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It is shown that the procedure of Klemm and Clem (abbreviated as I) for the transformation to
isotropic form of the Ginzburg-Landau free energy for a superconductor with a general effective-
mass anisotropy leads to a current which is not perpendicular to the magnetic induction B, unless

B is in a crystal-symmetry direction. In general, the mean-field free energy is thus a function of
a new parameter P, which depends upon the direction cosines of B, as well as a function of the re-
normalized ~ parameter of I, except at the upper critical field 0,2. A perturbation solution in

y Pl(l+P) is found to order y~, and the angular dependence of the lower critical field H, ~ is
determined. The parameter P is found to cause B to nearly lock on to a crystal-symmetry direc-
tion, so that as the external field angle is varied, B switches from near to one symmetry direction
to (near to) another, yielding a kink in the angular dependence of H, ~ that is more pronounced
than in I.

I. INTRODUCTION

Recently, an enormous amount of work has been per-
formed on the superconducting properties of the new
(high-T, ) materials with transition temperatures T,
exceeding that of liquid nitrogen. ' 3 It has been found
that the new materials are layered superconductors with
anisotropies competitive with the intercalated dichal-
cogenides such as TaS2 (pyridine)ii2. These new materi-
als, YBa2Cu307 —s and related compounds, have now been
made of sufficient quality5 that precise measurements of
the anisotropies of the critical-field values are possible. In
particular, Worthington and co-workers5 showed that a
single crystal of YBa2Cu307 —s had an angular depen-
dence of the upper critical field H, 2 near to T, that agreed
precisely with the form expected for effective-mass anisot-
ropy. Although such a form could also arise from order-
parameter anisotropy, s it is well established that the
normal-state properties are highly anisotropic, the carrier
transport taking place predominantly within the layers, as
in TaS2 (pyridine)ii2. Since the pairing interaction is ex-
pected to be strongest within the layers as well, if the or-
der parameter were to exhibit a nodal structure, it is most
likely that such nodes would arise for quasiparticle motion
normal to the layers. If such were the case, this would

yield an H, 2 anisotropy that would be opposite to that ob-
served. It is hence reasonable to expect that the dominant
contribution to the H, 2 anisotropy arises from efl'ective-
mass anisotropy, although the actual effective-mass ratio
might be larger than what one would infer from the mea-
sured H, 2 anisotropy.

In addition, recent measurements of the lower critical-
field anisotropy on the high-T, materials have been
made. Although the earliest work on these materials
did not appear to have been made on crystals with
present-day perfection, and difficulty in determining H, i

from the magnetization curves (presumably due to flux
pinning) has complicated the interpretation of the results,
it is inevitable that reliable results will be forthcoming.

The above mentioned recent excitement over high-T,

materials has caused me to reexamine our previous work
(I),9 in the hope of gaining some new insights into the su-
perconducting properties of these materials. In that work,
we showed that the Ginzburg-Landau (GL) free energy
for an anisotropic superconductor could be transformed to
isotropic form, resulting in an effective GL parameter a.,
which depends upon the direction cosines of the magnetic
induction B. Although I believed our transformation pro-
cedure to be correct, I was disturbed by the subsequent re-
sults of Kogan and co-workers' which showed that in the
London limit (x~ ~), there was a contribution to the
current parallel to the local magnetic induction B, which
we had not found. In addition, our results were in dis-
agreement with the results of Tilley" for small anisotro-
pies that the vortex structure just below H, 2 tended to
lock onto the crystal lattice.

As I will demonstrate below, the resolution of these ap-
parent paradoxes arises from the minimization of the
transformed free energy. If one first minimizes the free
energy and applies the Klemm-Clem transformation to
the resulting (GL) mean-field equations, one finds a cur-
rent parallel to B. The GL equations for the order param-
eter and for the two components of the vector potential
(i.e., the current) normal to B are independent of the or-
der of minimization. The correct procedure for the
mean-field theory is to perform the minimization with
respect to the bare (or gauge transformed) vector poten-
tial.

