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Coherent states as solutions of the anisotropic Heisenberg antiferromagnetic chain
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We propose a coherent-state solution for the one-dimensional antiferromagnetic Heisenberg Harn-
iltonian in the quasi-Ising asymptotic regime. We discuss the nature of the spectrum and the eigen-
vectors as a function of the anisotropy parameter. Results for the energy of the ground state and
the short-range-order correlation agree with exact numerical calculations in a wide range of varia-
tion of anisotropy. We also present a canonical formulation of the theory which interpolates con-
tinuously from the Ising limit to cases of lower anisotropies, thus yielding a novel view of antifer-
romagnetism. Finally we discuss possible connections with the theory of superconductivity of high-

T, ceramics.

I. INTRODUCTION

The interest in models that deal with many-body prob-
lems in low-dimensional systems has been recently re-
vived due to the discovery of high-T, superconductivity.
The anisotropic Heisenberg chain with antiferromagnetic
coupling is one of them. By means of the Jordan-Wigner
transformation, this model for spin —,

' can be mapped onto
a fermion problem which is a lattice version of the mass-
less Thirring model. The latter has been recently used to
formulate a theory of superconductivity which seems to
apply to ceramic superconductors.

In this contribution we want to concentrate on the
study of the spin- —, Heisenberg antiferromagnetic chain.
Preliminary results of this material have been published
elsewhere. Although the problem has been exactly
solved in the past, no light concerning the nature of the
ground state (GS) has been shed. From the study of
spin-wave excitations it is known that the GS is some-
what disordered and different from the standard Neel
state. It is surprising however that the spin-wave theory
of antiferromagnets, as it is usually constructed, works
properly and describes with success experimental data.
Recently, Anderson and collaborators have put forward a
trial solution based on the resonating-valence-bond con-
cept, obtaining a GS which is liquid-type disordered.

In this paper we want to present a solution which is ex-
act in the high anisotropic limit (quasi-Ising regime), and
is neither perturbative in relation to anisotropy nor varia-
tional. The wave function proposed corresponds to a
coherent state, different from the Neel state even for
very high anisotropy. The apparent structure of this
state is disorderedlike, similarly to the solution proposed
by Anderson, but on the average the antiferromagnetic
ordering is preserved in the form

for m even,
&s, (m)) = . '

for m odd,

where the angle brackets in (1) mean an average in rela-
tion to the GS and S,(m) is the z component of the spin
at the mth site. This means that the usual picture of sub-
lattices in antiferromagnets can be saved, in spite of the
complications introduced by the GS structure. The GS
energy obtained in our calculation is the same as the one
provided by corrections from spin waves for high anisot-
ropy, and compares very well with exact numerical re-
sults for a wide range of variation of the anisotropy pa-
rameter a (a=O being the Ising limit and a= I the case
of isotropic exchange).

Bose-type operators are constructed which coherently
reverse pairs of neighboring spins. Disorder can be intro-
duced into the Neel state by applying these operators, but
since the final state is obtained as a coherent superposi-
tion, one can say that the final product is antiferromag-
netically ordered in the sense given by (1). This con-
sideration resolves the paradox concerning the formula-
tion of the spin-wave theory in antiferromagnets: spin
waves are actually constructed in relation to the true GS,
as long as only relation (1) is used in the deduction. We
will return to this point later on.

A broken symmetry is present in our formulation since
one of the two possible Neel states is chosen as a refer-
ence state, and all operators are defined in relation to it.
A similar construction can be done using the other Neel
state; both are connected by the time-reversal operator
and thus the GS is a doublet. By Aipping spin pairs in
the Neel state we induce a number of different
configurations within the manifold of total S, =O: At a
given site, the probability of finding the spin in either
direction is finite. To illustrate the physical picture we
quote Anderson: "Therefore, while the spins of the two
sublattices can certainly be said to be opposite in direc-
tion, in the ground state of the lattice, on an average
basis, we cannot define the direction in space of the spin
of either one. "

In spite of those facts we will show here that a different
spin representation can be chosen in such a way that the
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GS can be thought of as an "ordered" configuration. Lo-
cal spin ladder operators are dressed with a boson field
which delocalize their action along the chain. With such
dressed operators all the formal developments of antifer-
romagnetism, including spin waves, can be maintained.
In particular, the GS wave function can be obtained from
the ferromagnetic aligned state by flipping the quasispin
at even (odd) sites (we use the word "quasispin" to indi-
cate that normal spins are dressed with a boson field).
What our approach shows is the inadequacy of the basis
of eigenvectors of the [S,(1)S, (2) SS,(N)] opera-
tor. While they are eigenvectors of the Ising part of the
Hamiltonian, they do not connect continuously with the
eigenvectors of the total Hamiltonian when we adiabati-
cally switch on the transverse part of it. In our formal-
ism one interpolates continuously from the Ising limit of
high anisotropy to lower anisotropies, yielding in this
way a novel way to think of antiferromagnetic systems.

