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We have studied the single-band Hubbard model on a two-dimensional square lattice slightly
below half filling. Using the canonical transformation and a form of variational wave function
that allows an expansion in terms of hole concentration & with respect to half filling, we find that
a nonzero & results in a frustration of the antiferromagnetic (AF) order favored by the superex-
change interaction. Use of a variational Monte Carlo calculation enables us to construct a phase
diagram in the t/U-§ plane in which the AF order disappears at §=0.06 for a typical value of

t/U=7%.

Since the discovery of high-T. superconductors,’ there
has been a significant theoretical effort to understand the
properties of these materials both in the superconducting
and nonsuperconducting states. Although it is becoming
clear that at least a two-band Hubbard model will be
needed to capture the physics of the copper perovskite
compounds, it is important to understand the physics of
the low-lying excitations of the doped Mott insulators
within as simple a framework as possible. For this pur-
pose, we study the two-dimensional single-band Hubbard
model? in order to clarify the dependence of its antiferro-
magnetic (AF) long-range order on the hole concentration
& with respect to half filling where we identify each site of
the model with a copper site in a CuO; plane of supercon-
ductors. Use of the canonical transformation appropriate
for small ¢/U and subsequent application to a particular
form of variational wave functions allows us to construct
an effective spin Hamiltonian that shows increasing frus-
tration of AF order with §. With the help of a variational
Monte Carlo calculation, where different trial wave func-
J
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Here, b; is a slave boson keeping track of hole motion
and satisfies the constraint b;'b;+m; =1, S; = § ¢} 6apcip,
and n; =n;;+n;;. It is easy to see that the first and third
terms can reduce the AF order favored by the second (su-
perexchange) term since the hole motion in these terms
results in the displacement of electrons by one lattice
spacing without flipping spins (Fig. 1). Also, the last term
of (2) indicates a possible exchange between next-nearest
neighbors, and this may result in frustration of the system.

To make this idea more concrete, we attempt to
separate the hole degrees of freedom from the spin de-
grees in the spirit of the Born-Oppenheimer approxima-
tion. We consider the above Hamiltonian operating on a
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tions are used to represent ordered and disordered phases,
we obtain a semiquantitative phase diagram in ¢/U-§
plane.

Consider the single-band Hubbard Hamiltonian

H=—12 clejotUXnyn;, m

ij,o i
i—j

where indices connected by an arrow under the summa-
tion indicate the sum over all possible nearest neighbors
with the direction of electron motion taken into account.
Thus, the first term of (1) is equal to
_tz(i‘j),o-(CfLCjc'{"CjLCia) where (i,j) indicates the sum
over bonds. For small /U, we can use the canonical
transformation? that eliminates the mixing of doubly oc-
cupied and singly occupied sites to O(¢/U). In our prob-
lem, the transformed states have no doubly occupied sites,
and, hence, the transformed Hamiltonian may be written
as
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FIG. 1. Qualitative picture showing how a hole motion can
destroy antiferromagnetic order in the Ising limit. The horizon-
tal motion of a hole (indicated by an open circle) leaves
misaligned spins in the box.
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variational wave function

| w) =krIPk,| v, (3)

where Py, =uy+vicko¢ —k—o injects holes with momen-
tum *k, and |v) represents a half-filled state with exact-
ly one electron per site (and, therefore, it has only spin de-
grees of freedom). Due to the latter constraint on | v), the
electrons in |v) are highly correlated in k space. The
minimization of the energy expectation value (¥ | H | ¥) is
done through the optimization of | v) rather than treating
| %) in full. Thus, we simplify the expression for the ener-

only operate on spins of | v),
Heg= [I'IPk,,] ‘H [pPka] : (4)
k,o ,o

In effect, we approximate the minimization of (H) in the
complete Hilbert space by the minimization of (H.q),
within the subspace spanned by {|v)}. This is possible,
since the operator Py, fixes the way holes are introduced
to the system and eliminates their degrees of freedom
from our trial wave function. The normalization of | ¥) is
guaranteed if ug¢ +vé/4=1.