The component of the current parallel to B in the
transformed variables is characterized by a single anisot-
ropy parameter P, which vanishes at all crystal-symmetry
directions. For a material with uniaxial symmetry, P can
be large for vortex directions away from the crystal axes.
However, a perturbation expansion in y=P/(I+P) is
found to be possible; such an expansion is performed to or-
der y . To each order in y, the radial variation of the or-
der parameter and the local magnetic induction pick up
logarithmic terms which do not combine in any readily
apparent way to give a single (or even angularly depen-
dent) power law behavior for small radii. This perturba-
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tion treatment is then employed to estimate the variation
of the order parameter in the intermediate regime (away
from, but not too far from the vortex core), and used to
calculate the vortex line energy to order y2(inc. ) 2. Non-
vanishing y appears to always cost energy. The angular
dependence of H, ~ is then found both for infinite samples
and for general ellipsoids. It is found that for x values and
effective-mass anisotropies expected for the high-T, ma-
terials, the vortex cores are always very close to a crystal-
symmetry direction resulting in a discontinuity in the

I

derivative of the angular dependence of H, ~. This kink is
more pronounced than that predicted in I.

II. TRANSFORMATION OF THE
MEAN-FIELD EQUATIONS

In I, we investigated the fully anisotropic Ginzburg-
Landau Helmholtz free energy, which in the reduced units
after the usual gauge-transformation can be written in the
form [Eq. (8) of I]

F, — d3 —f2+ ,' f +g—(8j') + f +b4 mp

1 m
X

Q mp

&/2

gX.„x,, , (2a)

mu
(2b)

where m (m~m2m3)' is the effective-mass geometric
mean, rc X/g is the usual GL parameter, b Vxa is the
local magnetic induction in terms of the gauge-trans-
formed [Eq. (7) of I] vector potential, f ( %'/ep

~
is the

relative magnitude of the local order parameter, m„ is the
effective mass in the p I, 2, or 3 direction, and
8„—=8/8x„. Note that Eq. (1) differs slightly in notation
from Eq. (8) of I, in that we have redefined fp and ap„
to be f and a„, respectively. The direction of b was as-
sumed constant in the sample, b(r) b(r)(sin8pcospp,
sin8psinpp, cos8p). In I, we found that Eq. (1) could be
transformed to isotropic form by an anisotropic scale
transformation, a rotation, and an isotropic scale transfor-
mation, preserving Maxwell's equations in each step.
These transformations together could be written as [Eq.
(38) in I]

I

The angles 8', p' are related to the direction cosines of b by
i 1/2

m]
sin 8'cosy'

a m

&/2

m2
sin8 sing

a m

sin 8p cospp,

sin8p sinpp,

~ f/2
m3cos8' cosHp,

Q m

(sa)

(sb)

(sc)

so that this unitary transformation rotates the axis (after
the anisotropic scale transformation) so that the rotated i
axis lies parallel to the scale transformed b. Hence,

b3b 3. It should be noted, however, that using Eq.
(2c) to write b„ in terms of b„does not automatically set
b~ b2 0, that must be done by using the inverse trans-
formation to write b„ in terms of b, and setting
b~ b2 0. Rather than transform Eq. (I( using Eq. (2),
we first minimize the free energy with respect to the un-
transformed variables, yielding

b„a (2c)
an

(6a)

and

&/2

gZ„„a„, (2d)

aJ' [Vx(Vxa)] e„+8.(8„a.—8,a„).
U

(6b)

where

a= g "(e„b)'
, P

(3)

We now apply the transformations [Eq. (2)] to Eq. (6).
It is easy to see that Eq. (6a) can be fully transformed as
in I, yielding

V f+a f f(1 f ), —

sing

COSH COSIP

, sin8 cosp

—cosp
cos8'sing'

sin8'sing

0
—sin8'

cos8',
(4)

is the anisotropy parameter relevant to the upper critical
field H, 2. The unit vectors e„=x„,and the rotation ma-
trix k„„is given by [Eq. (36) of I]

where x r/a Transforma. tion of Eq. (6b) yields

—gX„„a„f'-a' $
U v, v, t,,k m

x A,„(X~„k„,—k&,X„„)8~8~ a. .
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Multiplying by X» and summing over p gives

a—„f a $ (r„,r„—r„,r„)a&a„a, ,
v, A, ,X

where

mv
I ~p —~ ~~v~pv I p~ ~

m

(9)

(i0)

Explicit evaluation of Eq. (9) yields

a Lf' = —a2b3,

azf a~b3,
and

ag =e alb3+e&a2b3,

where

(»a)
(1 1 b)

