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Calculated effective Hamiltonian for La2Cu04 and solution in the impurity Anderson approximation
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We report local-density-functional calculations of hybridization matrix elements and effective
electron-electron interactions in La2Cu04 defining a general effective Hamiltonian that we pro-

pose as an appropriate starting point for many-body calculations in this material. The parameter
values lend support to an Anderson lattice model. We find the impurity approximation to this

model yields a magnetic ground state of x —y symmetry, a 1-2-eV insulating gap bounded by
ionization and affinity levels of the same symmetry, and a calculated d spectral weight in qualita-
tive agreement with photoemission experiments. We discuss anticipated modification of these re-

sults by lattice effects.

I. INTRODUCTION

The nature of the electronic states in strongly correlated
systems, such as transition-metal oxides and rare-earth
compounds, pose key issues in condensed-matter phys-
ics. ' New stimulus for understanding these issues has
been provided by the discovery of superconductivity at
high temperature in compounds containing copper-oxygen
planes. Within this class of materials there is varia-
tion from antiferromagnetically ordered insulators to su-
perconductors, in which there is evidence for local mag-
netic moments with short-range antiferromagnetic corre-
lations. Therefore, we now wish to understand not only
the magnetic and metal-insulator transitions that are
characteristic of transition-metal oxides, but also the rela-
tion of their underlying electronic properties to supercon-
ductivity.

Many different proposals have been made for electronic
mechanisms that can lead to superconductivity in the
copper oxide materials. Anderson9 has proposed that a
"resonating-valence-bond" state occurs in two-
dimensional one-band systems due to on-site repulsive in-
teractions. Much work has investigated the pairing and
excitations in such models. ' " Other papers have pro-
posed that it is essential to include at least two bands with
holes existing in oxygen states correlated with spins cen-
tered on copper sites. ' ' Superconducting solutions
have been suggested for a multiband Anderson lattice-
type model. ' ' In contrast, mechanisms for supercon-
ductivity based upon charge-fluctuation-induced pairing
depend upon the magnitudes of Coulomb interactions be-
tween different states. ' The complexity of the prob-
lem has made it dificult to choose from these and oth-
er very different models of the electronic structure.

The purpose of the present paper is to carry out quanti-
tative theoretical investigations of the electronic structure
and interactions in representative cases for the copper-

oxide-based materials. 4 We utilize ab initio tech-
niques, which have been developed to the point where
realistic predictions can now be made for many material
properties of solids. The most widely used method is the
density-functional theory which has been very suc-
cessful in describing the electronic properties of materials
with wide electronic bands. 30 In these systems the elec-
tronic correlations are well represented by local charge-
density and spin-density functionals, and detailed calcula-
tions can be carried out on realistic systems. A number of
such calculations have been published for the La2Cu04 su-
perconductor. " ' This work provides us with our basic
picture of the electronic states; nevertheless, it is unsatis-
fying because the density-functional approach is inade-
quate to treat correlation effects in narrow bands. Well
known examples of such effects occur in mixed-valence
and heavy-fermion rare-earth materials, where many-
body effects cause very large renormalizations of the elec-
tronic states and can lead to ground states different from
those predicted by the local-density-functional calcula-
tions. 2

Strongly correlated materials have been approached by
different methods to better treat the many-body electron
system. These include quantum Monte Carlo simula-
tions, 3s configuration-interaction techniques, and
analytical approaches. ' Among the last are included
the (I/N) expansion methods which have been widely
used in the heavy-fermion problems. 2 In particular,
essentially exact solutions for realistic many-body impuri-
ty problems have been made possible by the methods
pioneered by Gunnarsson and Schonhammer.

In this paper we report calculations on La2Cu04, which
are representative of cases in which the dominant elec-
tronic features are associated with planes formed of Cu
and O. We utilize the density-functional method in two
ways: One way is to produce the ordinary self-consistent
local-density-functional solution for the ground state,
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which provides an approximate band structure and esti-
mates of hybridization matrix elements between neighbor-
ing 0(2p)-0(2p) and Cu(3d)-0(2p) orbitals. This is
similar to previous work, ' 36 although we emphasize the
strong 0(2p)-0(2p) overlap which has not generally been
appreciated, and we provide the first calculations for
La2Cu04 of the symmetry decomposed hybridization
functions between local Cu(3d) orbitals and the itinerant
0(2p) band. The second way is to carry out total-energy
calculations with constrained occupations, which leads to
effective electron-electron interactions. This method has
been shown by ourselves 3 and others4" 6 to be ver
powerful for rare-earth compounds 3 and NiO. ~ s

Similar calculations in addition to the present work are
now being applied to the new copper oxide materials. 474s

The combined results of these two applications of local-
density-functional theory lead to quantitative values for
terms in the effective interacting-electron Hamiltonian
describing the electrons in La2Cu04. This result which is
described in Sec. II is one of the primary results of our
work. We believe our results suggest appropriate forms
for Hamiltonians that can be used in many-body calcula-
tions which can then describe the many-body interacting
system.

The parameter values lend support to an Anderson lat-
tice model for La2Cu04, by which we mean small direct
Cu(3d)-Cu(31) coupling, large Q(2p) bandwidth, and
small Coulomb interactions on the 0 sites. The last of the
three criteria, it should be noted, may only be marginally
satisfied in the present case. As this model is still ex-
tremely difficult to solve, we proceed in Sec. III to calcu-
late the ground state and excitation spectra for the many-
body system by making the impurity approximation and
using the methods of Gunnarsson and Schonhammer. ~s'
This impurity ansatz is expected to give accurate results
for some properties, in particular, the high-energy "satel-
lites" in the response function for removing electrons. B
comparing with experimental photoemission spectra, 49

we show that the data support our calculated interactions.
The impurity-model calculations lead to a magnetic
ground state of x2 —y2 symmetry, and a 1-2-eV insulat-
ing gap bounded by ionization and affinity levels for which
the added hole or electron is in each case of this same
symmetry. The added hole in the first ionization level
forms a singlet state in cooperation with an existing hole
of the intrinsic material. For these results, however, we
must be careful to recognize differences between the im-

purity and the actual lattice that exists in the real materi-
al, an issue we turn to in Sec. IV, where we also summa-
rize the results of our paper and speculate on the nature of
the electronic states in the lattice case and the appropriate
effective Hamiltonian for many-body calculations.

II. CALCULATION OF PARAMETERS FOR
AN EFFECTIVE HAMILTONIAN

This section describes local-density-functional calcula-
tions which are used to determine parameters entering a
general effective Hamiltonian for La2Cu04. The self-
consistent ground-state band structure is analyzed in Sec.
IIA to provide approximate 0(2p)-0(2p) and 0(2p)-
Cu(3d) hybridization matrix elements. Constrained-

TABLE I. Basis and sphere sizes for LMTO calculations of
bct La2Cu04. The sphere radii R in bohrs; the basis positions, in

units of a or c. The lattice constant was taken a 7.212 bohrs;
c/a 3.4567. ES signifies empty sphere.

Atom Basis positions

CU

La
0(

ES

2.48
3.59
1.98
1.98
2.00

(0,0,0)
(0.0,0.362)
(0,0.5,0)
(0,0,0.182)
(0,0.5,0.25)

(0,0,—0.362)
(0.5,0,0)
(0,0,—0.182)
(0.5,0,—0.25)

occupation total-energy calculations used to determine the
effective electron-electron interactions are presented in

Sec. II B, while the full effective many-body Hamiltonian
which results from these combined calculations is summa-
rized in Sec. IIC. The impurity Anderson approximation
to the full Hamiltonian requires symmetry-decomposed
hybridization functions which may be determined from
the approximate matrix elements given in Sec. II A, or by
more accurate direct calculations as described in Sec.
II D.

We have used the linear muffin-tin orbitals
(LMTO) implementation of local-density-functional
theory in our band structure and total energy calculations
for La2Cu04. Calculations for the body-centered-
tetragonal (bct) structure of La2Cu04 were carried out

using the sphere radii listed in Table I, including two emp-

ty spheres as in the manner of Oguchi. In this table, and

throughout this paper, we denote 0 sites in the Cu02 lay-

ers as Ot, those outside these layers, as 0&t. For tests in

which the Cu-sphere radii are increased by 10% (20%),
we reduce each of the La, 0, and empty-sphere radii by
1.22% (2.73%) in order to preserve cell volume. All cal-

culations were scalar relativistic, retaining all relativistic
effects except spin orbit, and employed the exchange-
correlation potential of von Barth and Hedin. Self-
consistency was generally achieved using 18 points per ir-
reducible wedge of the bct Brillouin zone, as tests with 75
points per wedge led to negligible differences. The com-
bined correction was not included, except in tests as noted.
One panel was used for the Cu(3d)-O(2p) bands, and a
second panel for the lower-lying La(5p) and 0(2s) bands.
Angular momentum components s,p, . . . , lm, „were taken
within the spheres where l,„d (Cu), f (La), p (0 and

empty spheres) for the upper panel, and l,„p in all
cases for the lower panel. Only small changes result from
larger limits. Reduction of l~,„ from d to p for the Cu
spheres provides a convenient way to eliminate Cu(3d)
components from the bands. In the original LMTO for-
mulation "' used here except where indicated, the limitsl,„are applied to the structure constants, and thus sepa-
rately to both the Hamiltonian and overlap matrices. The
newer formulation with screened structure constants
provides a nearly orthogonal basis in which there is no
overlap matrix.

A. Band structure and approximate
hybridization matrix elements

The local-density-calculated electron-band structure for
La2Cu04 has already been discussed in the litera-
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FIG. &. (a) Local-density band structure for Lag( uQ4. (b)
Q(2p) and conduction bands above obtained from tbe same
one-electron potential used in (a), but with Cu(3d) components
eliminated.

ture. 3' 36 The most prominent feature is the antibonding
band at the top of the combined Cu(3d) and 0(2p) bands
which rises above the Fermi level at the X point, as seen in

Fig. 1(a). A tight-binding model with a single Vyd in-
teraction between neighboring Cu and 0 atoms repro-
duces this feature as noted by Mattheiss. ' This simple

Vyd abstraction of the electronic structure has been an
underlying assumption for numerous theoretical papers on
the new superconductivity.

The first point which we wish to emphasize here is that
the oxygen-derived bands have a significant width in-
dependent of the Cu d states, a fact which is now gaining
acceptance. ' ' ' ' This is already suggested in Fig.
l(a) and by results of Refs. 31-36 from the width of the
bands at the I point, although the choice of different
centers for the Cu and two types of 0 states can also con-
tribute to this width. It is instructive to make this more
quantitative by explicitly decoupling the Cu d states. In
Fig. 1(b) we show the results of bands calculated in exact-
ly the same potential as for Fig. 1(a), but with the Cu d
states simply removed. The 12 remaining valence levels
range from —9.3 to -2.6 eV and are primarily of 0(2p)
character mixed with all other states except Cu d. The
bandwidth of 6.7 eV results almost entirely from hybridi-
zation width and is primarily from direct p-p interactions

between neighboring Q atoms. This may be seen from
calculations which exclude all states except those of p
character in the 0 spheres, which lead to a bandwidth of
6.3 eV, almost as large as the full width. Widths of this
magnitude are expected based upon simple size arguments
for the large 0 ion. An even lar er width is predicted
by Harrison's general expressions for the matrix ele-
ments, given the observed 0-0 separations.