The GS doublet is separated by a gap from the excited
states. Unfortunately, in the highly anisotropic limit,
excitation bands collapse into discrete boson levels. Exci-
tations of arbitrary spin can be canonically constructed
through application of the quasispin reversal operators.
States of finite magnetization are of paramount impor-
tance in the construction of superconducting states, '
since they represent non-half-filling cases in fermion
language.

Our paper is organized as follows. In Sec. II we define
our bosoniike operators and construct the GS as a
coherent state. We also study the GS structure, its ener-
gy, and the short-range order correlation. In Sec. III we
describe an equivalent canonical way of building the GS
from the completely aligned ferromagnetic state. This
procedure yields a clue for obtaining excitations of well
defined spin. In the final section we discuss the connec-
tions with superconductivity and other implications of
our solution.

II. CONSTRUCTION OF A COHERENT STATE

2
N

1/2
1 —aN+ g S+(m +1)S (m)

m even

2~=
N

1 a—N+ g S+(m)S (m+1)
m odd

and also
1/2

1/2

where H, is the Ising part of the total Hamiltonian 8,
H, =JQS,(m+1)S,(m) .

where N is the total number of sites in the chain. For the
large-N limit (N~ oo ), the formalism is symmetric in re-
lation to both operators defined by (4). For finite chains
there are boundary effects present which depend on the
particular boundary condition chosen. For the free-end
chain, boundary effects on the energy decay as N
when N is large. We will not take the latter terms into
account since we are mainly interested in the thermo-
dynamic limit.

The commutator algebra for P, and P, can be straight-
forwardly calculated. It yields rather complicated rela-
tions which can be simplified to a boson algebra if one as-
sumes the quasi-Ising limit (0 & a « 1) and makes the re-
placement

S,(m)~ —,'( —1)

For this regime we obtain the following relations:

[4. 4'] = [4. 0.l= 1

(6)

The anisotropic spin- —, Heisenberg Hamiltonian for an-

tiferromagnetic coupling is written as
r

N

H=J g S,(m+1)S,(m)

The transverse XY part of H can be written exactly in
terms of the fields (P„P,) in the following way:

1/2

Hxr =H &—0 = ——J — (4,'+4, +0'. +0.)

+ —
I S+(m +1)S (m)

—
—,'a NJ . (9)

+S+(m)S (m +1)] (2)

Bosonlike operators which reverse spin pairs are
defined through

whe«J &0, S„(m), S~(m), and S,(m) are the spin com-
ponents for the mth site of the chain, and a is the anisot-
ropy parameter. In formula (2), S+ are the spin ladder
operators defined as

S+(m)=S (m)+iS (m),

S (m)—:S (m) —iS (m) .

Using the commutation relations [(6) and (7)] and ex-
pression (9) (and neglecting boundary effects), one obtains

[H 4,']=J4",
(10)

meaning that the Hamiltonian can be diagonalized by the
(P„P, ) operators within the manifold of total S,=0. We
then obtain

H =J(P,P, +P,P, )+H '(a)+EG(a),
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where EG(a) is the GS energy (absence of bosons de-
scribed by the (I) fields), and H '(a) is a residual term such
that

[H, H '(a)]=0,
[8' '(a), (I)t]=[8'(a),(()t]=0 .

(12)

(13)

If we denote by
I
N) our choice for the Neel state, a

standard coherent state can be constructed in the form

The term 8 '(a) represents all the elementary excitations
which are additional to the bosonic degrees of freedom
described by the fields ((()„((),). In particular, we might
find there domain wall excitations and other excitations
with S,&0 whose levels are remnants of spin-wave bands.
We will disregard H'(a) for the time being, and will leave
the formal demonstration that H'(a) =0 in the a~0 lim-
it for the last part of this section.

The Neel state defined by relation (5) is trivially an
eigenvector of operators ((t)„((),):

' 1/2

~ ~ ~ ~ ~ ~
a N

e 2 2
' 1/2

~ ~ ~ ~ ~ ~
a N
2 2

for any of the two operators (t(. Applying (((), over the

I

z ) ket, and using relation (15) yields

(t(, I
z) =e "+ '((),e 'e '

I
N)

=e "'+ "e '((t( +z)e ' IN)

=(z+z) Iz) .

