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Shape crossover in the correlation function of isotropic ferromagnets above T,
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We calculate numerically the asymptotic universal spin-relaxation function for an isotropic fer-

romagnet with short-range interaction by solving the mode-coupling equations for T & T, . There is

a crossover from a non-Lorentzian shape at T, to a Lorentzian in the hydrodynamic region at
T & T, . We apply these results to the constant-energy neutron-scattering cross section and calculate
the universal functions for the peak position and width in the scattering intensity as a function of
wave vector and correlation length.

I. INTRODUCTION

Much progress has been made in recent years regard-
ing the determination of the shape of the spin-correlation
function by neutron scattering. Thus a direct, detailed,
and quantitative comparison between theory and experi-
ment is possible. In several isotropic ferrogmagnets devi-
ations from the Lorentzian shape have been found in
constant-momentum measurements, and especially in
constant energy measurements (see, e.g., Ref. l). This
was to be expected on theoretical grounds, since
renormalization-group (RG) calculations at T„' as well
as mode-coupling calculations, ' definitely lead to a
non-Lorentzian shape. A comparison of the RG results
at T, with experiments was initiated in Ref. 6 and the im-

portance of the correct shape in the interpretation of
constant-energy scans was stressed. Further measure-
ments on Ni, " EuO, and Fe3Si (Ref. 9) provided evidence
for the shape proposed by RG theory.

The investigations of Ref. 6 were then extended to tem-
peratures above T, . ' The distinct behavior of the peak
position and the width in the intensity of the constant-
energy measurements could be explained by the interplay
between the shape crossover from the critical shape at T,
to the Lorentzian one in the hydrodynamic region further
away and the change in the half-width of the scattering
function. However, only the limiting behavior of these
quantities could be given since the explicit shape cross-
over was not known. Very recently, in a RG calculation
in one-loop order, this shape crossover was calculat-
ed."' However, the theoretical expressions are subject
to some theoretical uncertainties. First there are ambi-
guities in the exponentiation procedure, which are neces-
sary in order to fulfill exactly known scaling laws, and
second, there is the restriction to one-loop order. There-
fore it seems to be worthwhile to study the shape cross-
over and those universal crossover functions measured in
the constant-energy scans by mode-coupling theory as
well.

In this paper we are interested in the behavior of the
asymptotic scattering function for isotropic ferromagnets
with short range interaction only -(this implies a constant
dynamic exponent z =2.5). The application of our result

is restricted to those regions in temperature and wave
vector (the size of the region depends on the physical sys-
tem) where this type of interaction dominates over the di-

polar interaction. If, on the other hand, dipolar interac-
tions become important and RG theory shows that this
should be the case ultimately at criticality, another type
of crossover (namely a change of the universality class) is
to be expected. Then the relevant dynamics should be de-
scribed by a relaxational-like model for a nonconserved
order parameter (with z =2} and the shape is essentially
given by a Lorentzian. This type of crossover to dipolar
dynamics without taking into account the shape cross-
over has been considered in Ref. 13. A similar crossover
at very small values of momentum at T, to a pure relaxa-
tional dynamics has been proposed in Ref. 14, in a model
which takes into account the coupling of the magnetic
moments to the conduction electrons in the case of an
itinerant magnetic system. On the other hand, in Refs.
15 and 16 the irrelevance of this coupling to the asymp-
totic critical behavior was found. However, going to the
background where critical fluctuations are less important,
still another type of crossover sets in. In this region
nonuniversal features such as the specific form of the
short-range interaction, the lattice symmetry, etc., be-
come important.

&=—g J(x—x'}S S„,

where x and x' denote the location of the three-
component spin operators S„, and J~„„.~ is the short-
ranged interaction given by exchange couplings. We are
interested in the neutron-scattering cross section

f2CO
S(q, co) =const &„XqF(q,to)

Phoo

=constC(q, to) (2)

with X the static susceptibility, F(q, co) the Fourier
transform of the spin-relaxation function F(q, t) [with

II. MODE-COUPLING EQUATIONS

As usual one starts from the Heisenberg model in order
to describe the critical properties of isotropic ferromag-
nets
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F(q, —t) =F(q, t)], and C(q, co) the spin-spin correlation
function [for Plica « 1 one simply has X&F(q, co)
—C(q, co)]. Within mode-coupling theory the following
equation for F(q, t ) is derived" ' in the critical regime:

F(q, t)= —o f dt'K(q, t t')F—(q, t')
0

(3)

with the kernel

K(q, t)=(a +q )fd'q' F(q', t)
q +K

XF(q —q', t) . (4)

Here the Ornstein-Zernike form for the static susceptibil-
ity has already been introduced (neglecting the small ex-
ponent rt=0. 05). The temperature dependence enters
the equation only via the inverse correlation length ~,
which goes to zero at the critical temperature T, as K =KO

[(T T, )/T—, ] . The constants o and tro are the only
nonuniversal parameters; they have to be taken from ex-
periment. The solution of Eq. (3) fulfills dynamical scal-
ing with the dynamical critical exponent z =2.5, derived

also in RG theory. This means that F and K are homo-
geneous functions,

F(q, t, x) =F(iq, A, 't, A~),

F(q, co, ~)=A, 'F(iraq, iL co, A,a),
K(q, t, a. )=A, K(lq, A. t, A~) .