Some understanding of the 0 bands in Fig. 1(b) is pro-
vided by Fig. 2, which sketches the bands arising from
near-neighbor interactions of a two-dimensional square 0
lattice, as occurs in the Cu02 layers. In the La2Cu04
structure, the doubly degenerate states at X are split, and
may conveniently be classified by their transformation
properties about the Cu sites, as shown by the orbital
sketches to the right of Fig. 2. These states may be
identified in Fig. 1(b) as follows: d„2—»2 (-2.9 eV),
g y( 2 —y2) ( 3.6 eV), d„» (—6.3 eV), and s or d3, 2 2

( —9.3 eV). A notation in current use'5' labels that p,
or p» orbital at each Qt site which points at its near-
neighbor Cu sites as p, the other, p,. The four states just
listed are then p antibonding, p, antibonding, p, bonding,
and p bonding molecular orbitals, respectively. Of the
remaining 8 levels at X, two involve p, orbitals of the Ot
(in-plane) atoms, while the rest are predominantly of
Ott(2p) character. The —2.9-eV energy of the Ot(2p)
antibonding d„2—y2 molecular orbital lies close to the top
( —2.6 eV) of the combined 0(2p) bands in Fig. 1(b), so
that Ot(2p) state density is distributed throughout essen-
tially the full width of these bands. States of predom-
inantly Ott(2p) character occur largely in the upper third
of this range, including, for example, levels at I above
about —4 eV.

The width of the two-dimensional 0 bands in Fig. 2 is
4(Vyy + Vzy„) at I, and 4(V&y

—V,) at X, in terms of
the usual Slater-Koster parameters. The separation be-
tween the doubly degenerate Ot(2p) levels at I in Fig.
1(b) is 4(V&y + Vyy ) 2.9 eV, giving Vyy = 1.0 eV and

Vyy = -0.3 eV. These values are a compromise be-
tween taking the width at X as the distance between the
average (over p and p ) antibonding and bonding levels
mentioned above, or using just the more distance p levels.
Combined with the LMTO band centers (orbital energies
at which the logarithmic derivatives —I —1) Cty—5.3 eV and Cny —3.5 eV, these parameter values
yield the gross features of the full La2Cu04 0(2p) bands
in a tight-binding calculation including all near-neighbor
Ot-Ot, Ot-Ott, and Ott-Qtt pairs, and scaling the Vs by
d ' ' ' d to the larger 0-0 distances.

The intrinsic Cu(3d) width is a bit more sensitive to the
choice of basis, but appears to be =1 eV. The five
Cu(3d) bands obtained from LMTO calculations which
prohibit p components in the Q spheres give a 1.3 eV
width, while unhybridized calculations allowing only d
components in the Cu spheres give 0.3 eV. The two limits
correspond roughly to Cu(3d) Wannier functions which
in the first case have tails extending into neighboring 0
spheres, and in the second case do not. Similar calcula-
tions with the newer orthogonal formulation of the
muffin-tin-orbital basis offer more of a compromise be-
tween the two limits, and yield closer numbers (1.2 and
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0.7 eV, respectively).
Turning now to the Cu(3d)-0(2p) hybridization, we

note that the Cu(3d) states (band center Cd —4. 1 eV)
lie near the top of the 0(2p) bands, close to the antibond-
ing Ot(2p) molecular orbital of d„2 y2 symmetry at —2.9
eV. This explains why the d„2 y2 Cu-0 antibonding hy-
brid rises well above the combined bands as seen near X in

Fig. 1(a). The d„~ y2 Cu-0 bonding counterpart can be
seen in the downward reflection of this shape, broken into
segments by its mixing with 0 states, and reaching down
to about the second lowest band at X. The lowest level at
X in Fig. 1(a) has 29% Cu-s, but only 7% Cu-d character,
and thus remains the s-like 0—0 bonding state sketched
in Fig. 2. This band near X, and the full width of the
bands at I, are due predominantly to the strong 0-0 over-
lap.

The X point d, 2 ~i Cu—0 bonding-antibonding sepa-
ration is approximately 2%6Vpd . Taking the highest and
second lowest of the 17 Cu(3d)-0(2p) bands at X in Fig.
1(a), this suggests V~q = —1.7 eV, which is close to our
more accurate result V~~

—1.85 eV (also V~~ 0.75
eV) obtained later on in Sec. IID. Table II collects to-
gether the hybridization matrix elements V and band
centers C which provide a gross representation of our
combined Cu(3d) and 0(2p) bands in La2Cu04.

B.Totalwnergy calculations of
electron-electron interactions

OO+ C+ D

dX-y Qxy(X-y )

CC+C C

3z-r X

FIG. 2. Near-neighbor tight-binding p bands for two-
dimensional square 0 lattice. Sketches of X-point orbitals are
labeled according to symmetry about the Cu sites at the center
of the squares.

In this subsection we describe calculations of effective
electron-electron interactions following our previous
work43 on related systems. The basic idea is to isolate an
orbital so that it is not hybridized with others. Since its
occupation n is then a good quantum number, we may cal-
culate the density-functional total energy E(n) as a func-
tion of n, and thus determine the Coulomb interactions U

TABLE II. Summary of parameters calculated for the
effective Hamiltonian, Eq. (4), of LazCu04. Slater-Koster pa-
rameters V describing the O(2p)-O(2p) and O(2p)-Cu(3d) hy-
bridization, and band centers C were obtained from analysis of
the LMTO band structure for which Cu(3d), O~(2p), and
On(2p) occupations were 9.45, 4.27, and 4.14, respectively.
On-site Cu(3d) and O~(2p), and near-neighbor Cu(3d)-Ot(2p)
Coulomb interactions Uq, U~, and U~ were obtained from
LMTO constrained-occupation total-energy calculations, as was
the Cu(3d) electron addition energy az(d 5), to be compared to
the top of the O(2p) band at -2.6 eV. All values here are in eV
and were obtained using the sphere configurations of Table I.

Band structure Total energy

Vpe

Vppa

Ca
CIp
CIIp

1.0
—0.3
—1.85

0.75
—4. 1
—5.3
—3.5

Ud

Up

U~

ad(d95)

8.5
4. 1-7.3
0.6- 1.3

—3.0

e(n)- aE(lV) -eo+U(n —,
' )+O—(n') .

n
(2)

In the solid this procedure allows all the other electrons to
readjust, and so yields an effective U which includes
screening by other electrons.

An indication of the reliability of local-density total-
energy calculations of Coulomb interactions is provided

by the isolated atom or ion limit, where comparison may
be made to spectroscopic data. Table III makes such a
comparison for Cu and 0 ions of varying 3d"4s and
2p"3s configurations, respectively. The experimental re-
sults are based on averages over all multiplets comprising
each given configuration. 6o The first entry for each ele-
ment is a one-particle level separation, e.g., the cost in en-

ergy ~a
—~ to move the hole (denoted by the bar under e)

from the 4s to the 3d shell in Cu. Subsequent entries are
intra-atomic Coulomb repulsion energies U, both "bare"
quantities U(o) appropriate to isolated atoms or ions, and
"screened" values U obtained from configurations where
electrons are promoted keeping the total charge fixed.
Theory and experiment difler in Table III by less than 1

eV, an uncertainty which we may anticipate in the solid as
well. Furthermore, following the success of Herbst, Wat-
son, and Wilkins ' in applying similar screened UI's to
rare-earth metals, we might guess U's for a poor metal
like La2Cu04 to be intermediate between the U and U
values in Table III, e.g., 4 (Ud & 16 eV.

Turning to the case of the solid, one would ideally like
total-energy differences for the addition of electrons to a
single Cu or 0 "impurity" site in the infinite crystal. The
results reported here, however, are from superlattice cal-
culations, in which the impurity site is repeated periodi-

from the fit

E(n) const+ eon+ —,
'

Un (n —1)+O(n 3)

or equivalently from the self-consistent one-electron ei-
gen values
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TABLE III. Comparison with experiment of local density approximation (LDA) calculated
constrained-occupation quantities for isolated Cu 3d"4s and 0 2p"3s ions. All quantities are in eV.

Quantity Definition LDA' Expt'

~8

U (0)

U (P)

U$0)

Ud

U (0)

U'(0)
sp

U (0)
P

UP

E(d s ) E(d—' s')
E(d s )+E(d s ) —2E(d s')
E(d s ) E(d —s') E(d'—s )+E(d' s')
E(d' s')+E(d s') —2E(d s')
E(d' Os )+E(d s ) —2E(d s ')

0
E(p s') —E(p s )
E(p s )+E(p s ) —2E(p s')
E(p s ) —E(p s ') —E(p s )+E(p s')
E(p s )+E(p s ) —2E(p s )
E(p s )+E(p s ) —2E(p s')

2.03
8.34
9.81

15.88
3.96'

12.34
5.48
7.64

17.15
7.35

1.49
8.32
9.75

16.13
4.36

11.46

7.67
17.35

'The Cu (0) calculations were scalar (non) relativistic. Both used the exchange-correlation potential of
von Barth and Hedin, Ref. 57.
bReference 60; the average (e.g. , over all 90 states for des') energy has been used for each
configuration.
'The LDA result for the corresponding neutral configurations 3d' "4s"4p ' is 3.90 eV.

cally throughout the solid. There is no Coulomb diver-
gence when the net charges of the spheres comprising the
cell do not sum to zero, as the usual form of the LMTO
intersphere Madelun~ energy includes a uniform neutral-
izing background. 54' However, it is necessary to demon-
strate convergence of these results as a function of impuri-

ty separation in order to deduce a result appropriate to an
isolated impurity. The smallest superlattice is taken here
to be the bct structure of Table I, so that all Cu's or all
Ol's are affected. The impurity separation is then in-
creased by a factor of J2, so that only half of the Cu's or
Ol's in each Cu02 layer are affected. The resultant mod-
est changes in U suggest these calculations are sufficient.

There is no unique definition for the localized Cu(3d)
or O(2p) Wannier functions which should be used for the
constrained occupation calculations. This is less of a
problem in the former case, as may be seen by analyzing
the 5 "hybridized" Cu(3d) bands obtained by excluding
only p character in the Q spheres. Nearly all (97%) of the
resultant state density arises from atomiclike 3d orbitals
in the Cu spheres. By contrast, only 75% of the state den-
sity associated with the equivalent Ot(2p) bands arises
from 2p orbitals in the OI spheres (69% for Ott). Thus
while O(2p) Wannier functions will require significant
amplitude in neighboring spheres (especially La), it is not
unreasonable to approximate the Cu(3d) Wannier func-
tions by atomiclike 3d states entirely within the Cu
spheres. The boundary condition which most naturally
simulates a decaying tail is the band-center logarithmic
derivative —I —1 = —3, and more important, it yields an
orbital energy within the 0.3-eV-wide unhybridized Cu-3d
band.

