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Exact solution of a lattice band problem related to an exactly soluble many-body problem:
The missing-states problem
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We introduce and solve a lattice version of an easily soluble one-dimensional continuum quan-
tum system with a periodic potential. The relationship of the one problem to the other is identi-
cal to the relationship of the one-dimensional quantum many-body lattice gas recently introduced

by Shastry [Phys. Rev. Lett. 60, 639 (1988)] and by Haldane [Phys. Rev. Lett. 60, 635 (1988)]
to the one-dimensional quantum many-body continuum gas earlier solved by Sutherland. Thus it
is hoped that by understanding the "missing" states in this simple case, we might better under-

stand the missing states in the more complicated many-body case, which in many instances
comprise all the states. The results are not encouraging.

I. INTRODUCTION

In two recent and extremely interesting papers —one
by Shastry' and the other by Haldane —a very clever
method was introduced that can produce from certain ex-
act solutions of continuum quantum many-body problems,
the exact solutions to corresponding lattice quantum
many-body problems. The method simply consists in

finding a corresponding one-body hopping operator J; that
has exactly the same effect on the lattice functions as the
one-body kinetic energy operator —V~ on the continuum
functions. Then in the continuum Hamiltonian, we re-
place the kinetic energy by a sum over Jt's. The solutions
to the lattice problem will be given by the solutions to the
continuum problem evaluated at the lattice points.

However, as we remarked, one can only find such a J—
and hence use the trick —for certain functions. The re-
quirement is that if we take a continuum function of m
variable xl and expand it in a Fourier expansion, then the
function must only contain Fourier components in the first
Brillouin zone, i.e., —tr(k, ~tr, for all j 1, . . . , M.
This is a great restriction, as is the condition that we can
find exact solutions to the continuum problem in the first
place. We shall refer to all states that cannot be obtained
by the trick —because the corresponding continuum states
extend beyond the first Brillouin zone —as missing states.

This trick was applied by Shastry and by Haldane to
a one-dimensional continuum many-body problem first
solved by Sutherland' —a system of M particles interact-
ing by a two-body pair potential

v(x)- 2) (& -1)( /N)'
sin'( /tNrx)

The continuum problem can be solved for all states and all
coupling constants; for instance, the ground state is given
by

M —
1 M~(, , )= II II Is [ ( k —,)/N]I'

j 1 k j+I
Assuming A. =2n, n =1,2, . . . , then the maximum Fourier
component has k=2ntr(M —1)/N. Thus the trick only
works for N ~ 2n(M —1). In particular, only for n 1

can we find the ground state of the lattice gas at a particle
density of —,', and then we cannot find any finite fraction
of the excited states by using the trick.

We would like to find out where the missing states are,
and to this end we begin with a much simpler one-body
continuum problem, and then use the same trick to con-
struct a related lattice or discrete problem.

II. ONE-DIMENSIONAL LA'i I'ICE

We consider a particle on a one-dimensional lattice
with sites labeled by an index x: . . . , —1,0, 1,2, . . .. Let

I x) be the state with the particle at site x. Then J is a
translationally invariant hopping operator defined by

J I x& -Z J(r) I x+r)

Thus if we define the wave function tit(x) of the state I tit)

by

I y)-gy(x) Ix&,

then

J I y} g+11t(x)J(r) I
x+r)

X f

-ggy(x' —r)J(r) I
x'&

x

-gtlt'(x)
I x),

where

y'(x) =g J(x —r) y(r ) =Jtlt

gives the matrix representation of J acting on the wave
function. This is the representation we shall use in the
rest of the paper.

Defining the discrete Fourier transform by

y(x) = dk e'k"titF(k),

then since J acts on y as a convolution,

tltF(k) =2trJF(k)yF(k) .
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We now select the operator J so that it mimics
—d /dx on continuous functions. What this means is
the following: Use the formula for the discrete Fourier
transform, with the true Fourier transform yF(k), to
define a new function y, (x) of a continuous variable x.
Then the action of —d /dx on y, (x) is given by

2

y, (x) dk( —d /dx )e' 'yF(k)C 4 —a

+s
dk k 2eikx~F(k)~-a

Thus, we are to choose 2xJF(k) —k .
In the language of solid-state physics, the functions

y, (x) e' "are the Bloch functions, chosen from the first
band corresponding to the Brillouin zone —n (ke ir.
The functions y, (x) made from linear combinations of
Bloch functions from the first band form a vector space;
such functions we call functions from the first band.
Then, taking as an example yF(k) e

K

i', (x) dk e'
4 -a

which are the Wannier functions, equal to 2irb„i when x is
restricted to be an integer. However, as emphasized by
several authors, if we multiply two functions from the first
band, the product is not necessarily a function from the
first band. Since J acts as —d2/dx2 only on functions
from the first band, the Leibniz rule for differentiating
products will not hold.

