The spectral density plots show clearly that both sur-
face wave branches make strong, observable contribu-
tions to the amplitude of thermal fiuctuations within the
skin depth of the superlattice. There should be no
diSculty observing these modes in a light-scattering
study, at least in principle. It would be of particular in-
terest to examine the surface waves as a function of the
propagation angle P.

There is one point that remains to be discussed. This is
the physical origin of the feature labeled Qj in Fig. 4.

Our discussion of the bulk normal modes of the spin
system, here based entirely on macroscopic considera-
tions, assume the spin motions generate a demagnetizing
field which can be expressed as the gradient of the mag-
netic potential 4~ introduced just after Eq. (2.14a). In
general, for propagation in an anisotropic medium, for a
wave vector removed from a high symmetry direction, all
the normal modes will involve spin motions that have a
component of dynamic magnetization parallel to the
wave vector, and will thus generate a macroscopic
demagnetizing field as a consequence.

However, if the wave vector is directed along a high-
symmetry direction, then we may have modes that are
purely transverse, and generate no macroscopic magnetic
field as a consequence. All such modes do not emerge
from a description such as that given earlier, which as-
sumes that the macroscopic field is nonvanishing.

Consider the propagation of bulk magnons parallel to
the y direction, for k„=k, =0 in Eq. (4.2). The frequen-
cies given by Eq. (4.2) in this case are Qii+(k):Q~t a
purely transverse mode with magnetization fluctuation
parallel to the x axis, and Qs ——(Qi+co )'~, a mode
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FIG. 3. For a magnetic field which induces a canting angle a of 20', and the Propagation direction /=30', we show the sPectral
density functions (a) S„(kll'Q) and (b) S„(kll 0), for f, =0.75. The line SM2 comes from the surface magnon branch disPlayed in
Fig. 2(a), and the structures labeled B have their origin in bulk magnons present as thermal excitations within the skin depth.

polarized in the yz plane with a net magnetization fluc-
tuation parallel to the y direction. The macroscopic field
generated by the spin motion "stiffens" the response of
the system; this is described by the contribution Nyy.
This mode is the analogue of the longitudinal optical
phonon of an ionic dielectric, and the mode with frequen-
cy A~I is equivalent to a transverse optical phonon, polar-
ized parallel to the x axis.

There is also a mode analogous to a transverse-optical
phonon polarized parallel to the z direction when the
wave vector is directed along the y axis, and this has fre-
quency Q~. One may see this as follows, within the
present framework. For spin fluctuations in the yz plane,
we may invert the relation between the magnetic induc-
tion components (b ), and those of the magnetic field
(h ), to find

&h, )=, (P.& b, ) -P„&b, &)
(P„P +P,', )

(4.4a)

and

(P„&b, &+P„&b, & ) .
(P„P +P,', )

(4.4b)

The modes under discussion have ( h„)= ( h, ) =0
since no macroscopic demagnetizing fields are present,
but also (b, ) and ( b ) are nonzero, since there is a net
dynamic magnetization associated with the spin motion.
Thus, we require the frequency such that

(a}

SMI
a*20
$ ~ 120'

fI &0.75

4.0—
s I I

(h}
a~20
qb ~120
fI s 0.75

I I I

SMI

D
L—20-

M
M

I I s )O.OO
I.O 9.05.0 5.0 7.0

FREQUENCY (KG}
FIG. 4. The same as Fig. 3, but now the canting angle /=120'.

branch in Fig. 2(a).

QQ —~ - . s s s

I.8I.Q IA
FREQUENCY (KG}

The feature labeled SM, is produced by the surface spin-wave
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FIG. 5. The same as Fig. 3, but now the magnetic field has been increased so the canting angle a is 50'. The labeling is the same as
that used in Figs. 3 and 4, save for the feature 0&, whose physical origin is discussed in the text.

Pzz Pyz
D= 1

(PyyPzz+Pyz ) i x t n'

1 =0.
(p„p„+p,', )

(4.5)

(h„&= (b, &=O
Pxx

(4.6)

The condition in Eq. (4.5) is satisfied when Q=Qj.
The Green's function 633 derived in the Appendix has

a term proportional to (p p„+p, )5(y —y'). This is the
term with origin in the modes just described, which are
frequency independent of k, in the limit k &&k~~. Such
modes are dispersionless, and contribute a delta function
to the spectral density. '

There are also modes polarized parallel to the x direc-
tion (linearly polarized) which fail to generate a macro-
scopic magnetic field. Their frequency is determined by
the condition
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APPENDIX: CONSTRUCTION OF THE DYNAMIC
SUSCEPTIBILITY FOR THE ANTIPHASE

GROUND STATE IN A TRANSVERSE FIELD:
THE SEMI-INFINITE GEOMETRY

Suppose our system is subjected to a time and spatially
varying magnetic field h "(x)exp( iQt ) of e—xternal ori-
gin. Of interest here is the dynamic susceptibility tensor
X &(x,x', Q) that relates the amplitude (m (x)) of the
time-dependent component of magaetization induced at
I, to the amplitude of the external field, for the average
medium description of the structure of interest:

so we require (m (x) }=+Jd x'7 &(x,x', Q)h&" (x') .
P

(Al)

Pxx
=0, (4.7)

satisfied when O=O~~. We note that 6 has a term of
the form 5(y —y')/p„„. This frequency coincides precise-
ly with one of the bulk band edges in all of the examples
given, and in the spectral densities we do not see this as a
separate, distinct line, but rather a contribution from the
bands of bulk spin waves discussed earlier.