Self-consistent LMTO total-energy E calculations were
carried out with constrained Cu(3d) impurity-site occu-

pations n, for which the transition-state expression

E(d"+') E(d")=——,
' kd(d"+')+cd(d")]

& (dn+I/2) (3)

was generally valid to within 5% or better. We shall con-
sider these three expressions as interchangeable; however,
the eigenvalues e may be calculated with greater precision
than the total energy, and were generally used for the re-
sults reported here. The important energies for the
present application are those to add the ninth and tenth 3d
electrons to the Cu impurity sites, so that in Table IV we

report ad(d ) and define Ud as the difference between
this value and ad (d ' ).

The first block of three entries in Table IV shows the
sensitivity of ad(d9. s) and Ud to the choice of I,„ in the
La and Q (also empty) spheres. For the Cu spheres, lm, „
was p for the impurity sites with constrained occupations,
and otherwise d. N„l is the number of bandlike valence
electrons per primitive cell, including La(5p) and O(2s).
For bct lattice I (all Cu's aff'ected) the choice N„~ 44,
for example, leads to a net cell charge of 0.5, 0, and —0.5
for impurity occupations n 8.5, 9, and 9.5, respectively.
Recall that we may reply on the intersphere Madelung
term to provide a uniform background for the necessary
charge compensation. Alternatively, one could change
N„~ (=variable in Table IV) for each n to provide a neu-

tral cell, which in effect transfers electrons between the
impurity states and the band Fermi level. For larger su-

percells, these different choices for N„,~ become unimpor-
tant, as is readily evident by comparison of the second
(20% variations in Ud) and third (5% variations) blocks of
three lines each in Table IV. The impurity separation is

increased by a factor of J2 in the case of lattice 2, which
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TABLE IV. Cu(3d) constrained-occupation calculations for
LaqCu04. For lattice I (2), the 3d states of all (half) of the
Cu's in each Cu02 layer were treated in an atomic mode with
constrained occupations. Rc, is the radius of the Cu spheres in
bohrs. The N„I valence electrons were sampled with Nqw points
per irreducible wedge, with maximum angular momentum I „
in the La and 0 (also empty) spheres, respectively. The quanti-
ties sq(d ) and Uq at(d ' ) —~(d ' ) are in eV. Values in
parentheses signify use of the combined correction.

Lattice Rc, Nvai +tw lmax sd (d ) Ug

2.48 44 18 dp
fs
fd

—2.00
—2.91
—3.03

7.78
7.85
7.88

2.48

2.48

44
43

Variable

97
96

Variable

18 75 dp

27 dp

—2.00
—1.22
-2.57

—2.27
—1.96
—2.11

7.78
7.44
9.02

8.30
8.23
8.63

2.48
2.728
2.976

44 18 dp (—1.78) (7.74)
(—2.37) (7.17)
(—2.72) (6.76)

is treated as base-centered orthorhombic (a' J2a, b' c,
c' %2a) with two inequivalent Cu sites in each Cu02
layer.

We consider eg(d ) —3+ 1 and Ug 8.5 ~ 1 eV to
be the converged values from Table IV, for a Cu sphere
radius of RC„2.48 bohrs, with the ~ 1 eV uncertainty
acknowledging in part the theory-experiment comparison
for the isolated ion case of Table III. The eg(d s) value
anticipates =1 eV lowering of the results for lattice 2
with increased I,„,and is to be compared to the —2.6-eV
position of the top of the O(2p) bands in Fig. 1(b).

The last three entries in Table IV show the effects of
10/o increases in the Cu sphere radius. Using the
differences between these entries, we estimate converged
values of eq(d ) and Uq for Rc„2.728 bohrs to be
about —3.6 and 7.9 eV, respectively, to be compared with
—3.0 and 8.5 eV, respectively, for Rc„2.48 bohrs. We
do not consider this dependence on Rc„ itself to be a con-
vergence effect, but rather a redefinition of the Cu(3d)
Wannier function which must be accompanied by corre-
sponding changes in the hybridization to be discussed
shortly. Because of this interdependence it may not be
fruitful to compare the value Up=8. 5 eV found here
with, for example, values near 6 eV extracted from x-ray
photoemission spectroscopy. 5 The comparison should
come rather with results of the complete model calcula-
tions. The Cu radius in Table I was chosen to provide
minimal overlap of the various spheres comprising the
primitive cell, and thus improved accuracy of the LMTO
method. Evidence of this is provided by the combined
corrections4 ss which seeks to correct for sphere-polyhedra
differences. While the effects on Ug are small, its in-
clusion in the quantities in parentheses in Table IV has in-
creased eg(d ) by 022, 051, and 108 eV for
Rc„2.48, 2.728, and 2.976 bohrs, respectively.

Before leaving the Cu(3d) case, we comment on an al-
ternate method of calculating ey(d") due to Dederichs,
Bliigel, Zeller, and Akais2 Figure 3 compares curves
eq(d") from our calculations described above with addi-
tional calculations that we have carried out using this oth-
er method. The solid and short-dashed curves in the
figure show graphically the results given in the second line
of Table IV with N„,~ 44, and the equivalent neutral-cell
calculation with variable N„,~. In both cases the impurity
state is an atomiclike Cu(3d) orbital decoupled from all
other spheres and angular momentum components. The
comparison long-dashed curve in Fig. 3 was obtained by
the method of Dederichs er a/. , in which all Cu(3d)
states are fully hybridized as in Fig. 1(a). In this method
one varies eg and calculates the change in occupation.
Here n represents the integrated d-state density within the
Cu impurity sphere, which is altered by shifting the I d
potential in these spheres by —eq, the independent vari-
able in this approach. While the slope of the long-dashed
curve approaches the other two for smaller n, the upward
bend as n approaches 10 yields an unreasonable Up

eg(d ' ) —eq(d ) = 24 eV. This behavior arises from
the effects of hybridization, which will always put some d
state density above the Fermi level of a metal as in Fig.
1(a), making it difficult to achieve n 10. This simple hy-
bridization effect must be removed from the calculation in

order to extract the true interactions.
We now consider constrained occupation calculations

for the O(2p) states with the results in Table V. Given
the more extended nature of the O(2p) Wannier states,
the present treatment which considers only atomiclike 2p

10

/
/

/
/

/

-10

—20

—30

FIG. 3. Cu(3d) orbital energy sz(d") as a function of occu-
pation n. Constrained occupation calculations with 6xed and

variable number of valence electrons are given by the solid and

short-dashed curves, respectively. The long-dashed curve was

obtained using the method of Dederichs et al. (Ref. 62). All

three calculations were for the smallest superlattice, the bct
structure itself.
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TABLE V. O(2p) constrained-occupation calculations for La2Cu04. Con6gurations d"p refer to
atomiclike treatment of Cu(3d) and Oi(2p) states with occupations n and m, respectively. Both (half)
of the 02's were aifected for lattice 1 (2). N„i is the number of electrons per primitive cell treated in a
band mode. The irreducible wedges were sampled with 18 and 27 points, respectively, with d (La) and p
(0, empty spheres) maximum angular momenta used for sites with unconstrained occupations. Values
in parentheses are normalized to account for the extended wave functions as discussed in the text. Cal-
culated values are in eV.

Quantity

Up

Definition

(p5.5) s (p4.5)

[s&(d95p55)s&(d95p4 5)l
-'[ (d"p")- (d"p")l

[s(d95p55)s(d85p5 5)]
[s(d95p55)e(d85p55)]

Lattice oval

41
47
32
38
32
38

Value

7.16 (4.0)
7.29 (4.1)
0.82 (1.5)
0.63 (1.3)
0.93 (1.6)
0.61 (1.3)

orbitals within the 0 spheres is more tenous than for the
Cu(3d) case. We can find an upper bound for Up by
changing the charge in the 0 spheres by unity, and using
the band-center logarithmic derivative I —I —2 to
specify the impurity 0(2p) eigenvalue. The first two lines
of Table V show rapid convergence with impurity separa-
tion, yielding Up = 7 eV. All 01 atoms were affected for
bct lattice 1; only half in each Cu02 layer, for lattice 2.
The latter was treated as body-centered orthorhombic in

order to insure the right irreducible wedge while treating
the two Qt sites as inequivalent. Since only 75% of the
01(2p) Wannier function

~ pp ~
lies within the 01 sphere,

and our designation p" refers only to occupation of this
sphere, we might estimate the addition energy of the sixth
01(2P) electron from E(Ps") —E(P5') xep(P5 "),
where x 0.75. Such logic leads also to values of U scaled
by x, i.e., U (7.3 eV) & (0.75) 4. 1 eV which
is a reasonable lower bound and is given in parentheses in
Table V.

By constraining both Cu(3d) and 0(2p) occupations
for a combined set of impurity sites, one may also estimate
Upd, the additional energy cost to add a 3d hole to a Cu
site in the presence of a 2p hole on a neighboring Q site, or
vice versa. For the larger impurity separation we obtain
Upq 0.6 eV in Table V, which we view as a slight un-

derestimate since our calculations omit tails of the 0(2p)
Wannier function which extend into the Cu spheres
(about 8%). Thus an upperbound might be 0.6 eV
+0.08Ud 1.3 eV as indicated in parentheses in Table V.
We note that Chen, Wang, Leung, and Harmon report
Upd 1.6 eV along with Up 14.3 eV. Their calculations
are tight-binding fits which are in some ways similar in

spirit to the present work. But they made an assumption
that ed —

ep 0, where ed and ep are the Cu d„2 ~2 and 01
p, ~ orbital energies in the presence of two holes each
However, the value we find for ed(d p ) —ep(d p ) is

ed —ep= —7 eV. From preliminary work, we believe
that this change in energies would shift their values to
Upd 0.9 eV and Up 8.7 eV in better agreement with
ours.

C. EI'ective electronic Hamiltonian

We now summarize the results of Secs. II A and II B in

the form of an effective Hamiltonian in a site basis. Let
p;„" be the operator that creates a p hole on 0 site i of type

p (p, l, ppt, etc.) and d~t„ the creation operator for a d hole
on Cu site j of type v (d, 2 p21, etc.). Considering near-
neighbor Ot-01, Ot-Ott, and Ott-Ott pairs (i,i'&, in addi-
tion to Ot-Cu and 011-Cu pairs (ij &, the effective Hamil-
tonian may be written

I II

etp Z piipii+2et2tpg pi„p;„+Up g ni„ni„'+ ~C gdj'vdj'„+ Ud g n/„n/„
l,p I.P9P Jv J, v, v

v& v'

+ ~ V p. 'p'(pup'~'+H c.)+ Z V...(pi'„dj, +H c )+V». .g n;„n/„.