(i ic)

and

(m3/m) ' sin8pcos8p[(m/m3)[(m~/m)cos Pp+(m2/m)sin Pp] —lj
el =y'(r32r1 I r31r12)

[(m (/m )cos'yp+ (m 2/m )sin'yp] '~' (12a)

(m3/m) ' [(m2 —m~)/m]asin8psinppcospp
e2 f I32I2/ I3 r» "b

[(m )/m) cos2yp+ (m2/m)sin2yp] 'l'

In deriving Eq. (11),use was made of the relations b~ b2 0, and the Maxwell equation V b 0. I remark that Eqs.
(1 la), (1 lb), and (7) are identical to those found in I by first transforming the free energy, and then minimizing with
respect to the transformed variables. Equation (1 lc), however, could only be obtained by a transformation of the mean-
field equations, and yields a component of the transformed vector potential (and hence the current) parallel to b b3.
Apparently, the transformation procedure of I fixes the gauge, so that we are not free to choose a3 0. Note that e~ and
e2 both vanish for b in a crystal axis direction (b in the x, y, or i directions); for an isotropic material they vanish identi-
cally. Although it appears at this point that two parameters (e.g. , e~ and e2) characterize the parallel current, we shall
see that only one combination of these parameters enters into the calculation.

Combining Eq. (11)with Eq. (7), we have

—,V'f+ [(a,b)'+(a, b)'+(f, a,b+ega2b)'1- f(1 —f')

We also have b a~a2 —a2a~, which yields
( (

b-a, ', a, b +a, ', a,b .f2 f2
(i4)

Equation (13) may be simplified by a rotation about the e3 axis and by a change to cylindrical coordinates. Since
a3b 0, it is easily seen that a consistent solution of the above equations has a+ 0, so that the vortex cores do not vary
spatially along their axes.

In cylindrical coordinates, Eq. (14) becomes

i a p ab i a i ab (i )
p ap, f' ap, p' aq, f' aq,

'

and Eq. (13) becomes

p +
2 2

+
3

[I+(e~ cosp+e2sinp) ]+
2

[I+(e~ sing —e2cosp) ]i a
'

a
'

i a' i
'

ab
'

. , i ab
'

p ap ap p' aq' f' , ap, p' , ay,

Rotating about the z axis by the angle pp given by

2e~ e2
tan2&p

[(e] E$)sin2y —2e(e2cos2yl -f(1 f ) . (16)—1 ab ab 2

p ap a$

one obtains
' 2

P sin2& =f(1 f ), —2 ab ab

p ap a~

( (

1 1 a af + i a'f + i ab (I+p+po2)~ I ab (I+p —po2)-'
p a- ap p' aq' f', ap, p a$
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where

p= —,
' (e)+e))

is the only combination of the parameters that enters the
mean-field equations (and hence the minimized free ener-
gy), aside from the previously found parameter a that
enters through x.. In Eq. (18), I have taken the liberty of
redefining p

—
po to be p, which also applies to Eq. (15).

Although it is possible to take Eqs. (15) and (18), to-
gether with the appropriate boundary conditions discussed
below, as the starting point for the calculation of f, b, and
the vortex line energy, we shall see that an exact solution
of this problem for arbitrary P is nontrivial. A perturba-
tion solution for small P is possible, however. Unfor-
tunately, the parameter P is not small for all angles and all
effective-mass anisotropies. For a superconductor with
uniaxial symmetry (m~ =m2), the parameter p can be

I

p-p~l+P
together with the definition

(20)

I+P
'

allow Eqs. (15) and (18) to be rewritten as

(21)

and

b 1 8 p Bb 1 8 1 Bb

1 —
y P BP f2 Bp p2 BP f2 ay

(22)

large both for filamentary (m~ )m3) and for layered
(m 3 & m ~) symmetries, for co=+/4. Hence, it is useful to
search for an effective expansion parameter that is more
limited in its magnitude.

Examination of Eq. (18) reveals that the transforma-
tion

(I - y) 1 a
'

Bf
'

1 a'f 1 ab
'

p +
2 2

+
3

(1+ycos2&)+
2

(1 —ycos2p)
1 Bb

p p p p2 8/2 f3 p p2

ysin2p f(1 —f2) . (23)
2 ab ab

p 84 Bp

Note that I have not transformed b, so that the relation
b Vxa is not preserved by this transformation. Hence,
the boundary conditions are properly obtained in the
(p, p) representation, and then scaled according to Eq.
(20). It can be shown order by order in a perturbation ex-
pansion in P that these different representations are iden-
tical. However, the advantage of (p, p) representation is
that the expansion parameter is y, where 0 ~ y ( 1, so
that the radius of convergence of the perturbation, if any,
is greatly enhanced over that for the P expansion, for sys-
tems with large anisotropy.