The analysis presented here shows that the antiphase
ground state of the Y-Gd superlattice, placed in a trans-
verse field, possesses a rich spectrum of collective spin-
wave modes, in the bulk and localized on the surface. In
the limit all constituent films were viewed as very thin,
compared to the wavelength of the modes of interest, the
effective medium approach developed here provides a
rather simple and appealing means of describing them.

This function is the Fourier transform with respect to
time of the function 1 &( xtxt') mentioned b—riefly in
Sec. IV of the text, just before Eq. (4.3). As remarked
there, given this function, through use of the fluctuation-
dissipation theorem, we may find the frequency spectrum
of thermal spin fluctuations in the medium, near the sur-
face or elsewhere. The manner in which this is done is
discussed in an early paper on the dynamic response of
the semi-infinite ferromagnet. Precisely the same for-
malism is used here, so our attention is confined only to
the construction of g tt(x, x', Q) in the present paper.

We shall suppose h"'(x) varies in a wavelike manner
in the two directions parallel to the surface, so
h "(x)=h'"(y) exp(ik~~. x~~). Then we have, since
X &(x,x'; Q) depends on only x~~

—
xj[ ( m (x) )

=m (y) exp(i k~~ x~). We .then see easily that
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m (y)=g J dy'X ii(y, y', kiQ)hei'(y'),
p 0

where

2

(2n )

(A2)

(A3}

Our task is to solve Eq. (A5), in combination with Eq.
(A4d). We have a set of four differential equations, in the
four variables m, m, m„and 4~. We introduce a four
vector u=(m„, m, m„P~), with components u&

——m„,

F=(h„',h",h,",0). (A similar notation was used in
Ref. 19, but the reader should be aware that the present
notation is different in detail than that used earlier. )

Then the above system of equations reads
In what follows, in the interest of compactness, we omit
explicit reference to both k~I and 0, in the various quanti-
ties that depend on these variables.

The spin motions induced by the external field induce
an internal magnetic field (h), = —V@M, very much as
in our discussions of spin waves. Thus, the total field
seen by a given spin is the sum (h ) +h" of the inter-
nally generated and the external field. We then may
write for our system

4

~lj uj Fl
j=1

(A6)

g A, g,„=5;„5(y—y'),
J

(A7)

with A i
——(X» ) ', A, 2

——A» ——0, A, 4 ik„——, etc W. e
may introduce a 4&(4 Greens-function matrix g,"(y,y'}
which satisfies

m„= (p„„—1)((h„)+h„"), (A4a) and the solution to Eq. (A6) is then

m = (p —1)((h ) +h")+ p, ,((h, )+h,"),
u(y) =g f dy'g;, (y y')~, (y') .

J
(A8)

(A4b)

4 P„(&h, &+h,"}+ (P„—1)(&h, &+h,"),
(A4c)

2 4M +4nik„( m„)

+4nik, & m, &+4m (m, ) =0 .
a

y

while in addition V (b) =0 is written, in the present
case,

The Green's functions just defined are the dynamic sus-
ceptibilities we seek. For example, g»(y, y')
=X„„(y,y', k~~, Q) andg33(y, y') =X (y,y';k~~Q).

We have concentrated on the equations within the
medium. While we have interest only in the case where

y lies within the material, boundary conditions at the
surface are required to ensure continuity of the tangential
components of the magnetic field, and normal component
of the magnetic induction generated by the spin motion.
For y outside the material, g;J(y,y') vanishes for i =1, 2,
or 3 because the magnetization vanishes there, while

g4, (y,y') obeys (k~~
—B /By )g4j(y, y')=0 and is thus

g~~~~ by g4, (y,y')=C exp(key), with the medium in the

upper half space y &O. The boundary conditions at the
surface read

(A4d) g4J' I y =o—=g4J I y =o+ (A9a)

1 m„+ik 4~ ——h„",
XX

(A5a)

x„ x„ ae
(X Xyy+Xy, ) (X Xyy+Xy, ) y

(A5b)

If we let p„„= + 7„» p» ——+ Xyy, p» ——

+4m.X, and p, =4mX „then the first three of Eqs. (A4)
can be arranged to read

which ensures continuity of tangential components of
magnetic field, and

Bg4I

Bg y 0

Bg4j
47rgzj' I y —o+

y =0+
(A9b}

which ensures continuity of the normal components of
the magnetic induction.