(4)

A tabulation of our calculated values for these parameters
is given in Table II. We expect the band centers C to give
reasonable estimates of the relative hole energies e i.e.,
&p

—~e- —Ctp+Cd 1.2 eV, and similarly for the 011
case. A single energy ~e will suffice, as we argue in Ap-
pendix A that point-charge crystal-field splitting of the
Cu(3d) level is negligible for our choice of basis. The
Coulomb interactions which we have considered are Up
and Ud for any two holes on the same 0 or Cu sites, and

Upd for holes on neighboring 0 and Cu sites. We apply
the values in Table II for Up and Upd estimated for Ot
holes to 011 holes as well.

l

The hybridization matrix elements V;„;„and V;„J„
must be evaluated in terms of the ir and n Slater-Koster
parameters (e.g., Vpp ) given in Table II, and the direc-
tion cosines between the sites i and i' (or j), according to
the expressions in Ref. 59. The matrix element V;„t„be-
tween a d„2—y2 Cu orbital and a neighboring 01 p orbital
(i.e., pointed toward the Cu site), often termed tpd, is

tpd (J3/2) Vpg
—1.6 eV This is the si.ngle parameter

in the simplest tight-binding model and our value should
be identical to that of Mattheiss, 3' as he quotes the same
—1.85-eV value for the Slater-Koster parameter. The
matrix element between near-neighbor 01 p states
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(which point towards their common near-neighbor Cu
site) is t~~ —,

'
(V~~

—
V~~,) 0.65 eU, which may be

compared to the value =0.5 cited by Weber 6 and =0.6
by Stechel and Jennison. 2

The Ot(2p)-0~(2p) Slater-Koster parameters in Table
II may be extended to near-neighbor Qq-On and On-0~~
pairs using d ' ' ' d scaling. Taking relative band
centers C~~ and Cn~, they produce combined 0 bands for
the La2Cu04 structure of 6.5 eU width and a similar
overall flatness at the top as seen in Fig. 1(b). Note that
the corresponding two-dimensional Ot(2p) bandwidth
8t~~ 4(V~~ —

V~~ ) 5.2 eV is smaller. While most
models for La2Cu04 ignore the 0 bandwidth, recent pa-
pers have acknowledged its importance. ' 's 26~7 Newns
and co-workers'7's and Weber26 cite widths =4 eV
which we believe should be compared to our 5.2-eV 0~
width. We believe this difference reflects the choice of
basis, specifically that our Cu(3d) Wannier function is
defined to exist only within the Cu atomic spheres, and
that the 0 band in Fig. 1(b) is hybridized with all com-
ponents except this Cu(3d) orbital. We emphasize that
the parameters in Table II are internally consistent, and
that the ambiguity in choice of basis offers flexibility
which may be used to simplify solution of the problem.

The Hamiltonian Eq. (4) is still very complex because it
involves so many bands. We believe our work indicates
that Uzd is suSciently small that it should not have quali-
tative effects. Such an interaction has been studied in
model simulations by Hirsch and co-workers2'~z and
Schiittler and in theories based upon exciton mecha-
nisms of superconductivity. Our value of Ul,d/t~d ~ 0.8
is smaller than values ~ 2-4 which were found by Hirsch
and co-workers2' to lead to a superconducting ground
state in Monte Carlo simulations. In addition, we propose
that as a first approximation U~ can be ignored. The ra-
tionale is that the large bandwidth of the 0 electrons (6.7
eV), which is comparable to or larger than U~ (4.1-7.3
eV), causes the electrons to act as bandlike in the 0
states. This is very similar to the reasoning used in
heavy-fermion systems.

If both U and U~d are ignored, then the Hamiltonian
equation (4) reduces to a degenerate Anderson lattice
model similar to ones used to describe heavy-fermion and
mixed-valence systems. This is still complex because so
many bands are involved. Qur results suggest that the
bands which are potentially relevant for excitations near
the Fermi energy are (1) the d„2 y2 Cu states mixed with
0; (2) d3, 2 „~ states mixed with 0; and (3) one or more
of the uppermost 0 bands in Fig. 1(b) which do not cou-
ple or are weakly coupled to Cu. We note that recent pa-
pers by Goddard and co-workers' and Birgeneau,
Kastner, and Aharony' have proposed that holes go into
0& p states, which have the same form as the g„y( 2 y2) 0
molecular orbital in Fig. 2. Since such states are near the
top of our 0 bands, we believe this to be a possibility.

D. Hybridization in the impurity
Anderson model

The hybridization between an impurity Cu(3d) level
and a band of itinerant 0(2p) states may be obtained

[ V„(~)['- „„dkgb(~—~, ) ( V„,„('. (6)

Here the ~; are the eigenvalues of 022 corresponding to
the 0(2p) band in Fig. 1(b), indexed by k-vector and
band index i, while p and j are the irreducible representa-
tion and partner for the Cu(3d) impurity site, respective-
ly. The integral is over the first Brillouin zone (BZ) of
volume Ao.

We have calculated
~ V„(e) )

2 using the smallest super-
cell, i.e., the bct structure itself. The irreducible wedge of
the Brillouin zone was sampled with 75 points, and the
tetrahedral method was then used to evaluate Eq. (6).

from the approximate parameters in Table II. However,
more accurate calculation of these functions is possible us-

ing other techniques, which we now review. In order to
generate a hybridization matrix consistent with that ap-
pearing in the Anderson Hamiltonian, it is necessary to be
able to write the matrix H which generates the LMTO
one-electron eigenvalues at a particular k point in the
form:

H-H"'+ V

'H, 'f" o
' '0 V~2'

0 Hm&+V~i 0

where the index 1 ranges over the impurity Cu(3d) states;
and' 2, all other states. It is presumed that H~tg should
generate a narrow, unhybridized Cu(3d) band, and that
the hybridization V has no diagonal, e.g., V22 elements.
Furthermore, internal consistency between the calcula-
tions of Ud and the hybridization require that the states
used in the constrained occupation calculations should
also be those which define the matrix elements of H~~(~

and V~2.
Equation (5) is easily satisfied in the newer orthogonal

basis representation of the LMTQ method. s6 For the
original formulation which has significant overlap ma-
trices, an approximation to the desired matrix V may be
generated in the manner we have reported previously for
the rare-earth dioxides. 3 In this approach, H 1 is
defined by removing all coupling between Cu(3d) and
other states in the structure constant matrix. While the
resultant AH=H -Ht 1 has the undesired property
hH22a0, a perturbation treatment was used to derive an
analytic expression for an effective V~2, linear in the struc-
ture constant matrices, which satisfies Eq. (5) to a good
approximation. This approach has been used for the sym-
metry decomposed hybridization functions

~ V„(e) ~
in

the present work, and it is consistent with our Ud calcula-
tion. The two methods should be nearly equivalent, and
test comparisons have been found to yield the same area
under the symmetry-averaged ~

V(s)
~

to within 7%.
Since the unhybridized Cu(3d) band is quite narrow,

one may approximate the weakly k-dependent matrix
Hf(I at each point in the Brillouin zone by a k-
independent matrix with eigenvectors appropriate to a lo-
cal, one-electron d state in a tetragonal environment.
After a unitary transformation which diagonalizes the
modified H ~01, the hybridization matrix elements become
V„~. g;, and
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3.2 eV, respectively, which may be compared to the pa-
rameter T 2.3 eV extracted by Shen et al. so from photo-
emission data.

Evaluation of Eq. (6) for the simple tight-binding mod-

el discussed in Sec. IIA yields 3V~& and 4V~q, for the

areas under the x —y and xy ~
V„(e) ~

curves, and the
areas just cited were in fact used to obtain the values of
these two Slater-Koster parameters for Table II. Further-
more, V~g~+2VJ,'d~ and 2V&g~+2V~d~ should be the areas
under the 3z —r and yz, zx curves, where the V"s are
Cu-Oii couplings. This suggests that the 3zz —r2 area
should be at least a third of the x —y area, which it is

not. Such a constraint is obeyed when the
~
V„(e) ~

curves are calculated including only 0 p components in

the "0(2p)"bands. However, especially the admixture of
La character and Cu s character into these bands

significantly reduces the 3z rarea.—This behavior

points to possible limitations of any simple tight-binding
parametrization as set out in Sec. II A.

FIG. 4. Calculated hybridization functions
~ V„(e) ~

be-

tween a local Cu(3d) level and itinerant O(2p) bands in

La2Cu04.
III. IMPURITY ANDERSON MODEL FOR La2Cu04

The results for
~
V„(e) ~

2 are shown in Fig. 4, obtained us-

ing a 2.48-bohrs Cu-sphere radius. The integrated areas
under these curves are 10.3 eV (I 3 x —y2), 2.7 eV2

(I i 3z2 —r2), 2.3 eV2 (I4 xy), and 1.4 eV2 (I5
yz, zx). If the radius of the Cu sphere is increased to

2.728 bohrs, and the other spheres proportionally reduced,
these areas decrease by 8.7/o, 6 2%, 2..2%, and 1.4%, re-
spectively. Note that the x2 —y area is nearly four times
larger than for any other symmetry, which should be no
surprise given the emphasis placed on this coupling in

tight-binding models. Equally important for the electron-
ic states is the fact that the x 2 —

y
2 hybridization is also

peaked up at the top of the 0(2p) band in Fig. 1(b). This
follows from the fact already discussed that the 0 molecu-
lar orbital with d„2—y2 symmetry about the Cu site is the
0—0 antibonding state sketched in Fig. 2. The Ott con-
tribution to the combined 0(2p) bands occurs mostly in
the top third of the 6.7-eV range in Fig. 1(b), leading to
the similar position of the 3z —r 2 hybridization in Fig. 4.
The symmetry-averaged ~

V(e)
~

is quite similar in shape
to the 0(2p) density of states. The square root of its area
and that for the dominant x —y symmetry are 1.9 and

The results of Sec. II suggest that an Anderson model is
appropriate for the Cu-0 based systems. In this section
we consider the impurity limit of this Hainiltonian since it
can be solved exactly for the ground-state energy and

spectra. We have solved the impurity Anderson model for
a local Cu(3d) level embedded in the continuum provided

by the predominantly oxygen bands, using the parameters
of Sec. II. The dominant x2 —

y
2 hybridization leads to a

magnetic ground state with spin —,
' and d, 2 —y2 orbital

symmetry, and of central importance to this paper, it
pushes a sharp level in the electron removal spectrum
above the top of the full 0(2p) band. The two holes in

this singlet ground state of the (N —1)-electron system
are highly correlated, having little probability of both be-

ing on the Cu impurity site. We argue on the basis of
cluster calculations in Appendix B that the qualitative na-

ture of this state is unchanged by inclusion of our esti-
mates for Up and Ut,d. Within the uncertainties in our pa-
rameters, we find reasonable agreement between our cal-
culated d-spectral weight for electron removal and the
photoemission data for La2Cu04.