Equations (22) and (23) comprise the efl'ective Ginz-
burg-Landau equations for a superconductor with a fully
(diagonalized) effective-mass tensor. In order to solve
them, one first needs to find the appropriate boundary
conditions. We clearly require f and b to be continuous
functions of p and p. The explicit dependence of Eq. (23)
upon p is periodic, so we require

b(p, y) -b(p, y+2rr), (24a)

f(p, y) -f(p, y+2rr) . (24b)
Since Eqs. (22) and (23) are symmetric under p

—
y, I

choose solutions exhibiting that symmetry,

p + 2'
dp „ drab

1 —&aP
(26)

Note that although the vector potential contains a com-
ponent parallel to b, it is only the component a~ which
contributes to the closed line integral, just as in I. By us-
ing Eq. (22) in Eq. (26), the appropriate boundary condi-
tion as p 0 is found to be

1 p(Bb/Bp)
2z f2 (27)Jp p~p lC

Finally, one must calculate the line energy for a single
vortex containing one flux quantum, which is the cost in
energy per unit length of the vortex

+2m

g(ar, y)- (I-y). o
drtb dp plb'+ —,

' ('I —f')] . (28)

Using the standard procedure' of multiplying Eq. (15)
by Bb/Bp, Eq. (18) by Bf/Bp, and adding them together,
I find after the transformation [Eq. (20)I that

&(&i T) =~reg+ &irreg ~ (29a)

I

propriate boundary condition is obtained from the flux
quantization,

f(p, y) =f(p, —y), (25a)

b(p, y) =b(p, —y) . (25b)

As P~ era, f~ 1 as for the 2 =0 case. As P~ 0, the ap-
l

where

and

(29b)
1 +2m

(1 —y) ~o ~o dp p(1 f')—
&irreg

Bb 8 I Bb

Bp By f' Brt
dy dp

2
' 2

1 Bf Bf+ y (1+ 2) Bf Bb

BP 8$ 1 2' BP BP
' 2

+ 1+r(i ccs2B) Bf Bb, 2r .
&

af ab ab/sin2$
1
—

y Bp 8& 1 —
y Bp Bp 8&

(29c)
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Note that Birres 0 as y~ 0.
In order to calculate the line energy, it is necessary to

consider two distinct regions of p. The dominant regime is
for p~ I/a. , which for y 0 gives the leading behavior for
1na. »1. However, we shall see that unlike the y 0 case,
it is also necessary to investigate carefully the regime
0 ~ p ~ I/x, which to order y gives a contribution to c of
the same order in inc.. These corrections turn out to be
numerically small, however.

where a;J and C;J are functions of tIl. Let

and

IJa;J=
aoo

(34a)

(34b)
CEJ

ClJ

Then Eq. (22) and the ansatz [Eq. (33)] yield as p 0,

III. SOLUTION FOR SMALL y and

alP 0 (35a)

Although an exact solution of the problem for arbitrary
y is not readily apparent, a perturbation expansion for
small y can be readily obtained. We are interested pri-
marily in the case lnir»1, which is appropriate for the
high-T, materials. In general, it will turn out that the
effective "small" parameter is ylnir.

I assume b and fmay be expanded in powers of y,

2alo+4Clo+aii 0.
Similarly, Eqs. (22) and (33) yield

4Cio+Clo+2aio 0

and

4Cl i+ Cl l +2Clo+a lo+ 2al l I +cos2&.

(36a)

(36b)

b- Zb. ~",
n 0

(30a)

f- Zf.r".
n 0

(30b)

where bo and fo are independent of p (as in the isotropic
case). To evaluate the line energy in the dominant regime
I/ir~ p, it is first necessary to find the analytic form of
the vortex core (p~ 0), as the boundary condition given
by Eq. (27) can be used to approximate f in the dominant
regime. '

As for an isotropic superconductor with one flux quan-
tum, ' as p~ 0

a~o const,

lrl l lil lo+ 4 cos20

(37a)

(37b)

alo
Clo + q cos2$, (37c)

Note that the terms in p2lnp and plnp for bl and fl are
necessary. If alo Clo 0, for example, then all would
have to be a constant from Eqs. (35b) and (24a), and then
Eq. (36b) would have a secular term, causing Cll to lose
its periodicity, in violation of Eq. (24b). Hence, the intro-
duction of the terms proportional to inp for fl/p and bi/p
is required for the elimination of such secular terms.