III. FINITE-DIMENSIONAL VECTOR SPACE

Let us consider a particular set of wave functions

y (x)- [2sin(irx/N)]'

-[ i(x)l

[2[1—cos(2irx/N) ]]

(1 e 2nix/iV )m(1 e 2nixliV )
—m

with m 1,2, . . . .
These functions, and any linear combination of such

functions p(x), form a vector space I of functions with the
following properties:

y(x+N) -y(x), y(0) -0, y( —x) -y(x) .

This is a finite-dimensional vector space, and there are
only M-independent functions, where M N/2, for N
even or M = (N —1)/2, for N odd. This can easily be seen
by considering the functions

g(b„&.+kiv+b —~.ykN), J =1,2, . . . ,M.
k

We will take as our independent basis functions for the
vector space I the functions

y (x)-[y (x)], m-1, 2, . . . ,M.
On occasion, we will use the symbol p to represent the
change of variable from integer x to p pi(x) taking
discrete values &J [2sin(xj/N)]2, j=1,2, . . . , M, on

the lattice. Also, when formulas do not generalize in the
obvious way for N even, we will assume N to be odd and
M (N —1)/2.

We have called these functions of type I because we in-
terpret the periodic potential as leading to a discrete band
problem. The band edges are determined by functions of
the four types:

y(x+N)-~q(x), y(0)-0, q( —x)-+ y(x).
Thus our states give exactly one-quarter of the band
edges. The other band-edge states can be determined by
similar methods. However, each of the four types of
band-edge states has its own distinct set of special values
of the coupling constant.

IV. ACTION OF JON THE VECTOR SPACE

Let us now consider the action of Jon the vector space I
by considering the action of J on the basis set

(x) lp~(x)l, m 1,2, . . . , M. By construction,

d2
Jy (x)-, y (x)

—d2
[2sin(zx/N)]

X

Simple differentiation gives

Jy (x)-a y (x) —p y -)(x)
-[a —p u(x)]y (x),

where

am (2@m/N)

p 2m (2m —1)(2ir/N )

v(x) -1/yi(x) .

The interpretation is that v(x) is a potential with strength
p, and p (x) is the corresponding ground-state wave
function with ground-state energy a . We also see why
we need to restrict ourselves to functions which vanish for
x 0, in order to interpet v(x) as a potential for which
u(x)y((x) - l.

V. ASSOCIATED CONTINUUM PROBLEM

Before we continue in our solution of the lattice prob-
lem, let us look at the associated continuum problem

—d2
+gv (x) ill Ey.

X

We try as a solution for the ground state,

Wi(x) -12sin(~x/N) I
',

and after differentiation find

E i (H./N)

g -~(~ —1)(2~/N) '.
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For the excited states, we write the Hamiltonian in a
basis of states p (x), where now

y (x) -yi(x)[2sin(xx/N)l"
-

[ 2 sin(xx/N )
~

'+"

Once again, we have

—d2
, y (x)-a y (x) —p y -i(x)

-[a —p v(x)]y (x),
where now

a~ - [~(2m+~ —2)/N]'

P~ -(2m+A, —2)(2m+X —3)(2~/N)

Again,

v(x) - I/yi(x) .

and is given by

~~A] - II 4J e—)AJj~ I

Q {I—[sin(nx/N)/sin(xj/N)] 2J

j~]
-sin (xx )/[N

sin�

(xx/N )]
M

g ( —y) «(M+k —1)!/[(M—k —1)!(2k+1)!].
k~0

In evaluating this expression, we have used two standard
formulas, which can be found for instance in Gradshteyn
and Ryzhik4 as GR(1.391.3) and GR(1.332.2). The for-
mula for N even is slightly different.

Finally, this gives us the expansion for &0(x ) as

yo(x)- g y«(x)( —1)' '(M+k —1)!
k 1

~ [(M —k —1)!(2k+1)!]

VI. DISCRETE CASE

For either the continuum or the discrete case, the gen-
eral eigenvalue equation we wish to solve is

with

- g y«(x)y«,
k 1

y ~( 1)« —l(M+k 1)!/[(M k 1)!(2k+1)t]

Jy+gv (x)y Ey.

Expanding y(x) in the basis functions as

y(x)-gy y (x),

we find for the eigenvalue equation the simple result

gil [(a —E)y (x)+(g —p )y -i(x)]-0.

For either the continuum or the lattice problem, the ap-
propriate coefficients a and p must be used.

In this expression, however, for the lattice problem,
&0(x) must be interpreted as 1 for xekN, where k is an
integer. [For the continuum problem, the coefficient
(g —p~) of &0(x) vanishes, so we need not worry about
&0(x) at all. ] But since we are in the vector space I, when
extended to all integer x, we must have

yo(x) -1—gb, ,«~ -1—W(x) .
k

Since the M functions

y (x)-[yi(x)], m=1, 2, . . . , M,

are a complete set of basis functions for the vector space I,
it is possible to express pii(x) in terms of these basis func-
tions.