(sa)

(5b)

(5c)

In the RG theory the dynamical shape function is calcu-
lated from the model equation of Ma and Mazenko' in a
systematic expansion around the critical dimension d =6,
whereas the mode-coupling equations are solved directly
in d =3. Therefore, one may obtain di6'erent scaling
functions in both theories. However, by generalizing the
mode-coupling equations to d dimensions and then ex-
panding around the dimension d =6 one sees the
equivalence to the RG theory. '

In order to solve Eq. (3) it is useful, in light of Eqs. (5),
to introduce scaling variables u =crq t, i) =«/q, and the
Fourier transform of F( q, t )

—=f( u, ri ) with respect to the
scaling variable u [note F(q, co) =(1/o q )f(s, i)),
s =co/o q ]. Inserting this in Eqs. (3) and (4) leads to

f(u, r))= f [i +sk( , st)r] 'exp(isu),
21T

(6a)

k( , s))i=8 (i1r+ tr) f dxx f ding f du exp( isu)[(x—~++i) )(x +ri )] 'f(ux', rix )f(ux', rix ')
0 0 0

(6b)

with

x+ =x +xg+ —,
' .

III. RESULTS

We have solved the mode-coupling equation by iterat-
ing (6a) and (6b) starting from a Lorentzian. Since in
each iteration step the function f(u, i)) has to be known
in the whole (u, rt) plane, an analytic expression has been
fitted in every iteration step to the f(u, ri) calculated
from (6a) for some lattice in the (u, i)) plane and then in-
serted in (6b). This is the reason why we did not perform
the u integration in (6b) explicitly, replacing it by an s in-
tegration, because otherwise two functions, Rek(s, i)) and
Imk(s, i)), have to be fitted. It also turns out that it is
useful to symmetrize the wave-vector dependence under
the integration. The result for f(u, i)) and its Fourier
transform f(s, rt) is shown in Figs. 1(a) and 1(b) and 2(a)
and 2(b), respectively.

At T, our results are identical to those Ref. 4 within
the numerical accuracy [note the identification of our
functions ik(s)-m(v), f(s)- —Img(v), and s-v with
those of Ref. 4, apart from two scaling factors]. Recently
a similar result has been found at T, in Refs. 20 and 21,
where the q' integration in Eq. (4) was obtained by the
standard method of asymptotic analysis. In Ref. 21 also
a nonasymptotic theory, which combines large- and

short-time behavior was presented. This leads to another
type of shape crossover at T, not treated here. In con-
tradiction to the RG result a strongly overdamped oscil-
lation appears in the time-dependent spin-relaxation
function at T, . This oscillation, however, does not lead
to an observable structure in the Fourier transform apart
from a flatter decrease at small s than in RG theory as
can be seen from Fig. 2. As one increases g to the hydro-
dynamic regime g&1, the negative region practically
disappears and a pure exponential is obtained.

Since the solution has to obey dynamical scaling with
z =2.5 one can check at T, (ri =0) the asymptotic behav-
ior for large s, namely f(s,0)-s . In the limit ri~ co

the behavior has to be f(s, ~ ) -s . For general values
of q we have fitted the large-s behavior of the shape func-
tion by a power law in order to demonstrate the crossover
from the critical to the Lorentzian decay of the shape (see
Fig. 3). The deviation of 4% from the exact value at T,
is due to the inaccuracy of f(s, i) ) at very small absolute
values. This can be compared with the decay rate of the
heuristic correlation function introduced to analyze the
scattering cross section in Fe (Ref. 1) in the entire
paramagnetic region.

The energy half-width co, (q, ~) is investigated in con-
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It can be read off from our resultstant momentum scans. can
for f(s rI). It is also a homogeneous function, so weS, 'g

write

co, (q, a)=7.5o.q
' Q(rl) .
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FIG. 2. The Fourier transform of the p'he s in-relaxation func-
0 ' and 7)=K/q: (a) intion (s, q ) in scaling variables s =co/o q

the whole (s, g) plane, cu se, (b) cuts through (a) showing the shape
crossover to a Lorentzian or g& 1.
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wave-vector scans. A characteristic feature is the appear-
ance of a maximum in intensityanc

' ' ' '
at a finite wave vector

'dth 5 . Together with the information on
the linewidth co, one gets an overall picture of the scatter-
ing function in the entire (q, co) plane at different temper-
atures T(lr). We display S(q, co, a) in form of constant in-