It is easy to see that to order y, the coefficients Clj and

ai, satisfy

fo Coop+0(p ),

bo-bo(0) —aoop'+0(p'),

(31a)

(31b)
2 lr l io+ C i i i cos24 (37d)

where

(32a)

where allo and Cll l are constants of integration. We also
have the boundary condition [Eq. (27)] which fixes a lo,

a&o

and"

bo(0) = (lnx' 0.289) .1 (32b)

bi -atop'1np+a&~p',

fl -Clophp+Cl lp,

(33a)

(33b)

The parameter Coo has to be evaluated by a complete in-

tegration of the full solution. ' I have investigated the
terms of higher order in p for an accurate calculation of
the contribution to the line energy from the core region
0 ~ p ~ I/x; such terms turn out to be unimportant both
in the intermediate (dominant) regime and in the core re-
gion.

As p 0, a useful ansatz for bi and fl is

Equation (26) may be used to estimate allo (of order uni-

ty, or, at most, ln inc), but an exact formula for it is not
obvious, as a full calculation for arbitrary p is required,
just as in the calculation of Coo. The parameter, Clll ap-
pears to be arbitrary, and can be set equal to 0. Neither
a l lo nor Cl l l enter the leading corrections as p 0 of the
higher-order solutions.

To second order in y, the forms for f2 and b2 as p 0
required to eliminate the secular terms are

b2 a2op (lnp) +a2lp 1np+a22p

f2 C2op(lnp) + C2lpinp+C22p.

(39a)

(39b)

By the procedure described above for the first-order solu-

tion, the coefficients in Eq. (39) are found to be



6646 RICHARD A. KLEMM

1&20= 4

&2l &i 10+2Cl i i 8

a22=&22o (Ciii+ 2~ uiio —')cos2y ——'z cos4y,

C2p 64 (3 cos4$),

C2i —,
' ( —", —aiio ——', Ciii)+ —,

' (1 —2Ciii —
2 aiip)cos2& —(8 Ciii ——,', )cos4&,

C22 ——,
'

a22o —
4 (uiio+aiio) 4 (Ciii+2Ciii)+ ~& +C22icos2&+( —,', Ciii ——,

' Ciii+, 0» )cos4&.

(4Oa)

(40b)

(4Oc)

(4od)

(4Oe)

(4of)

b„(y) g C„pp'(inp)" cos(2py),
m, p~0

n

f, (p) g a„ i,p(lnp)" cos(2pp),
m, p 0

(41a)

(41b)

Note that the two new constants of integration a22p and

C22i are introduced. Note further that the earlier con-
stants of integration a i io and Ci i i do not contribute to the
leading behavior as p 0, given by the respective terms
with the highest power of lnp.

It is apparent that the nth-order solution is of the form

I

where the dominant coefficients C„,~ and a„,~ do not de-

pend upon the various constants of integration.
We would like to find an expression for f in the inter-

mediate regime I/x~ p&(~. To do so, I employ Eq.
(23), rewriting such terms as (1/f ') (8b/8p) as

(1/f )(8b/ 8p) f, and approximating (1/f )(8b/8p)
by [(1/f )(8b/8p) ( ~ o] . Similarly, I approximate

(1/pf )(8b/8&) by its limiting behavior as p 0. This is

a simple generalization of the standard asymptotic expan-
sion'2 '4 used for isotropic superconductors.