We write the Hamiltonian Eq. (4) for the impurity-
model calculations in the form

fB t B
H=g deep, „,y,„,+~ay„,y„, +Ud g n„n„+g de[V„(—e)y„,y,„,+H.c.j,

V, t P~Q', V, f V~ T'

p, cr( v, z'

(7)

where yt„, creates a hole of energy e in the 0(2p) states,
and yt, creates a hole of energy ~e on the impurity level.
A single ~e is adequate, as we find point-charge crystal-
field and spin-orbit effects to be small (see Appendix A).
The indices p and v cover symmetry (and partner in the
case of I 5-yz, zx), while o and r designate spin. Taking

the —2.6-eV top of the 0(2p) bands in Fig. 1(b) as the
zero of energy, the hole energy ~e

= —eq(d95) —2.6 eV,
with eg(d ) the quantity in Table II. Following Gun-
narsson and Schonhammer, only those linear combina-
tions of 0(2p) states (indexed by v) which can couple
with the impurity level are included in the Hamiltonian. o
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The Q(2p) bandwidth in Fig. 1(b) is 8 6.7 eV, and so
with our zero of energy O(2p) holes are created over the
range 0-6.7 eV.

A. Ground state and electron
addition spectrum

We consider the ground state @g(~N) of the N-electron
system

tB
eg(~) -w„ I pa&+ dea„(e) I ego& (s)

to be a linear combination of configurations I pa&
=yJ I 0& with one hole on the impurity site, and

I epo&=)ttJ„ I 0& with one hole in the 0 bands. As long as
we preclude electron excitations into the La(4f, 5d) con-
duction bands above the gap in Fig. 1(b), the number of
possible configurations both here and for the (N —1)-
electron system are limited, so that essentially an exact
solution of Eq. (7) is possible without resorting to I/N ex-
pansions. Considering the vacuum I0&, energy Eo (subse-
quently taken to be 0), to correspond to fully occupied im-
purity states and 0 bands, then the ground-state energy
E~~~) and wave functions are given by

E'N'=E +« (9)

ground state given by Eq. (8):
1

BIS (w) (w)p (E) Im &gp~ p~~ ( ) p ~ lglg
7r E —ig+Eg„—H

(i4)
=

I ~„ I
'~(E+ AF.„),

where ri in Eq. (14) is a positive infinitesimal. Clearly
there is a contribution only for p x —y, as an electron
can be added to (hole destroyed in) the ground state only
for this symmetry. The position of this (sharp, in the
present model) peak is at Eats —M, 2 ~2 relative to the
top of the O(2p) band, and is

driven
in Table VI along

with the weight wa(s IA 2 s2I of the pole.

B.Electron removal spectrum

The d-spectral weight for electron removal, to be com-
pared to photoemission spectroscopy (PES) experiments,
is given by

p Es(E) -—Im g (E irt), —

I V„(-e)I'
~a+ deaP hE„—e

V„'(-.)a„(e)-
AFq —g

IV„(—e)I
4 o (AF.„—g) 2

(10)

(i2)

t ~()v)
g (z) Z ~gpa Yvr ()v) Yvr ~gpa ~

V) 7 z —Eg„+H
(i7)

f„(e',e) —= [ —m„+e+~~ —r„(z —m„+e) ja(e' —e),

The results are conveniently expressed in terms of two
defined functions:

&N I ~~ I
N&-&tr)g(„")

I yt.y„.I
+g(~) &

= I~„I '. (13)

The average number of d holes occupying the impurity
site is then

VP ( —e') V„(—.)
gv v(e te) ~ + I y

(is)

(i9)

It is evident from Eqs. (9)-(12) that the ground-state
energy depends on the symmetry of the hole in @g(g).
Table VI lists results for ~„obtained with values of ~e,
Ud, and I V„(e) I determined in Sec. II. The first two
cases use consistent theoretical values for LMTO Cu
sphere radii of 2.48 and 2.728 bohrs, respectively. The
last two will be discussed shortly. The ground state is
clearly of x —y symmetry, not surprising since the hy-
bridization is so dramatically stronger in this case. The
splittings between the AE„are crystal field levels; in a
similar calculation for Pr02 we obtained the correct sym-
metries and first excitation interval to within 20% of that
obtained by neutron scattering. For La2Cu04, one may
expect these levels to be significantly broadened by lattice
effects. There are, however, indications in reflectivity
and photoluminescence65 measurements on the CuO su-
perconductors of weak absorption features in the 1-3 eV
range, where Geserich et al. identify as these d-d transi-
tions allowed by electric quadrupole selection rules.

The d-spectral weight for electron addition, to be com-
pared to bremsstrahlung isochromat spectroscopy (HIS)
experiments, is quite simple in the case of the ¹ lectron

where the dependence on z and p is not explicitly shown,
and

r„(z)—= deap z+s (20)

Evaluation of the inverse (z —Eg(„)+H) ' requires
separate treatment for t4o vz and pae vz. In the former
case, we take as the (N —1)-electron basis for the inver-

sion

I po'ie)4 o'& = YpaÃepa I 0& ~

I e)t~~ett~&=() a'pa() ega I 0& ~

(21a)

(2lb)

where in Eq. (21b) e') e. The resulting contribution to
g (z) is

r,,-..(.) =
I ~. I "„'(.') If„(..) -g„„(',.)j -"„(.)

(22)

with the Einstein summation convention for the repeated
indices e' and e.

To carry out the inversion for the case viepcx, we take
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TABLE VI. Impurity Anderson model calculations for La2Cu04. N el-ectron (one hoie) system: Ex-

cited state ~„attd ground state ~„2 2 energies, and the number of ground state d holes &N I ~n I N&

are given. (N —I) ele-ctron (two h-ole) ground state: The probabilities of both holes being on impurity

(wdd) or 0 (wpp) sites, or one on each (wpd ) are given along with the number of d holes

&N —1I~n~N —1&. The first ionization energy is EpEs (d spectral weight wpEs). (N+1)-electron
ground state: The first affinity level is Ests (d spectral weight wsts). The insulating gap is Es,p. Values

assumed for ~ and Ud, and the radius Rc, of the LMTO sphere used in obtaining the hybridization, are
shown. All energies are in eV.

Quantity

Ug

Rcu

~ye, zx

~xy

F2 „2 Eg[s
&N I ~n I

N& wBls

Wdd

Wpp

Wpd

EpEs

EII [

Case 1

0.4
8.5
2.48

—0.19
—0.36
—0.87
—2.32

0.56

0.06
0.36
0.58
0.70
1.05
0.29
1.27

Case 2

1.0
7.9
2.728

¹lectron system
0.18
0.06

—0.51
—1.84

0.51
(N —1)-electron system

0.05
0.40
0.55
0.65
0.88
0.27
0.96

Case 3

—0.1

6.5
2.48

—0.59
—0.75
—1.19
—2.61

0.60

0.10
0.30
0.60
0.80
1.29
0.34
1.32

Case 4

—0.6
7.5
2.48

—1.02
—1.18
—1.54
—2.92

0.64

0.10
0.28
0.62
0.82
1.29
0.34
1.63

the basis

(23d)

1

g, „(z) IA„I QN„[1 a„(et) 0]G a„(et) . (24)

Here N„2 is the spin degeneracy, except for N~, ,„=4,
I

I vr, ptr)= tttt, yJ I—0&, (23a)

I vr, etpcr)=1ttt, ttt~, „ I0), (23b)

I a,v.,t ~)=~,'„,yJ. I 0&, (23c)

I 83vr, 84pO') = Itt 3„ lp ~ I 0) .

The combined contributions to g (z) from all eight
values of vr for which vip is

where we now restrict v to just the four irreducible repre-
sentations. The matrix G is defined by its inverse

G
—

1

z —dL'„+ 2~a+ Ud

V„(—ct )

V„(—e2)

V„(—e, ) V,(—.2)

f„(ei,ei) g„,(et, e2)

g„„(a2,et) f„(e2,e2)

(25)

The zeros in the row and column vectors in Eq. (24) cor-
respond to ez and e2, respectively, and integration over the
range 0 to 8 for all of eI, e2, st, and e2 is intended in Eq.
(24).

The case where v =@ and rpeo further simplifies and

may be combined with Eq. (22) to yield

z ~„+2~c+Ud J2V„(—s)
g„-„(z)- —,

'
IA„I '(N„—1)[v2 a„'(e'))

J2
a„(e)

+ —,
'

I A„ I
2(N„+1)a„*(e') [f„(e',e) g„„(e',e)] '—a„(e) . (26)

The first and second terms of Eq. (26) arise from singlet
and triplet two-hole final states of the (N —1)-electron
system, respectively.

With g (z) being the sum of g„-„(z) and g„~„(z),
our results for the electron removal d-spectral weight are
given by Eqs. (16)-(20), (24)-(26). Following Gun-
narsson and Schonhammer, o we have discretized the in-
terval (0,8) in order to invert the matrices in Eqs. (25)
and (26). We tested numerical functions of essentially

I

zero width for
I V„(e) I to insure that the computer pro-

gram would reproduce the analytic results for the cluster
model discussed in Appendix B. Our results are presented
in Figs. 5 and 6. They were obtained using 81 (Fig. 5)
and 41 (Fig. 6) points in the interval (0,8), and taking
the imaginary part of z to provide full width at half max-
imum Lorentzian broadening of 0.45 eV, the stated in-
strumental resolution of Shen et al.

The solid and dotted curves in Fig. 5 were obtained us-
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FIG. 5. Calculated impurity Anderson-model d spectral
weight for La2Cu04. Solid and dotted curves correspond to
cases 1 and 2 of Table VI, respectively. The dashed curve gives
just the v p x —y contribution to the former.

ing the parameters appropriate to cases 1 and 2 of Table
VI, respectively. The overall close agreement between the
two curves shows limited sensitivity of the calculated /-
spectral weight to the uncertainty in our Cu(3d) Wannier
function represented by the radius of the Cu sphere. In
particular, the agreement in position of the predominantly
d peak near —13.5 eV is =0.05 eV, while the separate
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FIG. 6. Calculated impurity Anderson-model d spectral
weight (solid curve) based on case-3 parameters of Table VI,
and broadened O(2s), La(5p), and O(2p) local-density density
of states (dotted curve) reduced by a factor of 5. The dashed
curve gives the v p x —y contribution to the former.

changes in ~s, Uq, and ( V„(e) ~
between cases 1 and 2

would shift this peak by —0.8, 0.5, and 0.2 eV, respective-
ly.

