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An Anderson lattice model for high-T, superconductors, in particular La2- Sr„Cu04, is set up
and explicitly transformed into a slave-boson representation. The model is solved using a formal
1/N expansion technique, where N is the degeneracy of the d state, working to leading-N ap-
proximation in the normal state and O(1/N) in the superconducting state. Normal-state proper-
ties such as susceptibility, density of states, and the location of added holes are calculated and

compared with experiment. The model is an s-wave superconductor in the present approximation
for realistic parameters. The gap-to-T, ratio, specific-heat jump, and H, (0) take their Bardeen-
Cooper-Schrieffer values. The variation of T, with doping is successfully explained. A calcula-
tion of the critical region, taking into account strong tetragonal anisotropy, finds its width of or-
der 1 K, in agreement with experiment.

I. INTRODUCTION

The family of high-T, superconductors, such as
La2, Sr,Cu04 (2:1:4),now including the 1:2:3,2:2:1:2,
and 2:2:2:3 compounds, pose two fundamental, linked,
theoretical questions. First, how to describe the normal
phase, and second, the nature of the superconductivity,
questions which can only be posed in the framework of the
overall experimental picture.

The common structural feature of these materials is the
presence of the well-known Cu02 planes. The role of the
rest of the material seems principally to be to control the
doping of the planes. As a result of doping, the planes
contain a concentration xs of holes in the range 0-0.3 per
Cu2+02 unit. Band structure' 3 shows that both 2:1:4
and 1:2:3 materials have copper d bands strongly hybri-
dized with oxygen bands, and predicts metallic character,
with the Fermi level lying in bands consisting mostly of Q
p„, 0 p~, and d, 2 2 orbitals. The copper valence state
lies between d an d'o despite the nominal valence be-
tweendsandd .

At zero doping the better investigated materials (2:1:4
and 1:2:3)are antiferromagnetic insulators, in contrast
to the metallic band-structure picture. The doped materi-
als, however, seem to show Fermi-liquid behavior. Evi-
dence for this comes from the sharp Fermi edge in photo-
emission and inverse photoemission, s and from positron
annihilation. Consistent with Fermi-liquid properties is
the Drude behavior of the dielectric function. Thermo-
dynamic evidence from the speci6c-heat jump and the
Pauli susceptibility also supports the Fermi-liquid nature
of the doped phase. Doping, however, results in the holes
going into the oxygen 2p orbitals rather than into the Cu
3d orbitals. '

The chief properties of the superconducting phase are
that the pairing is singlet, " and probably s wave' '

though the evidence on the latter point is confusing at the
moment. The gap-to-T, ratio is about twice the BCS
value, 7' while the width of the critical region is observed
to be about 1 K. ' The isotope index's falls off from a
BCS value of 0.5 in Laz, Ca, Cu04 (r, 20 K) to 0.1S
in Lal.ssSrolsCu04 (T, 39 K) to 0.01 in YBa2Cu307
(T, 92 K). Presumably, this indicates that a nonphonon
pairing mechanism is increasingly important as T, in-
creases. The materials are strongly type II. '

In the Fermi-liquid phase the materials show signs of
strong electron correlation, which first of all can be in-
ferred from the presence of the phase boundary with the
antiferromagnetic insulator. Additional evidence comes
from the enhancement of the Pauli susceptibility, 9 sug-
gesting an m /m between 4 and 8 (according to
definition), approaching the values in heavy-fermion ma-
terials, and secondly from the Hall effect. ' 2o The Hall
number is hole type in sign and scales roughly with xs.
This has recently been explained in the Fermi-liquid pic-
ture with large Landau parameters, ' but it cannot be ex-
plained in a noninteracting electron-gas picture.

The correlation effects probably originate in a Hubbard
U within the Cu d orbitals. This is supported, e.g., by the
observation of a two-hole satellite in photoemission spec-
tra. 22 U is usually considered to be 6-7 eV. 2 The ex-
istence of a U will lead to important effects in the normal
state such as the enhancement of Z and y.

3 However, in
such U-enhanced systems the quasiparticles have a re-
duced coupling to charge excitations. Hence supercon-
ductivity from coupling to charge-fluctuation modes such
as phonons, plasmons, and excitons is unlikely.