I fnd to O(y'),

1 —f =
2

(1+ycos2&( —,
' —Ciii ——,

'
lnp) +y [(lnp)2( —,

' + —,
' cos2p+ —,', cos4p)+inp(Ciii+ —", )

PC P
+ [ &~~ + -', (a»0 bio) 2 Ci i i

—3Ci i i )]/+O(y') ),
(42)

where terms proportional to cos2p and cos4& in the con-
stant lnp coefficients of the O(y') term have been
dropped, as they do not contribute to the line energy. The
dominant contribution to the line energy is thus readily
found to be

s(a., y) = 2ir y'(lnx) '
2

lnx+0. 497+
(1 —y) x', 24

+O[(y') (lnx) 4]

where I have neglected terms of order y (inc. ) in the
brackets, assuming inx))1. The constant term in the
brackets is included in order to closely approximate the
correct answer as y 0. Note that the apparent expan-
sion parameter is ylnx. , and that it costs energy for the
vortex to be directed off a crystal-symmetry direction
(yAO). In the London limit x ~, the energy cost for a
vortex to be off a crystal-symmetry direction is apparently
divergent; the vortices lock onto the crystal lattice. For
finite x, ho~ever, they are constrained to be near to a
crystal lattice direction, but do not lock onto it precisely.
Note further that the prefactor (1 —y) ' is valid to all
orders in y, arising from the transformation of p to p.
Hence, as the effective-mass anisotropy becomes large
(even if x is not too large), the vortices still greatly prefer
to be near a crystal-symmetry direction.

Although in the isotropic limit, the contribution to the
integral in s«s from 0 ~ p ~ 1/x leads onl~ to a term of or-
der x (and not x lnx), contributing to the constant
0.497 in Eq. (43), for yeo the Inp dependence of f also

I

gives a x lnx contribution. I have evaluated the contri-
bution to s«s in this regime by the following scheme: ex-
pand fo and bo to order p and p, respectively, and ex-
pand fi and bi to order p lnp and p lnp, respectively. I
have used the published results' for the above constant
(0.497) to estimate COO, and evaluated the integral. The
result is a correction term

2irylnx (0.003)
&reg carr =

x (1-y)
(44)

which is negligible compared with Eq. (43) to order y.

Finally, I have investigated the contribution from s;,«s.
To every order in y they contribute terms which are of at
least one power in inx less than the corresponding terms in

s„. Hence, these terms can be neglected for ln~)& 1. To
a good approximation, the vortex line energy is given by
Eq. (43).

F -2h, .B, (4S)

where B is the macroscopic magnetic induction and h, is

the external field. Since 8 is given by the flux quantiza-
tion condition [Eq. (26)],

(46)

IV. ANGULAR DEPENDENCE OF Hc)

The calculation of the lower-critical field H, i is now

elementary. The magnetic energy is
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independent of y. We therefore have for the component
h, 1 parallel to the local magnetic induction, b,

t)K&, ii + ko t)Hcl, t
H, g- Hci, t+8o . ' +

i8o sin8o 8gp
(48)

Note that both x and y depend upon the angles 8o and Po
describing the orientation of b in the original reference
frame.

Since the materials of primary interest are layered in
structure forming fairly flat rectangular prisms, 5 the
demagnetization factors associated with the crystal shape
must also be incorporated in order to compare with exper-
iment. In an earlier paper, ' I presented a treatment of
the role of the demagnetization upon the lower critical
field for a general ellipsoid. I will not elaborate upon that
treatment, but will present some calculations for the case
of uniaxial symmetry, assuming the effective-mass axes
coincide with the ellipsoid (gross) crystal shape axes. Re-
sults both for layered and for filamentary symmetry will
be presented.

V. RESULTS AND DISCUSSION

In Fig. 1, I have platted H, ~ as a function of 8H, the an-
gle H makes with the i axis for a material with layered
symmetry (m~ m2) with anisotropy parameter e ml/
m 3 0.1, and L & 10 and 50, where x & is the minimum
value of tr, which occurs for 8H 0. Although in I no cusp
in the angular dependence of H, ~ was predicted for e
values this large, cusps are clearly evident in these curves.
The cusps occur at an angle 8H, at which the direction of
B switches from near to one crystal-symmetry direction to
near to another. In addition, I have plotted the function
y(8H) far these respective curves. Note that y(8H)e0
except at the crystal-symmetry directions (8H 0' and