In general, we are interested in the expectation value of
an operator O given by

gy expectation value by approximating (¥|0|w =<v [HPKG] o [pPkd] v> ) (5)
k,o ,o
(HY =~ (v | Heg| V), UsmgAthe operat?r 1de:1t1ty
OPy, =Py,0+1[0,Py,], 6)
where we have defined an effective Hamiltonian that will  we find, after repeated applications,
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This expansion is valid if Py,’s commute with each other and this is the case with our choice. Applying Eq. (7) to the to-

tal number operator X ;n;, we find

<v Zn v>=1v—)k:ve,

®

where we have used [[X;7;, Pyo], Pxo] =0, and N is the number of sites in the system. Equating this to the total number

of electrons V(1 — &) gives the expression for & in terms of vy,
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Now it is straightforward to show that the nth-order term of the expansion (7) is 0(5"):
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so long as O conserves the particle number. Therefore the expansion (7) is in fact an expansion in terms of the hole con-
centration 8. Since we are interested in a small § regime, we will keep only the first two terms of (7). Applying this trun-
cated form to the Hamiltonian (2), we find that H s defined in (4) is effectively (assuming that there are N/2 up spins),

2
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i—j i—j
with
Jas =J(R4,Rp) =§% cosk- (R, —R3), (12)

which only operates on spins. Now, the minimization of
(H) is converted to that of (H.g), for a given form of Py.
To go further, we must specify ux and vy. To do this,
we use the result of t/U— 0 limit where we have some
knowledge of how the system behaves. First, by
Nagaoka’s theorem,* we expect the system to become a
ferromagnet for small 8. Second, if we polarize all spins
in one direction, we can compute the exact energy expec-
tation value for given 8. These two points can be com-
pared to our H.x and made consistent by choosing ap-
propriate uix and vy. We make the assumption that (11) is
a good representation of the magnetic states so that the
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resulting values of the coupling constants may be applied
for arbitrary spin configurations. The consistent choice is
to take vy to be nonzero only near the “corners” of Bril-
louin zone, i.e., near k=% (z/a)(e, £ e,) with a being
the lattice constant. Assuming that this remains valid
away from t/U— 0 limit, we replace cosk- (R; —R;) and
cosk: (R; —Ry) in (12) by —1 and +1, respectively, for
nearest neighbors and next-nearest neighbors. Note that,
in the strong correlation limit, this assumption does not
necessarily violate the symmetry imposed by the underly-
ing spin configuration. For instance, though it is clear
that if the AF long-range order exists then the quasiholes
must reside below the Fermi surface defined by
|k, | + |ky| =r/a, the actual holes themselves need not
be at the Fermi surface and may be found at the
“corners” as we have conjectured here. One can see in the
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study of Gutzwiller wave functions® and quantum Monte
Carlo calculations® that the particle density is nonzero
over the entire Brillouin zone for large-U Hubbard model,
making it at least possible to take out electrons at the
corners of the zone.

Combining this conjecture with (9), we find for given &
(up to some constant)
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(13)

We caution the reader that the last sum has two
equivalent terms if i and k are second-nearest neighbors
(i.e., diagonal from each other) since there are two possi-
ble paths from k to i, whereas there is only one if / and &
are third-nearest neighbors (i.e., distance 2a away). The
Hamiltonian (13) clearly shows that the hole (a) diminish
the strength of AF coupling and (b) create frustration due
to next-nearest-neighbor coupling. It is important to note
that the frustration term originates in the last term of the
Hamiltonian (2) which results from pair hopping that, to-
gether with the third term, is often dropped in the litera-
ture. The importance of this term has also been noted by
Yokoyama and Shiba.’

The Hamiltonian (13) can be written in a concise
manner:

Heg=J\ 2 8i'S;+J, 'Zk Si*Sk. (14)
ij i,J,
i—j i—j+—k

So, we have reduced our original problem to obtaining the
ground state of the spin Hamiltonian (14). To this end,
we will use a small cluster calculation and the variational
Monte Carlo method.