For fixed j, and i ranging from 1 to 4, we have a set of
four coupled differential equations. For example, for
j= 1, we may rearrange three of the four basic equations
to obtain

and
g» —— ik„X„„g4,+—X„„5(y—y'), (A10a)

+ — — —2 ~y +ikyy yz ~ &e

(X,.X„+X,', ) (X„X„+X,', )

(A5c) and

~g41
g21 ——

Pyy
—l Pyzg41 (A lob)
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~8 41
g 31 Xyz ~

l Pzzg41
Bp

(A10c)
where

[(X„„sin/+X„cos $)+1], (A12)

2~ g41
2 Il

—k Kg41—
4ig

(A 1 1)

which then lead to a single elementary equation for g41.
where k„=kIIp, and k, :kII cosp.

It is now straightforward matter to find the various
Green's functions. The spectral functions denoted by 5 „
in the text were calculated by using the form

(p„„-1)
g 1 1(y y') = ""

&(y —y')+
4m

2, 2
2mkIIXzz Sln p 1 KIMyy 4&lXyz COSQ kIIK(y+y ) kIIa Iy —y'

I

e —e
KPyy 1+Key» 477lX—

z Cosp
(A13)

while the spectral densities referred to as S„were calculated from (using the hierarchy with j=3)

g»(y, y') = 4~Xyz +XzzPyy
5(y —y') —2mkII

~yv

( KXyz + l Xzz cosp ) ( 1 —
KPyy

—4!rlXyz cosf )

KP yy ( 1 +K/!yy
.—4!rlX cos((1 )

2m.k
II (X2 cos /+X K2)e —~

I y —y'
I

KPyy

(A14)

'Present address: Departamento de Fisica, Centro de Ciencias
Exatas (CCE), Universidade Federal do Rio Grande do
Norte, 59000 Natal, Rio Grande do Norte, Brazil.

For a review, see D. L. Mills, in Collective Excitations in Super-
lattice Structures, Chap. 2 of Light Scattering in Solids V,

edited by G. Guntherodt and M. Cardona (Springer-Verlag,
Heidelberg, in press).

A. Kueny, M. R. Khan, I. K. Schuler, and M. Grimsditch,
Phys. Rev. B 29, 2879 (1984).

B. Hillebrands, A. Boufelfel, C. M. Falco, P. Baumgart, G.
Guntherodt, E. Zirngiebl, and J. D. Thompson, Proceedings
of the 32nd Conference on Magnetism and Magnetic Materi-
als [J.Appl. Phys. (to be published)].

4C. F. Majkrzak, J. W. Cable, J. Kwo, M. Hong, D. B.
McWhan, Y. Yafet, J. V. Waszczak, and C. Vettier, Phys.
Rev. Lett. 56, 2700 (1986).

~M. B.Salamon, S. Sintra, J.J. Rhyne, J. E. Cunningham, R. %.
Erwin, J. Borchers, and C. P. Flynn, Phys. Rev. Lett. 36, 259
(1986).

L. L. Hinchey and D. L. Mills, Phys. Rev. B 33, 3329 (1986).
7L. L. Hinchey and D. L. Mills, Phys. Rev. B 34, 1689 (1986).
V. Agranovich and V. E. Kravtsov, Solid State Commun. 55,

373 (1985).
9R. E. Camley and D. L. Mills, Phys. Rev. B 29, 1695 (1984).

' R. E. Camley, Talat S. Rahman, and D. L. Mills, Phys. Rev. B
27, 261 (1983).

"N. S. Almeida and D. L. Mills, Phys. Rev. B 37, 3400 (1988).
' N. Raj and D. R. Tilley, Phys. Rev. B 36, 7003 (1987).

R. E. Camley, Talat S. Rahman, and D. L. Mills, Phys. Rev. B
23, 1226 (1981).

4M. Grimsditch, A. Malozemoff, and A. Brunsch, Phys. Rev.
Lett. 43, 711 (1979).

'5See Appendix B in D. L. Mills and E. Burstein, Rep. Frog.
Phys. 37, 817 (1974).

' C. Vettier, D. B. McWhan, E. M. Gyorgy, J. R. Kwo, B. M.
Buntschuh, and B. W. Batterman, Phys. Rev. Lett. 56, 757
(1986).

'~R. Q. Scott and D. L. Mills, Phys. Rev. B 15, 3545 (1977).
This remark requires elaboration. The spectral density

S„(k~I,Q) receives contributions from all surface modes of
wave vector k~~ and appropriate polarization, and all bulk
modes with waves vectors k= k~~+yk~, where —ao & ky

& + ac. The Dirac delta function has its origin in the contri-
butions from those portions of the k~ axis where

( k» ( » ( kII (, where we encounter the dispersionless bulk
mode of frequency 0,.

' R. E. Camley and D. L. Mills, Phys. Rev. B 18, 4821 (1978).