Two points of qualitative agreement between our
theoretical results in Fig. 5 and the photoemission data
are to be noted. First, most of the d-spectral weight over-
laps the O(2p) states in the range from —6.7 to 0 eV,
creating the large peak which dominates both theory and
data. Second, a modest bump of d character is seen in
resonant PES measurements at about 11.5 eV below the
top of the Q(2p) bands (which we take 1 eV below the
Fermi level of Shen et al. ). We identify this structure
with the predominantly ds peak near —13.5 eV in Fig. 5.
Located near the edge of the two-hole continuum, the po-
sition and size of this peak are sensitive to the parameters.
A reduction of 2~s+Ud to 6.3 eV diminishes the size of
the peak and moves it to higher energies as seen from the
solid curve in Fig. 6, obtained with the case-3 parameters
of Table VI. A similar result obtains with the case-4 pa-
rameters. The dotted lines in Fig. 6 show the one-electron
density of states for comparison, O(2p) at higher energies,
and combined La(5p) and O(2s) at lower energies. These
have been Gaussian broadened [full width at half max-
imum (FWHM) of 0.45 eV], and divided by 5, the rough
matrix element reduction suggested for the O(2p) states
by Shen et al. The onset of our spin-orbit split La(5p)
contribution for energies below -12 eV occurs at = 2 eV
higher energies than found in the PES data, a familiar
problem with corelike one-electron eigenvalues as has
been noted, e.g., for the 3d levels in GaAs.

A realistic comparison with experiment of the calculat-
ed d structure is premature given our scalar approxima-
tion to the true matrix nature of Ud. Antonides and
Sawatzkys have noted that multiplet splittings in the
solid can be (80-90)% of their atomic values. Since the
large 'S splitting can affect only the v p x —y con-
tributions to the total spectral weight, given by the dashed
curves in Figs. 5 and 6, the bulk of the ds structures in

these figures would appear to be subject to multiplet split-
tings of about + 1.5 eV.

Our primary interest in this paper is not the ds region,
but rather the small peak in Figs. 5 and 6 lying = 1 eV
above the top of the O(2p) band. This is a true pole in

these impurity-model calculations, at an energy we shall
call EpEs (weight wpEs), which arises from the singlet,
x2 —y

2 two-hole ground state of the (N —1)-electron sys-
tem. It occurs both because of the large magnitude of the
x —y hybridization as well the pronounced strength of
this coupling near the top of the O(2p) band. While there
is some uncertainty in the position of this peak, we em-
phasize that its existence and essential features are
unaffected by the wide range of parameters explored in

Table VI. We also note that lattice broadening of this
peak would provide the kind of low density of states which
is observed in photoemission spectroscopy. 4 There is
a similar pole, by the way, for a 3z —r, x —y two-hole
pair =0.1 eV above the top of the O(2p) band.

We have solved for the two-(x —y )-hole singlet
ground state @s ' of the (N 1)-electron system in the-
same manner as in Eqs. (8)-(12) for the N-electron case,
in order to determine the disposition of the two holes on
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Cu and 0 sites (wdg, w~l„and w~d) and the number of d
holes (N —1(~n ~N —1) =2wdd+wzd as given in Table
VI. These calculations also give the more precise

= ((@z '
[ y~tl (@„'~ ) (, where p =x —y, which are

reported in the table. As can be deduced from the
difference (N —1 ( ~n

~
N —I) —(N ( ~n ( N), the added hole

in @z(+ ') is more than 80% 0(2p) in character, in agree-
ment with recent data. ' The state is highly correlated,
with wdd 10% or less probability of both holes being on
the Cu impurity site. These impurity-model calculations
suggest, therefore, that the first ionization level of
La2Cu04 is a strongly correlated, x —y symmetry two-
hole singlet lying above the continuum of the electron re-
moval spectrum. We do not believe this qualitative con-
clusion is comprised either by our neglect of multiplet
structure, o or, at least within the context of the cluster
calculations in Appendix B, by the possibility of a U~ even

as large as 7 eV.

IV. SUMMARY AND DISCUSSION

We have presented ah initio calculations of the parame-
ters defining a general effective Hamiltonian for La2Cu04
that we believe to be an appropriate starting point for
many-body calculations in this material and by extension
to other copper oxide superconductors. The principal re-
sults given in Table II are the parameters which enter the
many-body interacting-electron Hamiltonian equation
(4). This Hamiltonian may be reasonably approximated
by an Anderson lattice model of the electronic structure of
the new superconductors, i.e., Cu(3d) states with large
Coulomb interactions which are hybridized with broad ox-

ygen p bands. The Coulomb interactions U~ and U~d are
sufficiently small that we believe it is reasonable to neglect
them, which is a crucial aspect of an Anderson-type mod-
el. The magnitude of U~d which we find is smaller than
that in Refs. 21 and 22 needed to cause superconductivity.
Our conclusions support the applicability of two (or more)
band models in which holes interact with spins (Refs.
12-16) and the Anderson lattice model of Refs. 17 and
18. As discussed below, we believe several states are pos-
sibilities for the holes —including the mainly Q(2p) states
of d„z ~2 symmetry (as in Refs. 12 and 13) the p„states
of g„y(„2—y2) symmetry (as in Refs. 15 and 16), and states
with d3, 2 — 2 symmetry —and that further many-body cal-
culations are needed to select among these possibilities.

Among the parameters in Table II we believe the most
uncertain are U~ (as discussed in Sec. II) and the energy
of the Cu(3d) state relative to the oxygen band. The
reasons for potential uncertainties in the relative d-p ener-
gies are twofold: First, because of the different character
of these states, one may expect the density functional to
make errors in the diA'erence between their energies. In
the case of Ce02 and Pr02, we argued that the calculat-
ed 4f-2p separations were too small by = 1 eV. Second,
there are possibilities for errors in the very diN'erent ways
we have treated Ud and U~, which could renormalize the
ed —a ener ies. We note that whereas we have placed
the d ~ d ' energy near the edge of the 0 bands, Newns
and co-workers ' ' have argued that the d state should be
= 2 eV higher (lower) than the edge of the 0 bands for

(a)
Neutral

,zx xy 32-'r' X-P

(b)

D(N-1)( E E(N))
9

ionization
32-r
X-P

X-f
X-f

O(N+1)(E F(N))
g

Affinity

pEs BIS

FIG. 7. Sketches of the impurity-model state densities for
La2Cu04 near the Fermi level. (a) Crystal-field excitations for
the one hole (per unit cell in the lattice) in the stoichiometric or
neutral material (N-electron system, ground-state energy

Es hE, ~ ~). (b) Electron ionization [(N —1)-electron]
and affinity ((N+1)-electr ]ospnectra showing an insulating

gap and hole-particle excitations for the neutral material. Note
the energy EpES to add a second d„2 y2 hole in (b) is

significantly shifted from the energy —AE„2 y2 to add the first
such hole in (a).

electrons (holes).
We have also solved our proposed Hamiltonian in the

impurity approximation. A convenient summary of the
excitation spectra predicted by our impurity-model calcu-
lations is given by the densities of states sketched in Fig. 7,
which provide visual identification of the quantities
presented in Table VI. Stoichiometric La2Cu04 has one
hole per unit cell relative to filled Cu(3d) levels and
0(2p) bands. It is approximated within the impurity
model by one hole associated with a single Cu atom em-
bedded in the 0 lattice. The ground-state energy
Ez(~) &F,2 y2 of this N-electron system occurs when the
hole occupies an antibonding Cu(3d)-0(2p) hybrid of
x2 —y symmetry about the Cu site, the level to the far
right in Fig. 7(a). This state is magnetic in agreement
with experimental observations on La2Cu04 and related
materials. ' The hole may be excited to crystal-field lev-
els of other symmetries at higher energies —~„ to the
left in Fig. 7(a), and finally into the uncoupled Q(2p)
continuum. Bearing in mind that these levels may
broaden considerably due to lattice effects, the excitations
evident in Fig. 7(a) are qualitatively the same as those
proposed by Geserich et al. to explain their reflectivity
data for YBa2Cu307-s. These authors invoke electron
quadrupole selection rules to allow the otherwise forbid-
den d-d crystal field excitations. For La2Cu04, we would
expect from Table VI to have crystal-field excitations at
= 1.4 eV (3z r) and —= 2 eV (yz, zx, and xy com-
bined), and a charge-transfer gap

'
~ ~„2—y2 ~

2-3 eV.
The true many-body nature of the present impurity-

model calculations is evident in the difference between
Figs. 7(a) and 7(b). The latter sketches the densities of
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electron ionization and af5nity levels near the Fermi level,
and would be identical to Fig. 7(a) were Ug 0. In par-
ticular, were Ud 0, the minimum energy to add a hole
EpES would equal the minimum energy to add an electron
Eats which is just the energy —&&,~ 2 in Fig. 7(a). As
it is, we find a correlation gap Es,~ Ems —EpEs

1.3 ~ 0.3 eV making stoichiometric La2Cu04 an insula-
tor assuming lattice broadening of the two levels is not
sufficient to fill in the gap. This gap implies particle-hole
excitations of the N-electron system which must be con-
sidered in addition to the crystal-field-like excitations of
the preexisting hole in each unit cell evident in Fig. 7(a).
Such particle-hole excitations might annihilate a hole in
one unit cell, leaving two holes in another, and have com-
parable energy as can be seen from Fig. 7(b). Electron-
hole interactions would further reduce this energy.

We have suggested that lattice broadening of the levels
labeled Epis and Ems in Fig. 7(b) might account for the
low spectral weight observed in PES and BIS experiments
near the Fermi level, between the large O(2p)-Cu(3d)
structure below, and the La(4f, 5d) states above. Figure
1(b) suggests the latter begin about 2 eV above the top of
the 0 bands. However, local-density theory can be ex-
pected to underestimate the O(2p)-La(4f, 5d) separation,
and indeed we find the center of our La(4f) bands far
lower relative to the dominant O(2p) and Cu(3d) contri-
bution than observed in the PES and BIS data. There-
fore, we expect the La(4f, 5d) levels to begin 4 eV or
more above the top of the 0 bands, and have therefore
omitted these states from Fig. 7. At more negative ener-
gies, our calculated d spectral weight is in qualitative
agreement with the PES data in regard to the dominant
= 7-eV-wide peak of Cu(3d) and O(2p) character begin-
ning just below the Fermi level, and a more distant, weak-
er peak of predominantly d s character.

The ionization states in Fig. 7(b) may also be viewed in
terms of the doped-in holes in La2 —,Sr„Cu04, and the re-
sults are qualitatively the same as found by Newns and
co-workers's in their I/N expansion treatment of the An-
derson lattice Hamiltonian for this material. They find
=1-eV-wide d„2 y2 and d3, 2 2 bands lying above the
itinerant O(2p) bands, which are shifted towards the 0
bands by the increased hole concentration. This is pre-
cisely the change seen from Fig. 7(a) (x 0) to the ion-
ization part of Fig. 7(b) (x 1), where the first x2 —y2
hole is added at —&F.,2 y2 and the second at EpEs, more
than 1 eV closer to the 0 band. At x 0.12, Newns and
co-workers find the Fermi level moves into the itinerant
band. ' Even prior to this, however, they find as do we
that added holes in the d 2 y2 band or level are (75-80) %
of O(2p) character, in agreement with analyses of PES6s
and low-energy electron-diffraction spectroscopy data.