H l, t = lntc+0 49.7+ . (47)
2x(1 —y), 24

As in I, the full h, ~ is found from

90'), and exhibits a discontinuity at 8H. The nonvanish-
ing y values tend to restrict B to point near to a crystal-
symmetry direction, but this restriction is most pro-
nounced near the hard direction (8o near to 0 ). At 8H,
80 jumps from -5.0 to 79.0 for x& =10, and from
-4.4' to 79.0 for x & 50. Hence, increasing x & tends
to further favor the locking onto the harder crystal-
symmetry direction. Note further that y never becomes
very large, reaching a maximum in the neighborhood of
0.1 before the switching occurs, so the perturbation ex-
pansion in powers of ylnx (which is ~ 0.33) appears to
be at least asymptotically valid, aided by the small
coefficient of the (ylnx. ) correction to the vortex line en-

ergy.
In Fig. 2, I have plotted the external field for first flux

entry HE as a function of the external applied field angle
8E, for e 0.01 and x. & 50. The solid curve corresponds
to a bulk sample; 8s 8H. The dashed curve is for an ob-
late spheroid with c/a 0.1. Note that the cusplike be-
havior is not very different than in I (with y 0), as the
anisotropy of x is responsible for most of the switching.
The main difference from I is the upward curvature of
HE(8E) for small 8g. Note that demagnetization effects
can remove the apparent anisotropy as well as the position
of the cusp. At 8g, 8o switches from 0.16' to 87.5', in-

dependent of sample shape.
In Fig. 3, curves of HF. (88) for k& 50, e 0.001 are

shown for a bulk sample (solid curve) and an oblate
spheroid with c/a 0.1 (dashed curve). Again the behav-
ior is almost quantitatively identical to that of I, differing
primarily in the curvature of H8 for small 8s. At 8g, 8o
switches from 0.01' to 89.3', independent of sample
shape.

Hence, the inclusion of the nonparallel currents does
tend to cause the vortices to prefer to lie near a crystal-
symmetry direction, but these currents have the largest
effect on the measured H, & systems that are not very an-
isotropic. For highly anisotropic systems (e«&1), the
Klemm-Clem formula (y 0) is pretty good.

In Fig. 4, I have attempted to fit the data of Denhoff

1.0-
1.2

30 60
e, (deg)

90

0.08

0
30 60

OE (deg)
90

0.10

0.06
7

0

FIG. 1. The solid lines are plots of H, ~(8H) for a bulk sample
with c 0. 1 for s & 10 (upper) and x & 50 (lower). The bro-
ken curves are plots of y{80) corresponding to the respective
H, I curves.

FIG. 2. Plots of the angular dependence of the applied field
for first flux entry HE(8E), normalized to its 8s 0 value for

0.01 and x & 50. Solid curve: bulk sample. Dashed curve:
e/a 0.1. The broken curves are the respective y values.
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1.2

0.8

LLI
CD~ 0.4

0.06

0
0 30

BE (deg)
60 90

FIG. 3. Plots of Hs(HE)/HE(0) for e 0.001 and x& -50.
Solid curve: bulk sample. Dashed curve: c/a -0.1. The broken
curves are the respective y values.

and Gygax' for the layered superconductor NbSe2. Us-
ing their demagnetization parameters (corresponding to
an oblate spheroid with c/a 0.053), the predicted ap-
plied field for the first flux entry HE as a function of the
applied field angle Hg is shown. The solid curve corre-
sponds to e 0.0375, which is chosen to fit the data at
HE 0' and 90', respectively. The dashed curve is for
e 0.0625, which was inferred from H, 2 measurements. 's

For Hg ~ 70', the data fit on the predicted curve, but this
was also true in their fit to the Klemm-Clem formula.
However, unlike the earlier fit in which only the
c 0.0375 predicted curve exhibited a cusp, both curves
shown here exhibit cusps. In the region 70 & BE ~ 90',
the data fall between the two curves.

Although Denhoff and Gygax'6 were able to obtain a
quantitative fit by assuming that B is only pointed in ei-
ther of the two crystal axis directions, the present theory
gives a partial justification for that assumption. These
values of the parameters are not that different than in Fig.
1, so B is only constrained to lie near to one of the axes.

For the a=0.0625 curve, Ho switches from 2.5 to 82.2'.
For e 0.0375, 8 switches from 1.2' to 84.5'. The varia-
tion of Bo from 90' by the above amounts is reflected in
the curvature of HE(HE) near to HE =90', which is down-
ward in the theoretical fit (although much less so than in
the fit to the Klemm-Clem formula), whereas the experi-
ment shows an upward curvature.