The most likely origin for superconductivity in large-U
systems is then an indirect one via U itself. One approach
to this is that of Anderson, who points out that a
description of a half-filled Hubbard band (derived from
Cu d orbitals) in terms of a configuration of pair bonds is
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a form of real-space pairing. This approach has been
developed by a canonical transformation into an infinite-U
model with a nearest-neighbor antiferromagnetic Heisen-
berg interaction, and solved within mean field or us-

ing the coherent potential approximation (CPA). 27

Another approach, due to one of us, developed earlier
for the theory of heavy-fermion superconductivity, starts
from the Anderson lattice model, and retains the finite U
explicitly. The model is solved within the framework of a
normal 1/N expansion. We think that this approach has
advantages in a system where the band structure clearly
shows 0-Cu hybridization to be playing a crucial role, as
discussed in more detail in the conclusion. That the hy-
bridization with the oxygen bands is indeed essential for
superconductivity is seen in recent Monte Carlo simula-
tions, 'o" limited though these are to temperatures of or-
der 1000 K or higher. The simulations suggest that the
Hubbard model on a square lattice is not superconductin~,
while the model put forward independently by Emery
and Hirsch ' is superconducting. This model is a
simplified version of an Anderson lattice model, in which
the Cu d„2 y2 orbitals hybridize with the nearest-
neighbor oxygen atoms but the latter have no other cou-
plings. There is no intrinsic oxygen bandwidth.

A recent study of a one-dimensional model including
oxygen bands showed that the model can be a triplet su-
perconductor, but it is not as yet a rotationally invariant
model so the conclusions so far need to be accepted with
caution. A different philosophy is to invoke antiferromag-
netic magnons as the mediating interaction, but then s-
wave pairing is difficult to achieve.

To arrive at reliable conclusions, arbitrary approxima-
tions need to be developed into systematic procedures, of
which Monte Carlo simulations at sufficiently low-
temperature, low-dimensional models and 1/N expansions
are examples. In this paper then, we shall work with the
1/N expansion technique, developing the theory as clearly
as possible. In this paper we give results only to leading
order in 1/N. Higher-order corrections will be the subject
of a future paper.

II. ANDERSON LA l l'ICE MODEL IN
SLAVE-BOSON REPRESENTATION

In oxide superconductors there are large hopping ma-
trix elements connecting the Cu atoms to neighboring ox-
ygen atoms, and also direct and indirect matrix elements
connecting the oxygen atoms to each other, the latter be-
ing sometimes neglected. However, these neglected ma-
trix elements lead to an oxygen bandwidth of around 4 eV.
When renormalization of the copper-oxygen hopping, due
to the Hubbard U on the Cu atoms, and also shifts break-
ing the approximate degeneracy of the Cu and oxygen or-
bitals, are taken into account, neglect of all but the Cu-
oxygen hopping matrix element seems to be an inaccurate
approximation to the electronic structure.

In this paper we shall concentrate on the
La2 —„Sr„Cu04 materials, which seem to be the simplest
class, although we believe the other groups are very simi-
lar. The model we use is then the typical Anderson lattice
model used in heavy-fermion systems, which can describe
all electronic structure effects. The basis set involves in its

Here the cq are fermion operators for holes of spin o in
the 0 band of Bloch wave vector k in the first BZ, and the
D; are fermion operators for spin a holes in the d„2
orbital on lattice site i, located at r;. Also N;d D; D; .

Assuming U 0, the model (2.1) can be used to gen-
erate an oxygen density of states (DOS) with the Ei level
at the center of the 0 band, and compared with
Matheiss's calculation. Even using a square model of the
DOS in the oxygen band, a fair picture of the DOS in the
Mattheiss calculation results (see below).

The four-fermion term involving the Hubbard or An-
derson U is inconvenient when U is large. In this paper it
is transformed by defining explicitly operators to represent
the d, d, and d' configurations of a Cu atom. The re-
quired basis set or "slave-boson" representation2936 may
be most conveniently introduced via an ansatz for the D;
and D; operators previously set up for the Hubbard mod-
el

D; b;td; +sgn(cr) ad;t

D;t b;d;t +sgn(rr)atd;
(2.2)

In (2.2), b; and a; are bosons representing the d' and d
states (both singlets) of the Cu ion, respectively. Of
course d is a singlet only because of the strong tetragonal
crystal field (or "ligand field" ) in oxide superconductors.
The d state is represented by a fermion (sometiines
termed spinon ) d; with spin a.

Evidently, we require that the original fermions D; an-
ticommute. Substituting (2.2) into the anticommutator,
we obtain

fD;,Dg Q;, (2.3)

most general form a set of oxygen bands denoted by band
index a, with wave vector k in the first Brillouin zone
(BZ), giving' states ( ka) of energy q„. Copper d orbitals
(idy) on lattice site i are defined where single-particle en-

ergy in the absence of a Hubbard U on the Cu site would
be Ei„. Matrix elements Vi, (Ody~ V(ka) define the
hopping amplitude from an atomic d state y at the origin
to an itinerant 0 state in the band a. The present paper is
concerned chiefiy with analytic results, and therefore we
treat an analytically solvable model.