Similarly one also gets the relation

(t. Iz&=(z+z) Iz&,

(16a)

(16b)

illustrating the fact that coherent states are standardly
constructed as eigenstates of the annihilation operators
(()()„P,). What is different in our construction is that the
Neel state is not the vacuum for the P's and that the ei-
genvalue for

I
z ) is [z+a/2(N/2)' ] and not simply z.

Choosing z = —z= —(a/2)(N/2)'~2 yields the ground
state of our problem, which is the vacuum for the boson
excitations described by the (t) fields. The GS wave func-
tion is then given by

As seen in relations (13),
I
N ) is not the vacuum for

the annihilation operator (()(. From the basic Bose-type
commutation relations (6), we obtain the identity

e '~ (t)e'~ =()t+z, (15)

=e e e
—(z +2zz) ~e ~0

I
N )

T

a NIG&=—z= ———
2 2

1/2

(17)

oo v+p
e

—z(z+2z) y (yt )~(yt ))z
I
N )

O
.P.y't t

where z—:a/2(N/2)'~ .

and then we get from (14) and (16)
(14)

y. IG)=Pe
I

G&=0

and

(18)

I
G) =exp a N

2 2

1/2 1/2

(4, 4, ) exp ——
2 2

aN a=exp
8 2

exp

' 1/2

exp
N y a N
2 ' 2 2

' 1/2

=exp aN
8

v, jM =0

( —1)'+" a N

v!pI 8

(v+p)/2

(19)

We see from the above formulas that
I

G ) is not pertur-
bative in relation to the anisotropy, since the a parameter
always appears multiplied by N' . %'e also get

where H, is the Ising part of the total Hamiltonian given
by relation (8). A straightforward calculation yields,

H
I
G&=EG(a)

I
G& .

( G
I
H.

I
G & = — (1—a') (22)

For solving the GS energy E6(a), the commutators given
below are of value

1/2 EG(a)= ——,'(1+a )JN, (23)

which combined with expression (9) leads to the result

[H„e ']=zJ ((),——
1/2

[8., e ']=zJ ((.
a
2 2

Ztt)e
e

zP
e

(21)

which is valid in the high anisotropy regime (a «1). It
is worth mentioning that the energy given by relation (23)
is the same energy that one obtains from spin-wave
corrections to the energy of the Neel state in the high an-
isotropic limit (narrow spin-wave bands). The short-
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range-order parameter, which measures the quality of our
solution, can be obtained immediately from relation (22).
One finds the result

where E~ is the energy of the Neel state (E~ = J—N/4)
and the term H"(a) is a residual part which commutes
with the Ising term H, . But note that

1 a(S,(m +1)S,(m)) = ——+ (24}

P, =P, +z, P, —=P, +z,
and substituting them in relation (7) yields:

(25)

which is independent of the site in the chain. In Fig. 1

we compare our results (23) and (24) with exact numerical
calculations obtained by Orbach as a function of the an-
isotropy parameter. Our results are exact in the asymp-
totic regime a ~(..1, but even for lower anisotropies our
wave function seems to describe with excellent accuracy
the physical situation.

Defining the new operators

(28)

Comparing with expressions (9) and (11) we get

H '(a):—8 "(a}, (29)

and so H '(a) commutes with both, the total Hamiltonian
and the Ising part of it (and hence it commutes with the
transverse XI'Hamiltonian). It follows that H'(a), in the
extreme anisotropic limit, is a constant. But since EG is
the energy of the GS [see expression (11)] it follows that
H'(a) =0.

[&. 00]=Jk.'

which means that

Jt, =J Q S,(m +1)S,(m)

=J(p, p, +p, p, )+EN+H"(a),

(26)

(27)

III. CANONICAL CONSTRUCTION OF THE
GROUND STATE AND KXCITATIONS

Following the idea of des Cloizeaux and Gaudin, one
might think of generating the GS wave function from the
ferromagnetic state

I
F ) with saturated magnetization

M = —,'N. In this state, all spins are pointing up and are
parallel to each other. By means of spin flips one can
generate any eigenstate of the total spin component S,:

nl, . . . , n

n] (n2 ''' (n„

a(n„n2, . . . , n)S (n)S (n2) S (n)IF) . (30)

In particular our Neel state can be written as

I
N) =S (1)S (3) S (N —1)

I
F), (31)

I
G)=e IN),

where the anti-Hermitian operator B is given by
]/2

(0, +4.