The calculation on a small number of spins is done on
ladder shape configurations, as shown in Fig. 2, with a
variational state corresponding to linear combination of
singlet pairs. [This is like Anderson’s resonating-valence-
bond (RVB) state.®] Comparing the energy found in this
calculation to the one obtained for the AF state using the
spin-wave theory® allows us to determine which one of

(a) (b)

(c)

FIG. 2. The ladder configuration considered in the small clus-
ter calculation of the Hamiltonian (14) corresponding to (a)
four sites, (b) six sites, and (c) eight sites.

these is more likely to be the ground state. To simplify the
calculation, we limit the i «— j«— k sum in (14) to the di-
agonal neighbors (i.e., we exclude those pairs with dis-
tances 2a). We have computed up to eight spin sites and
extrapolated to infinite size. We find that the AF state
that is stable at J,/J;=0 loses its stability above
J2/J1=0.12 where the RVB-like state attains a lower
ground-state energy. This indicates that the crossover
from the AF to the RVB state exists at a considerably
lower value of J,/J; than that of the classical (S— o)
case J,/J1=0.25.

In order to further investigate size dependence of the
above results for the Hamiltonian (14), we have also per-
formed a variational Monte Carlo calculation. We com-
pare the energy expectation values of trial wave functions
representing AF- and RVB-like states.'® After trans-
forming the Hamiltonian to that of a lattice Bose gas with
hard core,!! where each boson indicates an up spin, we
have chosen the boson wave functions for AF and RVB
states in the following form:

o, r;; =0,
varex [Texpl=V ()], V(ry)=1ip, rij=a, (15)
2 j 0, otherwise,

and

wrvee [T () Tlexp [ - %q or? |, (16)
i,j i

i<j

where the products are taken over the number of bosons
(N/2 in our case), rij=|r;—r;| and p=7%. The varia-
tional parameters are p and g2 for ¥ar and ¥Ryp, respec-
tively. The latter function is similar to the form used by
Kalmeyer and Laughlin in a study of an RVB state on a
triangular Heisenberg model.'> We have, however,
chosen a variable power of g2, and discarded the phase
factors. This modification, in turn, results in the destruc-
tion of rotational invariance and other properties that are
believed to hold for the wave function studied by Kal-
meyer and Laughlin.!> We show elsewhere!° that ¥rvp
has an algebraically decaying AF correlation function.
The way we have implemented the periodic boundary con-
ditions for ¥ryp is discussed in the Appendix.

In Fig. 3, we show the lowest-energy expectation value
per boson for trial wave functions ¥ar and ¥ryp vs frus-
tration J,/J; obtained for a 50% 50 lattice. (Energies are
practically independent of the sizes above 14x14.) The
crossover occurs at (J,/J;). = 0.066 above which the AF
phase becomes less favorable compared to the RVB phase.
This value is roughly consistent with the small cluster cal-
culation in that by scaling the result of the cluster calcula-
tion by the numbers of next nearest neighbors taken, we
find 0.12(& ) =0.08 that is close to the value found in our
Monte Carlo calculation.

Using the value (J,/J ). = 0.066, we can draw a phase
diagram'#in ¢/U — & plane using (11). The boundary be-
tween AF and RVB phases is given by the relation

8/2 _|J2

T J—l]c=o.066. an
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FIG. 3. The plot of energy per site in units of J, vs J»/J, for
variational trial wave functions W¥ar (solid line) and Wgrys
(dashed line). They cross each other at J2/J; = 0.066.

The resulting diagram is shown in Fig. 4. As ¢t/U is in-
creased, the boundary approaches the asymptotic value of
8=0.08, and for a typical value of /U =+, we find the
AF-RVB transition to occur at § = 0.06.

To compare our result with experiments on high-T, su-
perconductor materials, we must, in addition, give con-
sideration to the three-dimensional coupling between
CuO; planes since the Néel temperature Ty of a two-
dimensional Heisenberg system is zero.!> The introduc-
tion of interlayer coupling, however, must be done careful-
ly since our choice of RVB wave function has an algebra-
ically decaying correlation. A mean-field-type coupling
will result in a three-dimensional AF order in both AF
and RVB phases discussed above. It must therefore be as-
sumed that the true ground state in the region indicated
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FIG. 4. Phase diagram obtained by comparing the Hamil-
tonians (13) and (14), with the crossover point (J2/J)).
==0.066. The solid line shows the phase boundary between AF
and RVB phases. The boundary approaches the asymptotic
value §==0.08 holes/atom in the /U — oo limit indicated by
the dashed line. (See, however, Ref. 14.)