Specializing to the frequently considered model of an
isolated layer of Cu and oxygen atoms in the La-Sr-Cu-0
structure, only the d orbital d, 2 y2 is usually considered
to be partially occupied, and we alone include it in the
basis set as

~
id). Again, oxygen holes are assumed to be

confined to the p„,p» orbitals directly coupled to the
d 2 y2 orbital. Including these orbitals alone gives two
oxygen bands. We further simplify the model by making
an artificial separation of the bands into a nonbonding
band, which does not hybridize with the copper d„2 Y2,

and a hybridizing band ( k). Finally, we choose to work
with hole rather than electron states. In terms then of the
states

~
id) and ( k), the Anderson lattice model is

S pat, cit,~g +Ei+8;tD;
kc ia

+g (VqD~~q~' "+H.c.)+UQNd; Nd; . (2.1)
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where

Q; a;ta; +b;tb; +g d;~Q; 1 . (2.4)

rameter. Hence we are principally interested in the com-
ponent of d retaining 'S symmetry at each n, whose wave
function is

The important relationship (2.4) can be thought of as a
normalization constraint on the overcomplete basis of a, b,
and d . It restricts physical operators to the subspace of
physically allowed states where three of these four opera-
tors have zero, and the fourth unit, eigenvalue. The
derivations in this section make use of this restriction.

The number operator for spin o on a d site is from (2.2)

N;d D;~D;~ a; a;+d;Q;~,.t . .t

and the total d-number operator is

QN&d 2a;ta;++dan+; a;ta; b;tb—;+1.

(2.s)

(2.6)

Now we may substitute (2.2) and (2.S) into (2.1) to ob-
tain the Hamiltonian in slave-boson representation,

get, ctt~t, +E2+a;ta +E~ +dan+
kcz l i'
+g (Vt,(b;dt +a;td; sgna)ct, ~ '+H.c.]. (2.7)

kick

In (2.7), E2 is the energy of the two-hole (d ) Cu state,
E2—=2E&+ U. The energy of the d' state is defined to be
zero. The Vq terms are more complicated than in (2.1).
They represent processes whereby in the first term, a d9 of
spin o may be created by annihilating a d ' and a conduc-
tion hole of the same spin, or (second term) by annihilat-
ing a d state and creating a conduction hole conjugate of
opposite spin.

The global number operator is constructed from (2.6)
as

N 2+a;ta;+ gd;~Q; + gcgt~
le

(2.g)

and commutes with P. In grand-canonical ensemble we
work with

AO' S—pN, (2.9)

where p is chemical potential.
Now (2.7) is an insoluble model (albeit not usually

written thus). Our approach is to generate a suite of mod-
els characterized by even index N, of which our model
with N 2 is the lowest member, and which are soluble in
the large-N limit. Then by expansion in 1/N we hope to
extrapolate to the real, N 2, model.

For infinite U the conventional procedure is to define
d ' as a singlet and d as an N-let, where N 2n and n is
an orbital degeneracy. As regards d, in our picture of su-
perconductivity, the key role of the d state is to provide a
relatively high-lying scattering resonance which near T,
renormalizes into the Azlarnazov-Larkin two-particle
propagator, and thus has the symmetry of the order pa-

(%') n ' g c„ttc„t~ [ vac), (2.io)

where p is the orbital channel. We shall consider other
components of the hypothetical orbitally degenerate d
state to be irrelevant, and thus define (2.10) as the a bo-
son. The matrix element between (2.10) and the d state
is then Vg n '~ Vq. Defining m fn, crj, the Nth of the
suite has the Hamiltonian

(2.i2)

(2.i4)

UtA;U Ae'~, (2.is)

where A; a;, b;, or d; . We see that Q; in fact generates
a local gauge symmetry. This symmetry is a consequence
of our writing P in terms of an overcomplete basis. Phys-
ical quantities must be invariant under (2.15), for exam-
ple N;d~.

The conventional choice of order parameter for a sing-
let superconductor would be

e-g(cg~ g )f(k)sgncr, (2.i6)

where f(k) (even in k) is a form factor large only for
states near the Fermi level. If we worked in the d sub-
space, a similar choice would be

g(D; D~ )g(r; —rj)sgncr,
lJtX

where g is a form factor in real space analogous to the
Fourier transform of f. Writing (2.17) in terms of (2.2),
we have

(2.i7)

1f getrc~c~+E2+a; a;+E~gd d
km lCF

+g Vqb;d;t c~e' "+H.c.
kim

+g Vga; d; cg e' "+H.c. , (2.i i)
kim

Q~. a~ta~ +b tb +. g drt~. dr~ qN

N 2+a ta;+ ddt d +gc~~c~, (2.13)

Ndr 2a; a; + g d;~ d; Jjg .
m

Jh

The commutation relations [Q;,/f] 0, UV, /f] 0 are
preserved. In (2.12), q is defined to be O(1) and then set
equal to 1/N at the end of the calculation. We do not wish
to delude the reader that (2.11)-(2.13) for N & 2 have
physical meaning, but prefer to regard them as merely an-
alytic continuations of the physical model.