(32)

(33)

and use relation (31), one obtains

I
G)=e IN)=e S (1)S (3) . S (N —1) IF)

=e e[S (1)S (3) S (N —1)]e
I
F),

where we have assumed that the total number of sites N
is an even number. If we write

I
G) in the following

form:

s (m}—:e S (m)e (36)

s (m)=e S (m)e = g C„(a}S (m +n),

These new operators correspond to spin lowering opera-
tors dressed by a boson field described by B. It can
straightforwardly be shown that the action of s (m) is

delocalized around the mth site and can be described as a
linear combination of lowering spin operators in all the
chain. Since the transformation given by (36) is canoni-
cal, it preserves spin commutation relations, the fer-
romagnetic state is left invariant by it, and our GS is the
transformed state which is in correspondence with the
Neel state. The picture obtained is similar to the usual
change of representation from Wannier to Bloch states in
describing electronic properties of solids. Based on phys-
ical grounds one may write

(34)

where we have used the relation e —
I
F ) =

I
F), and,

consequently, we get the result

I

G)=s (1)s (3). s (N —1)IF), (35)

in complete analogy with the Neel wave function given
by (31) but expressed now in terms of the operators

(37)

where we have assumed an infinite chain with sites
—~ & n & + ao. The amplitude C„(a) is clearly a func-
tion of anisotropy and becomes more and more localized
when a~O. Precisely, for that limiting case one should
obtain
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d
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XQC

(a,'I

Using the relations

S (m)S+ (m ) = —,
' —S,(m),

1

S+(m)S (m)= —,'+S, (m),

one can immediately obtain the averages over the GS of
the local z component of the spin, namely

(S,( )) .„=——,'+ g [J„( )]'
5 Qdd

0,3

0.2

Ib', i

Exact

2

= ——'+ +o(a ),2 2

(S,(m)),„,„=—,
' —g [J„(a)]

n Qdd

(41)

I I I

0.0 0.2 0 I+ 0.6. 0.8

FIG. 1. The ground-state energy (a) and the short-range or-
der parameter (b) as functions of the anisotropy a. Continuous
lines represent the results obtained with our asymptotic (a=O)
theory. They are compared with exact results from Orbach's
calculation (Ref. 5) (dashed lines). Values at a=O (Ising case)
yield the energy and correlation of the Neel state. Our theory
has no adjustable parameter.

lim C„(a)=5„o,
a~O

(3&)

where 5„o is the Kronecker symbol. Therefore, it can be
seen that the a parameter plays the role of the electronic
hopping when one does the analogy with the electronic
systems. A cumbersome but straightforward calculation
of commutators in the quasi-Ising regime leads to

s+(m) =e S+(m)e

CX +o(a ),2 2

which tell us that the deviation is second order in the an-
isotropy parameter a.

Excited states within the manifold of total S, =0 can
be obtained through application of the bosonic operator
P, and/, :

(p, ) '(p, )
'

Ve! V !
(42)

N/2 —1

s+(2j+1)
~
G),

j=0

and the energy for each excitation is J. In the case of ex-
citations of finite magnetization one should proceed
differently. The canonical way of obtaining the GS
through formula (35) can be used as an heuristic starting
point for generating states which are approximate eigen-
vectors of the total Hamiltonian and have finite magneti-
zation. For example, one can write a completely sym-
metrized state with S, = 1 in the following form:

—Qo (n (oo
e„J„(a)S+(m—n), (39)

where J„(a) is the Bessel function of nth order and e„ is a
sign given by

N/2 —1 N

e„J„(a)S+(2j + 1 n)
~

G )—.
j=O n= —N

(43)

&n=
1+(—1)" n/2 1 —( —1)" (n —1)/2

2
( —1)" + ( —1)"

2

(40)

This state can be thought to originate from the ferromag-
netic

~

F ) state by omitting one of N/2 lowering opera-
tors in (35), i.e.,

1/2
2 N/2 —1

~

E)= — g s (1)s (3) s (2j+1) s (X —3)s (X —1)
~
F),

i=O
(44)

where the caret here means omission of the corresponding operator.
This state is clearly orthogonal to

~

G) and its energy exceeds in J the energy of the GS (energy necessary to fiip a

spin in the Neel state). The calculation of the energy proceeds in the following way:
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N/2 —I

(E
~

H
~

E)=—g (G
~

s (2j '+1)Hs+(2j+1)
~
G)

i i'=o
N/2 —1

(N
~

S (2j'+1)e He S+(2j+1)
~

N) .
j,j'=0

(45)

We use the identity

2

e He =H+a[B,H]+, [B,[B,H])+

which yields the result

2

eaBHe —a +H JAj
4

where the Hermitian operator 8 is given by
' 1/2

[ ,'(p, +p-, )+ ,'(p. +p-. )] .