by RVB in the phase diagram Fig. 4 has an exponentially
decaying correlation function for this phase diagram to be
meaningful in showing the upperbound of the critical-hole
concentration. This is reasonable in view of the fact that
the AF correlation function is likely to go through only a
narrow region (maybe a line) of algebraically decaying
phase (well described by our wryp) before reaching ex-
ponential decay as doping is increased. This picture is
supported by the study by Chakravarty, Halperin, and
Nelson'® of the nonlinear o model where AF order at
T =0 is found to disappear by going through a “point” in
their parameter space where an algebraically decaying
correlation is observed. With such a limitation in mind,
we can compare the phase boundary of Fig. 4 with the ex-
perimentally found critical-hole concentration where Tn
goes to zero. Our estimate of roughly 0.06 is consistent
with available experimental values.!” Though this agree-
ment is rather encouraging, one must be conscious of the
various limitations involved in our approach. (a) Our
phase diagram, which assumes a mean-field-type inter-
layer coupling, can only hope to show the upper bound of
the critical hole concentration. (b) The simple single-
band Hubbard model only provides a first approximation
to the correct physics of CuO; layers. (¢) Our diagram it-
self relies on the validity of our variational wave functions
for | v) as well as the conjecture that we can extrapolate
results for the ferromagnetic limit where the mobile holes
are found near the “corners” of the Brillouin zone to the
general magnetic configuration [see Eq. (3)]. Another
possibility that explains the rapid disappearance of AF or-
der is that the nature of the interlayer coupling is more
complex than that represented by a simple mean-field-
type picture. The latter possibility has already been point-
ed out by Tranquada et al. for YBa;Cu307 -, materials. 18
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APPENDIX: IMPLEMENTATION OF PERIODIC
BOUNDARY CONDITIONS FOR ¥grvs

The Bose gas wave function ¥gryp can be written as

\PRVBo:exp{— 1 [qzl—ZZlnrij +n'q2p2r,-2]}.
i,j i

i

(A1)

The exponent of the right-hand side of (A1) is nothing but
one-half of the potential energy for two-dimensional one
component plasma of charge g and density p. To write
this in the Jastrow form, we consider the interaction of the
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two charges with positive background and periodic bound-
ary conditions. The system is placed on a square lattice of
side L with one particle for every lattice site. In order to
impose periodic boundary conditions, we consider the in-
teractions of a particle at position r in the original square
with a charge ¢ at position R and the set of images located
in periodic replicas of the square. Since the resulting po-
tential will be a periodic function, the charge at R can
without loss of generality be placed at the corner:
Ro=(L/2)(exte,) leading to the sum of interactions
with charges R; =Qn;x+1)(L/2)ex+ Qny, +1)(L/2)e,.
The interaction potential of the charge g at r with this set
of charges is

V,-—2q221n|R,-—rl

= —qZZ In(R?+r%—2rR;cosb;) ,

]
where 6; is the angle between r and R;. As a result of the
square lattice structure, for each point R; in the first qua-
drant, there are three other points at the same distance
from the origin but with 6; replaced by 6, + (z/2), 6; + x,
and 6;+ (37/2), respectively. Summing these four contri-
butions to the potential one finds

8 4
r r
R ] Z[R; ] cos49,-]

-2¢2 ¥, )4lnR,~ , (A2)

ie(

V,=—¢q? In|l1+
i€ )

where i € (I) denotes a sum restricted to angles in the
first quadrant. It is worth stressing that expression (A2)
is valid only when the entire system is symmetric about
the origin. Given this symmetry, one can straightforward-
ly compute the potential contributed by the uniform posi-
tive background by integrating the force obtained from
Gauss’s law ¥V =(ng?/L?)+const where the constant
— oo and cancels the last term of (A2). Hence, the total
potential between the particle at r, the lattice replicas of
Ry and the positive background is given by

8 4
r r
Ri} Z[Ri} COSs: 6,]
2
+ qu—r z, (A3)
L

The series converges reasonably fast and sufficient accura-
cy is obtained by summing over 0 < (n;x,n;,) < 200. Us-

ing this result, we have expressed ¥ryp in Jastrow form
on a lattice with periodic boundary conditions

Vp(t)=—g2 ¥ In
i€

1+

‘I’RVB=.1;I.CXI)[_ 1V, (ti—r)], (A4)
i>j

where V,(r) =V,(r+Ro). This is what we have used in
our Monte Carlo calculation. One can verify that the
form (A4) reduces to the form given in Eq. (A1) in the
limit L — oo,
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