0. 8

0. 6

0
" -" 0.2——-053

--—-15

2. 6

0. 4

0. 2

(b)

a(q)

2. 2

~ ~ ~ ~ I ~ ~ ~ ~ I ~ a s I-0. 2

0 0. 5 1 1.5

FIG. 1. The spin-relaxation function ~
'

n ~, u ) in scaling vari-
l =o 't and g=~/q: (a) in the whole (u, g) plane, (b)ables u =oq t an

a ure ex onen-h h ( ) showing the shape crossover to a p p
0 =1.tial decay for g & I. From Eq. (3) we have f(0, r) =

I I I s I I1.8

5

FIG. 3. Power-law behavior of the pthe sha e function
f(s, rI —s or'"' f large scaling arguments as a function of q.
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FIG. 4. Energy width at half-height of the relaxation func-
tion. Solid line: result of Eqs. 6(a) and 6(b). Dashed line: result
of the Lorentzian approximation (Ref. 23). Both curves are nor-
malized to 1 at T, .
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FIG. 6. Cuts at constant-energy transfer in Fig. 5 lead to the
reduced peak position qo and width bq. Shown in (a) are the
universal scaling function Q: qo(co/cr )

—=Q(y)y
y = ru/era' ', and in (b) the universal scaling function P:
~q(~/~) "=P(y)y . Large y means T~ T, . The experi-
mental data in (a) are taken for Ni from Refs. 25 (solid circles)
and 26 and 27 (open circles), for Pd&MnSn from Ref. 28
(crosses), and for EuS from Ref. 29 (open and solid triangles).
In (b) they are taken for Ni from Ref. 30 (solid circles), for Fe
from Ref. 31 (squares), and for EuS from Ref. 29 (open and solid
triangles).
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tensity lines [Figs. 5(a) and 5(b)] for K=O at T, and
~=0.2. These lines are qualitatively the same as in RG
theory (see Fig. 2 of Ref. 11). Ultimately all intensity
lines meet at the origin s=O, (=0. At nonzero K the
shape of the contour lines crossover [see arrow in Fig.
5(b)) from the hydrodynamical form (steep increase with

g) to the critical form (Hat increase with g). This leads to
the structure seen at g= 1. The maxima of the constant
ru cuts lead to the "dispersion" qo ——qo(co, K) (displayed as
dashed lines in Fig. 5) and the width hq=bq(co, K). Both
qo and hq are homogeneous functions, ' and the whole
set of curves for different co and ~ should collapse to the
universal scaling functions Q(y) and P(y), respectively.
These are plotted in Fig. 6, and compared with available
experimental data. The slight differences at T, compared
to the result of RG theory ' are mainly due to the
different shapes at T, and can be considered as uncertain-
ties of the respective theoretical expressions.

C.E 0

IV. CONCLUSION

FIG. 5. Equal intensity contours of the scattering cross sec-
tion at (a) T, and (b) K=0.2Kp g=q/Kp and s =co/oq . The
dashed line in (a) gives the "dispersion" s =go' between the
peak position go and the energy s in the constant-energy scans.
The arrow in (b) marks the point q=1 separating the critical
(g & 1) from the hydrodynamical (g & 1) region.

%e have presented within the mode-coupling theory
the asymptotic spin-relaxation function applicable in that
region of wave vector and temperature where the short-
range interaction is dominant. There our results can be
checked by neutron scattering, either in constant q or ~
scans or with spin-echo methods. By the last-
mentioned method the time-dependent relaxation func-
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tion can be measured directly. Suitable candidates may
be the itinerant ferromagnets Ni or Fe. But even in the
localized ferromagnets EuO and EuS at not too small
momentum values our results may be applicable. Both
neutron-scattering methods mentioned have been applied
in EuO at T, . At very small wave vectors (q=0.024
A ') an exponential decay for F(q, t) [a Lorentzian for
F(q, co)] was found, whereas at larger wave vectors
(q-0. 1 A ') the critical shape for F(q, ro) was found. '

One may attribute this behavior to a crossover in the
shape due to the dipolar interaction; this will be treated
in a future publication. A crossover in the linewidth co,
has been considered in Ref. 13 (under the assumption of a
Lorentzian for the shape) and it was found that the
dynamical crossover sets in at much lower q values than
expected from the statics. The possibility of a dynamical

crossover at a q vector different from the one in the static
crossover was already stressed in Ref. 34. Very recently
measurements that can be compared with the scaling
functions Q and P have been made in EuS, which how-
ever is an even more strongly dipolar ferromagnet than
EuO. Whereas the qualitative behavior is as expected
(see Fig. 6), it was claimed that deviations from the scal-
ing property in the peak position were found (open and
solid triangles in Fig. 6). These deviations also have been
attributed to the dipolar interactions.
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