(46}

(47)

(48)

In the limit of high anisotropy all these states are piled up
into a single degenerate level which is also superposed
with the one-boson excitations described by P, and P, .

Other excited states with arbitrary total z component
of the spin can similarly be constructed. These states are
of concern when treating the corresponding fermion
models to describe high-T, superconductivity. ' A
thorough study of the excitation spectrum is currently
under way and will be published elsewhere. '

IV. FINAL COMMENTS

A lengthy but straightforward calculation leads to

JNa JN(E
~

H
~

E) =
4

+E~+J—

=EG(a)+J, (49)

where En is the energy of the Neel state and EG(a) the
energy of the GS. In the limit of complete anisotropy one
gets

2

a-0 N

N/2 —1

S+(2j+1)~N),
i=0

(50)

with energy

(E ~B ~E) =E~+J . (51)

where k is a wave number in the Brillouin zone corre-
sponding to a sublattice (odd sites). A calculation similar
to the one described above for

~
E), shows that states

~
E;k ) are degenerate with

~

E ), and that they
represent possible excitations with energy J. In particu-
lar

We have then obtained an approximate eigenstate of 8
(it is exact in the limit a~0), with S,= 1, and J being the
energy of excitations. This state is a remnant of a spin-
wave band which narrows as long as the anisotropy is in-
creased. Ia fact, a wave-vector dependent state can be
defined as

N/2 —1

' 1/2

~
E;k) —= — g e'"' ~+ "s+(2j+1)

~
6),

j=0

(52}

S (n)=exp vari g C+C —C„,
m =-1

(55}

where the (C, , C, ) are fermion operators, one finds that
Hamiltonian (2) transforms into

H = —,'aJ g (C+,C + C+C, )

+J g ( n +, ——,
'

)( n —
—,
' ), (56)

where n =C C is the fermion number operator which
is related to S,(m) by

n =C C =S,(m)+ —,
' . (57)

W'e have succeeded in obtaining for the Heisenberg an-
tiferromagnetic chain a solution which is asymptotically
exact in the limit of high anisotropy. Since our solution
is in closed analytical form we gain a deep insight con-
cerning the structure of the GS and its excitations. We
also obtain a systematic way of improving our approxi-
mation for finite anisotropy by means of relations (41),
which measure the deviation from the antiferromagnetic
ordering, i.e., all the theory can be reformulated includ-
ing corrections to the quasi-Ising regime. One hopes that
this latter calculation should lead to spin-wave bands of
finite width. Numerical calculations for the high aniso-
tropic limit should be of value in order to test our predic-
tions, but apart from obtaining the energy spectrum one
should numerically study the nature of eigenvectors.
This fact seriously limits the size of systems under study.

The anisotropic Heisenberg chain for S = —,
' can be

mapped into a fermion model by means of the Jordan-
Wigner transformation. If we write that transformation
as

i
E) =

i
E;k =0),

and they are orthogonal,

(E;k'
~

E;k ) =5„„..

(53)

(54)
Nf ——g C+ C,„=g [S,( m ) + —,

' ] . (58}

There is then a relation between the total number of fer-
mions and the total magnetization as follows:
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The fermion Hamiltonian given by (56) includes a hop-
ping part which is proportional to eJ, and a Coulomb
repulsion between nearest neighbors which is proportion-
al to J. For states with zero total magnetization one gets
the result

(~f)= yc c X
m

(59)

i.e., we are dealing with half-filling cases. It is known"
that those states are insulators; there is a gap separating
the GS from the excited levels, and there is long-range or-
der in the sense that ( n, ) = 1 for even sites while

(n; ) =0 for odd sites, which is the fermion similar of re-
lation (1). Our solution (19) applies here for the case of
strong Coulomb repulsion between nearest neighbors.

The physical situation changes dramatically ' if one
allows for states of finite magnetization, where the fer-
mion occupation number is smaller than N/2. For these
latter cases, the GS is a superposition of many
configurations that coherently tunnel among them, yield-
ing a paramount mobility along the chain. Indeed, it has
been shown in Ref. 3 that those states are superconduc-

tors. For this picture, the mechanism that produces su-
perconductivity is the Coulomb repulsion in a system
with low density of carriers. As long as the repulsion is
increased, the band moves further away from the GS and
the electrons become more localized, but the GS wave
function still maintains its properties which are fully
many-body effects. Further work in this direction is in
progress.
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