It should be noted that the two x —y hole state at
EpEs in Fig. 7(b) is a singlet, and that the addition energy
for a second hole in a triplet configuration would lie at
much higher hole energies overlapping the 0 bands. Thus
EpEs ( 1 eV for U~ 0, -0.4 eV for U~ 7.3 eV, see
Appendix B) provides an estimate of the antiferromagnet-
ic exchange interaction between the two holes. Although
our impurity-model calculations have not dealt with mag-
netic order, or interactions between holes in different unit

cells, the possibility that doped in holes may form singlet
composites in cooperation with preexisting holes is sugges-
tive of the spinless, charged holons in the resonating-
valence-bond picture. " However, we believe these
states are more accurately described as hole-spin pairs in
a two-band picture' ' rather than the absence of a spin
in a one-band picture.

We conclude this section with speculations about the
nature of the carrier states in La2 „Sr„Cu04 in light of
the present impurity-model results, and the likely correc-
tions to these calculations dictated by the full effective
Hamiltonian of Sec. II. Lattice effects appear to lead to
widths = 1 eV of the d„2 y2 and d3, 2 —2 levels in Fig. 7,
judging from the work of Newns and co-workers, 's and,
based on calculations incorporating nearest-neighbor Cu
sites, they may be expected to increase the insulating gap
by raising both the energies to add holes and electrons. '2

The cluster calculations of Appendix B also suggest some
increase in the gap due to U~. As the x —y states are
driven further from the Fermi level by these effects, the
possibility is raised of either relatively pure Q(2p) or Cu-
0 hybrid 3z —r states becoming the states where the
added holes will reside. Even if this possibility is not real-
ized, however, and the added holes go into x —

y
2 states

as suggested by Fig. 7(b), our results do not support a
one-band Hubbard model due to the significantly different
character of the added holes (=80% 0) and electrons
(~ 60% Cu).

Note in proof: We have recently learned that K. T.
Park, K. Terakura, T. Oguchi, A. Yanase, and M. Ikeda
find similar tight-binding parameters to our results in
Table II, and that H. Eskes and G. A. Sawatzky have also
performed impurity Anderson model calculations which
predict a two-hole singlet for the first ionization level. If
the singlet binding energy is sufficiently strong, Zhang
and Rice [F.C. Zhang and T. M. Rice, Phys. Rev. B 37,
3759 (1988)l argue that the effective Hamiltonian can be
reduced to a one-band Hubbard model.
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APPENDIX A: CRYSTAL-FIELD AND
SPIN-ORBIT EFFEC'I'S

In the present LMTO calculations, in which the states
are solutions of Schrodinger equations in spherically sym-
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metrized potentials in each sphere, the only splitting and
dispersion of the d states results from coupling to neigh-
boring spheres, i.e., hybridization. However, as noted by
Chan and Lam, hybridization of the localized orbitals
with the valence bands is only one source of crystal field,
and one must also consider that due to lattice-point
charges. This separation is clearly basis dependent, as is
particularly evident in the context of choosing the sphere
sizes in the LMTO approach. The relatively large Cu and
La spheres in Table I, for example, result in small net
sphere charges, the largest being 0.44e for the La sphere,
contributing in part to a small point-charge contribution
to the crystal field.

The electrostatic multipole field at the Cu site is simply
calculated from the net charges of the surrounding
LMTO spheres, which may be collapsed to point charges
given their imposed spherical symmetry. Using selected
k 0 LMTO structure constants to obtain the Madelung
sums, and averages (r") over the radial Cu(3d) orbitals,
we find coefficients -0.064, 0.055, and 0.057 eV, respec-
tively, of the spherical harmonics Y2(r"), Y4(r), and
Y4 (r"), in a—n expansion of the multipole potential. This
potential implies shifts of 0.033 (x —y ), 0.002
(3z —r ), —0.006 (xy), and -0.015 eV (yz, zx) which
are negligible compared to hybridization effects = I eV.

For the band-center logarithmic derivative, we calcu-
late the spin-orbit splitting of the Cu(3d) orbital to be
cq(J' 5/2) cd(j —3/2) =0.3 eV in LazCu04. This is
much smaller than the = 1 eV hybridization splitting of

I

the levels mentioned above. Moreover, while the spin-
orbit interaction may split yz, zx levels in first order, it can
only shift z —y and 3z —r levels in second or higher
order. We estimate these shifts to be =0.03 eV, and
therefore do not include the spin-orbit interaction in the
present work.

APPENDIX 8: CLUSTER CALCULATION
INCLUDING Up AND U~

In this appendix we use a cluster model to accurately
reproduce the first ionization and affinity levels predicted
for La2Cu04 by the impurity Anderson model calcula-
tions of Sec. III, a treatment made possible by the discrete
nature of these levels lying outside of the O(2p) continu-
um. The cluster model then permits simple inclusion of
the Coulomb interactions Uz between two holes on the
same 0 site, and U~d between holes on neighboring Cu
and 0 sites. We find that the effect of these interactions is
to depress the first ionization level, increasing the insulat-
ing gap by up to 30%, while leading to a more strongly
correlated two-hole state. The essential qualitative con-
clusion of Sec. III is unchanged, namely, that the first ion-
ization level of La2Cu04 is a strongly correlated, xi —y2
symmetry two-hole singlet lying above the continuum of
the electron removal spectrum.

We take the Hamiltonian for the cluster model in the
form

@gp p +m&g& tj, +Ut, g g n; n;, +Up g n n +U~dgn t' n +V+(d, pt, +H c), . (Bl)
d, T d, fd(t d(V

d, t 'r

p~ = 2 ~&ipii ~ (B2)

where p t (d t ) creates an 0 (Cu) hole of spin r and ener-

gy ~c +e) and V is the hybridization between these states.
The Coulomb interactions are U~, Ud, and U~d. We are
interested only in the important x —y symmetry case,
and therefore take V 3.2 eV, which is the square root of
the area under the I V„2 y2(c) I curve in Fig. 4. Further-
more, to make contact with the impurity model we would
like p,~ to create a molecular orbital having amplitude on
all four 0 sites surrounding the Cu in the CuOz layer, i.e.,

TABLE VII. Cluster-model calculations for La2Cu04. N-
electron (one hole) gro-und state: Total energy ~ and number
of d holes (NI~n IN) are given. (N 1) electron -(two h—ole)-
ground state: The probabilities of both holes being on the Cu
site (wey), the same 0 site (wrr), different 0 sites (wrr ), or one
each on the Cu and an 0 site (w~) are given along with the
number of d holes &N —1 I ~n I N —1&. The first ionization ener-

gy is EpEs (d spectral weight wpus). (N+1)-electron ground
state: The first affinity level is Ears (d spectral weight wtus).
The insulating gap is Eg p, All calculations assumed ~e 0.4 eV,
ap 1.19 eV, V 3.2 eV, and Uq 8.5 eV. All energies are in

eV.

Here, i runs over the four 0 sites, and c; are the appropri-
ate phases required to give the molecular-orbital x —y
symmetry about the Cu site. Since Up should only pertain
to two holes on the same 0 site, Eq. (B1) involves
n;, =p;,p;„whereas elsewhere in the equation, the com-(p)— ~ ~

posite operators p, and p,t are used.
The ground state of the ¹lectron system, i.e., one hole

in the Cu04 cluster, is easily found in a manner similar to
Sec. III. Taking first U~ U~d 0 (also Ud 8.5 eV, and
~c =0.4 eV) we choose the 0 hole energy ~c =1.19 eV so
that the solution reproduces the same 0.56 probability for
the hole being on the Cu site as was found for the impuri-
ty Anderson model. With this single empirical choice of
~e, the cluster-model results for the ground states of the
N- and (N —1)-electron systems shown in Table VII

Quantity

Up

Upd

EBIS

&N I ~n I » -wBls

Wdd

Wpp

Wp'p

Wpgg

weES

Eg~r

Case 1

0
0

¹lectron system
—2.43

0.56
(N 1)-electron system—

0.07
0.09
0.26
0.58
0.72
1.07
0.31
1.36

Case 2

7.3
0.6

—2.43
0.56

0.08
0.02
0.32
0.58
0.74
0.42
0.32
2.01
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1dd) =did(10),
1pp)—= —,

' gc p;ip;110),
E

I
p'p&—= Zc;c,pttpjt 10),

(a3a)

(S3b)

(83c)

1pd)= '
(d(pY+p(d&)10). (B3d)

The weights wdd, wpp, wpp, and wpq in Table VII are the
squares of the amplitudes of these states corresponding to
the ground-state eigenvalue Eg(~ '& of the 4 x 4 matrix re-
sulting from this basis. The location of the first ionization
level EpEs Eg —Es( ') is the difference between N-
and (N —1)-electron ground-state energies, while the
strength of this state in the d-spectral weight is

1(@g ' 1di 1@s(P )1, taking the hole in the N-
electron ground state to be spin up.

The agreement between the cluster (case 1, Table VII)
and impurity Anderson (case 1, Table VI) models for the
weights w related to the (N —1)-electron system ground

(case 1) are in rather striking agreement with the corre-
sponding impurity Anderson model quantities in Table VI
(case 1). This is especially true for the decomposition of
the (N —1)-electron ground state to be discussed momen-
tarily, but even the positions Eats and EpEs of the electron
affinity and ionization levels which bound the insulating
gap agree to =0.1 eV.

To find the ground state of Eq. (Bl) for the (N 1)—-

electron or two-hole case, we consider only singlets, taking
the basis

state is 0.02 or better. The 0.35 probability for two 0
holes in Table VII is decomposed into wpp and wpp corre-
sponding to whether the holes are on the same or different
0 sites, respectively. For Up 0, there is no correlation
between the two holes when they are both on 0 sites, and
so wt, p 3wpp exactly.

Having established that the cluster model can repro-
duce the first ionization and affinity levels of the impurity
Anderson model when Up Upd 0, we can now repeat
the solution with our Sec. II estimates for these quantities
as shown in case 2 of Table VII. As can be seen by com-
parison of the two columns in Table VII, the predominant
effect is an onset of correlation between the two holes
when they are both on 0 sites, so there remains little prob-
ability op of both being on the same 0 site, although the
sum wpp+wp p is near[~ unchanged. Finite Up does raise
the total energy Eg'N ', shiftin-g EFES by -0.65 ev, and
increasing the insulating gap to = 2 eV for the extreme
case of Up 7.3 eV. If applied directly to the impurity
model, this shift in EpES still leaves the two-(x2 —y )-
hole singlet closer to the Fermi energy than the 0(2p)
continuum located at E&0. Furthermore, neglected
effects of Up on these 0(2p) states may shift this continu-
um to even more negative energies.

These cluster calculations are certainly over simplified.
However, we suggest that the qualitative conclusion is
correct, namely, that the effect of Up is to enhance corre-
lation effects in the first ionization state of La2Cu04 while

increasing the insulating gap, but that in itself Ut, is not
sufficient to move pure 0 states closer to the Fermi level
than the Cu-0 hybrid, two-hole, x2 —y

2 symmetry sing-
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iN. F. Mott, Metal Insulator Tr-ansitions (Taylor Ec Francis,
London, 1964).