It should be noted that the anisotropy (e 0.0625) in-

ferred from the H, 2 data would be modified if the order
parameter exhibited some anisotropy. This could cause
the inferred e from H, 2 measurements to be larger than its
intrinsic effective-mass value, which could possibly ex-
plain the low value of the observed HE(90'). An order-
parameter anisotropy of —1.7 can be inferred from a
comparison of far-infrared' and tunneling's measure-
ments. However, this theory does not take account of
order-parameter anisotropy, so it is not known how that
anisotropy might affect the angular dependence of H, 1

near the easy axis. Certainly, the layered structure of
NbSe2 would be expected to manifest itself most prom-
inently for fields nearly parallel to the layers. The H, 2 be-
havior, however, tends to suggest that the vortex cores al-
ways extend over more than one layer, so naively one
would expect this theory to be appropriate.

It should also be noted that NbSe2 is rather anomalous
in a number of its superconducting properties. For exam-
ple, in Ref. 4, it was shown that the fluctuation diamagne-
tism of NbSe2 just above T, did not fit the usual behavior
for either a bulk or layered superconductor.

For completeness, I have also included some plots for
superconductors with filamentary symmetry, m1 mp
& m3, e=—m3/m1. In Fig. 5, I have plotted HF. (HF. ), nor-

malized to its HE 0 value (parallel to the filament axis)
for e 10 ', 10, and 10 for bulk samples and for
a prolate spheroid (c/a 0.1 for e 0.1, c/a 0.01 for
e 0.01 and 0.001), and for x& 10. For e 0.1 and
0.001, I have also included curves for x& 50. The be-
havior is similar to that of the Klemm-Clem formula, '9

5-
HE(e E)

HE(0)

HE(0)

4-

C)
LLI

=2-
LIJ

CD

LLI ii

0

0.10

0.06

0
50

eE (deg) 60 90

30 60 90
BE (deg)

FIG. 4. Plot of Hs(BF)/HE(0) for x& 13.5, c/a 0.053,
0.0625 (dashed), and 0.0375 (solid). The broken curve is

the y value corresponding to e 0.0625. The data are from
Denhoff and Gygax (Ref. 16).

FIG. 5. Shown are plots of Hz(OE)/HE(0) for filamentary
superconductors with e 0.1, 0.01, and (inset) 0.001. Solid lines
are for x & 10 for bulk (c/a 1) samples. Dashed curves are
for bulk samples with N;& 50. Dotted-dashed curves are for
x. & 10, and a sample of prolate spheroidal shape with c/a 0. 1

for the e 0. 1 curve, c/a 0.01 otherwise.
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except for the curvature near to HE-90', which has
changed sign as for the curves with layered symmetry.
Also, the e-0.1 curves exhibit a cusp, which was not
found previously.

In conclusion, it has been shown that the transforma-
tion procedure of I leads to a component of the local
current parallel to the local magnetic induction, even un-
der the assumption that the direction of b is a constant in
the sample. This parallel current tends to lock the vortices
onto the crystal axes, but not rigidly, as b can point slight-
ly away from the crystal axes, the amount dependent upon
the anisotropy parameter e and upon the vortex stiffness
r. In the London limit, this locking becomes rigid, as the
asymptotic expansion in powers of yln~ breaks down as".The near locking onto the crystal axis directions
(found for a unidirectional vortex core) would most likely
inhibit any entanglement of vortices which has been re-
cently suggested. z'

The question of the convergence of the perturbation
series in ylna remains open. The leading term found here
is suggestive of convergence for ylna not too large, so that
the series appears to be at least asymptotically valid.
Furthermore, the switching angles occur for rather small

ylna, except for systems with small anisotropy. For a
high degree of anisotropy (e(«1) one can essentially set

y ~{)
For a quantitative comparison with experiments on the

high- T, materials, one ought to treat the demagnetization
effects (for a real crystal with corners) in a better fashion
than as an ellipsoid considered here. Also, the question of
order-parameter anisotropy has not yet been satisfactorily
resolved, as some experiments are suggestive of a rather
isotropic order parameter, whereas others are suggestive
of a nodal structure. It would also be desirable to perform
the calculation for Josephson-coupled layers. Such a
calculation could be done below the dimensional crossover
temperature for the field parallel to the layers, but does
not appear at first sight to be easily solvable for b in an ar-
bitrary direction. Such calculations are presently being
performed, and will be discussed in subsequent publica-
tions.
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