Alternatively, define the variable p pi(x). Then,
since p p, we seek for h(x) A[&] a polynomial in p
of degree M, which vanishes for

[2sin(xj/N)], j 1,2, . . . , M,

and is equal to 1 for p 0. Such a polynomial is unique,

Returning to the eigenvalue equation, after substituting
this expression for &0(x) and collecting coefficients of

(x), we find the following equations:

(am E)pm+ (g pm+I) pm+i

+(g —pi)y yi, m 1, . . . , M.

In this expression, we are to interpret yM+ ~ as 0.
We see why the particular value g pi for the coupling

constant is privileged, for then the last term in all the
equations vanishes. This happens for the continuum case
for all X. However, for these situations, we have that
E a for all m 1, . . . ,M. The continuum case corre-
sponds to M infinite.

VII. CONSISTENCY RELATION

These equations can be iterated starting from

yM (pi g) yM Yi/(aM —E),
and using

y [(P +~
—g)y +i+(Pi —g)y yi]/(a E), —

until we arrive at y~, and the consistency condition

M k

1 = g y«p (pJ —g)/(aJ —E),
k l j

or equivalently

N k Mo- Z II(p g)y« II ( —j
k Oj 1 j k+1

with the understanding that po
—g =1, yo- —1, and the

empty product is l.
The second form of the consistency relation is useful,
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M+I n —
1 k n —

10- rI ( J
—E) z rI(pJ —g)y II ( J

—E)
j n k Oj 0 j k+1

Therefore we immediately have the M n—+ I eigenvalues

EJpg+]a, , jn, . . . , M forgP„
The other eigenvalues we refer to as the missing eigen-

values, in reference to the continuum problem. They are
n —1 in number and are given by the abbreviated con-
sistency relation

n —
1 k n-1

0-Z H(p, -g)yk II (, E)-
k Oj 0 j k+1

The simplest nontrivial case is n 2, with a single missing
state E] given by

a] —EM y] (p] g) yl (p] p2)

or

EJ]I -a]+ y](p2 —p]) -(2tr/N) [1+5M(M —1)/3] .

We compare this with the largest of the other energy lev-

els, EJ]s ]'. -
EJ]t ]aM (2ttM-/N )

and see that EJ]t )E~ ], as expected. -

VIII. ABBREVIATED CONSISTENCY RELATION

Let us again suppose that g p„and so EJ „+] =a, for-
j n, . . . , M. We shall examine the abbreviated con-
sistency relation for the case when M becomes very large,
and the energy is scaled by E (2trM/N)~a Then aJ is
small compared to E for j & n, and

yi, ~ ( —1)k M "/(2k+1)]

Substitution into the expression for the abbreviated con-
sistency relation from the preceding section gives

n —
1

0 g ( —I/8) "(2k+2n)!
k 0

&& l(2k+1)!(n —k —1)!(k+n)!I
The values of e for the missing states are easily evaluated
numerically as the n —

1 zeros of this polynomial.

for we see that if g is equal to p„, then the consistency re-

lation simplifies to
n —1 k M+1

0-Z II(P, g-)y. II (,-E)
k 0j~0 j k+1

or

IX. CONCI. USION

We now close our discussion with a brief summary and
a few remarks. Although we have constructed a lattice
Hamiltonian which faithfully mimics the continuum
Hamiltonian on functions in the first Brillouin zone, this is
not even sufficient to insure that we recover the continuum
model as the continuum limit of the lattice model. This
happens only at the special values of the coupling constant

g =p, when the wave function is analytic at the origin.
We see that the missing states behave independently of

the "simple" states with E a, and seem to interact
among each other just like any other complicated system.
Thus the more missing states we have, the more difficult is
the problem of determining these states and their energies.
The only simplification we have is an explicit evaluation of
the secular equation —of great use for the numerical eval-
uation of this particular one-body problem —but unlikely
to be of much use for the many-body problem of Shastry
and Haldane. This leads us to be rather pessimistic about
the possibility of a complete solution of the lattice
model —as was done for the continuum model.

There is one further possibility for progress, and that is
to define a new lattice model which has exactly the prop-
erties we want —namely, all the wave functions are given

by the lattice version of the lowest-energy continuum
wave functions. Thus, we define the lattice Hamiltonian
by its action on the basis functions ]]] (x) as before:

(H —E)tip (x) =(a E)tJt (x)—+(g —p )]]] —](x)
=Ha —E)+(g —

p )U(x)ly (x).

However, now a and P are given by the continuum ex-
pressions, depending on a parameter X, which is then ad-
justed so that g p]. Then all energies are given by
E a, nt =1, . . . , M. However, one is a bit vague about
what the functions ]]] (x) are. Should they be the contin-
uum expressions, or the original discrete expressions?
They almost certainly are not orthogonal, and thus H is
not Hermitian. Finally, one realizes that if one plays this
new game, there is too much freedom, and unless H has a
direct and appealing interpretation —as is the case of the
original lattice Hamiltonian as introduced by Shastry and
Haldane in the spin language —one is simply giving the
solutions.
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