Examples of recent conference proceedings on correlated elec-
tron systems are Proceedings of the International Conference
on Valence Fluctuations, edited by E. Muller-Hartmann, B.
Roden, and D. Wohlieben (North-Holland, Amsterdam,
1985), and Ref. 3.

sProceedings of the XVIII Yamada Conference on Supercon-
ductivity in Highly Correlated Fermion Systems [Physica
B+C 14$, Nos. 1-3 (1987)l.

4J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 189 (1986).
5M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng,

L. Gao, Z. J. Huang, Y. Q. Wand, and C. W. Chu, Phys. Rev.
Lett. 5$, 908 (1987).

sSee papers in Proceedings of the International Conference on
High Temperature Superconductors and Materials and
Mechanisms of Superconductivitylnterlaken, , Switzerland,
I988 [Physica C 153-155 (1988)l.

~S. Mitsuda, G. Shirane, S. K. Sinha, D. C. Johnston, M. S. Al-
varez, D. Vaknin, and D. E. Moncton, Phys. Rev. B 36, 822
(1987); D. Vaknin, S. K. Sinha, D. E. Moncton, D. C.
Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Jr.,
Phys. Rev. Lett. 5$, 2802 (1987).

sR. J. Birgeneau et al. (unpublished).
SP. W. Anderson, Science 235, 1196 (1987).

G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Com-
mun. 63, 973 (1987); P. W. Anderson, G. Baskaran, Z. Zou,
and T. Hsu, Phys. Rev. Lett. 5$, 2790 (1987); P. W. Ander-

son and Z. Zou, ibid 60, 132 (198.8).
"S.A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B

35, 8865 (1987); S. A. Kivelson and D. S. Rokhsar, in Ref. 6;
V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095
(1987);R. B. Laughlin, Science (to be published).

'2V. J. Emery, Phys. Rev. Lett. 5$, 2794 (1987).
'iJ. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987).
'"J. R. SchrieFer, X.-G. Wen, and S.-C. Zhang, Phys. Rev.

Lett. 60, 944 (1988).
' Y. Guo, J.-M. Langlois, and W. A. Goddard III, Science 239,

896 (1988); G. Chen and W. A. Goddard III, ibid 239, 899.
(1988).

' R. J. Birgeneau, M. A. Kastner, and A. Aharony, Z. Phys. B
71, 57 (1988).

'7D. M. Newns, Phys. Rev. B 36, 5595 (1987); D. M. Newns
and M. Rasolt, ibid. (to be published).

' D. M. Newns, P. Pattnaik, M. Rasolt, and D. A. Papaconstan-
topoulos (unpublished); this work uses a parametrized band
structure due to D. A. Papaconstantopoulos, M. J. DeWeert,
and %. E. Pickett, in High Temperature Superconductors,
edited by M. B. Brodsky et al. , MRS Symposia Proceedings
No. 99 (Materials Research Society, Pittsburgh, PA, 1988).

' P. A. Lee, G. Kotliar, and N. Reed, Physica B 148, 274
(1987).
C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State
Commun. 62, 681 (1987).

2' J. E. Hirsch, E. Loh, D. J. Scalapino, and S. Tang, in Ref. 6.
J. E. Hirsch, S. Tang, E. Loh, Jr., and D. Scallapino, Phys.



6666 A. K. McMAHAN, RICHARD M. MARTIN, AND S. SATPATHY 38

Rev. Lett. 60, 1668 (1988).
23H. B. Schiittler, Phys. Rev. B 3$, 2854 (1988).

W. Harrison, in Novel Superconductivity, edited S. A. Wolf
and V. Z. Kresin (Plenum, New York, 1987), p. 507; and
Phys. Rev. B 3$, 270 (1988).
J. Yu, S. Massidda, A. J. Freeman, and D. D. Koelling, Phys.
Lett. A 122, 203 (1987).

2sW. Weber, Z. Phys. B 70, 323 (1988).
27E. B. Stechel and D. R. Jennison, Phys. Rev. B (to be pub-

lished).
2sW. Kohn and L. J. Shan, Phys. Rev. 140, A1133 (1965).
29See papers in Theory of the Inhomogeneous Electron Gas,

edited by S. Lundquist and N. H. March (Plenum, New

York, 1983).
A review of density functional calculations is given by R. M.
Martin, Festkorperprobleme 25, 3 (1985).

3'L. F. Mattheiss, Phys. Rev. Lett. 5$, 1028 (1987).
J. Yu, A. J. Freeman, and J.-H. Xu, Phys. Rev. Lett. 58, 1035
(1987).
K. Takegahara, H. Harima, and A. Yanase, Jpn. J. Appl.
Phys. 26, L352 (1987).

34T. Oguchi, Jpn. J. Appl. Phys. 26, L417 (1987).
35W. E. Pickett, H. Krakauer, D. A. Papaconstantopoulos, and

L. L. Boyer, Phys. Rev. B 35, 7252 (1987).
R. V. Kasowski, W. Y. Hsu, and F. Herman, Solid State Com-
mun. 63, 1077 (1987); and Phys. Rev. B 36, 7248 (1987).
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980);D. Ceperley and B.Alder, Science 231, 555 (1986).
For Monte Carlo calculations applied to problems related to
the Cu-0 systems, see, for example, J. E. Hirsch, Phys. Rev.
Lett. 59, 228 (1987), and Refs. 21 and 22.
Reference 15 provides an example of configuration interaction
techniques applied to the Cu-0 systems.

" 0. Gunnarsson and K. Schonhammer, Phys. Rev. B 28, 4315
(1983).

4'See review by N. E. Bickers, Rev. Mod. Phys. 59, 845 (1987).
P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham, and J. W.
Wilkins, Comments Condens. Mater. Phys. 12, 99 (1986).
A. K. McMahan and R. M. Martin, in Narro~-Band Phe-
nomena, edited by J. C. Fuggle, 6. A. Sawatzky, and J. W.
Allen (Plenum, New York, 1988), p. 133.

44A. J. Freeman, B. I. Min, and M. R. Norman, in Handbook on
the Physics of Rare Earths, edited by K. A. Gschneidner,
L. Eyring, and S. Hafner (Elsevier, New York, 1987), Vol.
10, p. 165.

450. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, in

Proceedings of the Tenth Tanigashi Symposium on Core
Level Spectroscopies (Springer, Berlin, in press).
M. R. Norman and A. J. Freeman, Phys. Rev. B 33, 8896
(1986).

47C. F. Chen, X. W. Wang, T. C. Leung, and B. N. Harmon
(unpublished).

48M. Schluter, M. S. Hybertsen, and N. E. Christensen, in

Ref. 6.
A. Fumjimori, E. Takayama-Muromachi, Y. Uchida, and
B. Okai, Phys. Rev. B 35, 8814 (1987).
Z.-X. Shen, J. W. Allen, J. J. Yeh, J.-S. Kang, W. Ellis,
W. Spicer, I. Lindau, M. B. Maple, Y. D. Dalichaouch,
M. S. Torikachvili, J. Z. Sun, and T. H. Geballe, Phys. Rev. B
36, 8414 (1987).

'N. Niicker, J. Fink, B. Reenkar, D. Ewert, C. Politis, P. J. W.
Weijs, and J. C. Fuggle, Z. Phys. B 67, 9 (1987).

P. Steiner, J. Albers, V. Kinsinger, I. Sander, B. Siegwart,
S. Hiifner, and C. Politis, Z. Phys. B 66, 275 (1987).

53B. Reihl, T. Riesterer, J. 6. Bednorz, and K. A. Muller, Phys.
Rev. B 35, 8804 (1987).

540. K. Andersen, Phys. Rev. B 12, 3060 (1975); O. K. Ander-
sen and O. Jepsen, Physica B 91, 317 (1977).

ssH. L. Skriver, The LMTO Method (Springer, Berlin, 1984).
0. K. Andersen and 0. Jepsen, Phys. Rev. Lett. 53, 2571
(1984); O. K. Andersen, O. Jepsen, and D. Glotzel, in

Highlights in Condensed Matter Theory, edited by F. Bas-
sani, F. Fumi, and M. P. Tosi (North Holland, New York,
1985).

57U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
5sW. A. Harrison, Electronic Structure and the Properties of

Solids (Freeman, San Francisco, 1980), Sect. 2-D.
59J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954), see

Table I; Ref. 58, Table 20-1. We use Harrison's notation for
the Slater-Koster parameters, e.g. , V~ for (pdo). Both
references denote the actual hybridization matrix elements as,
for example, Ezz2 y2.

6oC. E. Moore, Atomic Energy Levels, Circ. No. NBS 467 (U.S.
GPO, Washington, DC, 1952), Vol. I, p. 45; Vol. II, p. 111.
Our Table III is based on average configuration energies. The
observed Cu 3ds4s 2 multiplets are 5.84 ('S), 1.64 ('G), 0.77
(3P), 0.38 ('D), and —1.40 eV ('F), relative to the average
configuration energy.
J. F. Herbst, R. E. Watson, and J. W. Wilkins, Phys. Rev. B
17, 3089 (1978).
P. H. Dederichs, S. Blugel, R. Zeller, and H. Akai, Phys. Rev.
Lett. 53, 2512 (1984).
H. P. Geserich, G. Scheiber, J. Geegk, H. C. Li, G. Linker,
W. Assmus, and W. Weber, Europhys. Lett. (to be pub-
lished).
U. Venkateswaran, K. Syassen, Hj. Mattausch, and
E. Schonherr, Bull. Am. Phys. Soc. 33, 473 (1988).

s5R. Sooryakumar (private communication).
G. B. Bachelet and N. E. Christensen, Phys. Rev. B 31, 879
(1985).
E. Antonides and G. A. Sawatzky, in Transition Metals 1977,
edited by M. J. 6. Lee, J. M. Perz, and E. Fawcett, Institute
of Physics Conference Series No. 39 (Institute of Physics,
Bristol, 1978), p. 134.
A. Fujimori, E. Takayama-Muromachi, and Y. Uchida, Solid
State Commun. 6, 857 (1987).
N. Nucker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M.
Temmerman, Phys. Rev. B 37, 5158 (1988).

7oA two-hole x 2 —y
~ singlet state of a Cu (3ds) ion would lie 2

eV above the configuration average, based on its '6, 'D, 'S
decomposition and the multiplet positions in Ref. 60. If the
two holes in La2Cu04 have only a 10% probability of both be-

ing on the same Cu site, one might anticipate only =0.2 eV
eA'ects.

'J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett.
55, 418 (1985).
J. F. Annett, R. M. Martin, A. K. McMahan, and S. Satpathy
(unpublished).
S.-K. Chan and D. J. Lam, in The Actinides, edited by A. J.
Freeman and J. B. Darby, Jr. (Academic, New York, 1974),
Vol. I, see discussion on p. 11.

74The approach used here was pointed out to us by 0. K. Ander-
sen.