The operator Q;, commuting as it does with P, consti-
tutes a local symmetry of the modeL Consider Q; as the
generator of a transformation, U exp(iQ;p). Then

g sgn(a)g(r; rj ) ((b tbjtd QJ—) +(a; aid t Q~~ ) +sgno(a;bjtdt —Q~ & sgno(ajb t—d Q—~~—)) (2.i8)

or

g g(r; r~)((btbjtd +~ —)sgno+(a;ajdt —-Q~~ sgno+2(a;bjtd~+~ )) —2g(0)g(bta;).
l&JCJ

(2.19)
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k„„(xi—x2) (j„(xi)j„(x2)),
where

(2.20)

j„(x)-yt(x) —y(x) y, (2.21)By(x) Byt(x)
Bxp Bxp

where y(x) is the usual field operator for the c and d fer-
mions. We draw in Fig. 1(a) a typical low-order Feyn-
man graph of k„„corresponding to Eq (2.11) in the

ee limit (see the next section for a detailed discussion
of the N~ ee mean-field limit). Now terms that remain
invariant under the local gauge transformations of Eq.
(2.15) are the crosses in the collapsed graphs of Fig. 1(b).
Since the dashed propagator between r; and rj in Fig.
1(a) is given by (d;Q~ ), it is not difficult to see that the
last two terms in Eq. (2.19) are retrieved. Furthermore,

The simplest component of the order parameter in the d
subspace is the one involving (a;b; ). It is seen to be local
gauge invariant. Moreover, it rotates under a gauge
transformation whose generator is the local number
operator (2.6), as it should. Presumably, when this order
parameter becomes nonzero, so does (2.16) and (2.17).
However, other components in (2.19) could also cause
nonzero O'. The order parameter (a;b;t) does not imply
Bose condensation, but rather b boson to a antiboson pair-
ing. However, since the a-boson propagator diverges at
T„a superficial resemblance to Bose condensation indeed
appears.

Finally, it is interesting to see how the appropriate su-
perconducting order parameter emerges from the con-
sideration of current-current response functions of the
paramagnetic current j„(x). Such current-current
response functions k„„(xi—x2) are given by

such current-current response functions, in terms of the
crosses in Fig. 1(b), are identical to standard supercon-
ductivity.

III. LEADING-N SOLUTION IN
NORMAL PHASE

In the parameter range in which we shall be working,
the fraction of d in the system, i.e., a, is very small, due
to the relatively high energy E2 of the d state. There-
fore, we shall assume that in the normal phase the a boson
can be neglected [although, as can be seen from (2.19) it
plays an essential role in the superconducting phase).
This is equivalent to treating the normal phase as a U
model. The treatment of the U ee limit of (2.7) is well
established. First of all, at low temperatures
(T«Tx, where the characteristic energy scale Tx=0.5
eV is defined below), the constraint on Q may be replaced
by its mean-field value, handled by adding to
P —pN a Lagrange multiplier term giving

'S —pN+A, g (Q; —qN) . (3.1)

&d E1+~ ~

Then P' becomes

Z ekctunckm+ ed Z dimrIim

+g(Vkb;dt ck e '+H. c.)
kmi

+g(eg Ei)(btb ——qN) —pN.

(3.2)

(3.3)

This point has been discussed in the present gauge by
Millis and Lee."' Customarily, we redefine A, in terins of
the quasiparticle d-level energy

X X

In (3.3), eq (i.e., X, ) is to be determined variationally.
Now we see that (3.3) is a Hamiltonian of reasonably

conventional type which can be treated by standard Feyn-
man graph expansion techniques. In Fig. 2 we illustrate

(a)
(a)

+ ~ ~ ~

X (bj

\En
+ ~ ~ ~

FIG. 1. (a) Low-order graphs for the current-current
response functions. Open circles are V times the boson expecta-
tion value (b;) and solid circles are V times the boson expecta-
tion value (a;). Solid arrowed lines are the conduction free-
electron propagators and dashed-arrowed lines are the
localized-state free-electron propagators &d;td; ). (b) The same
as (a) with x=V &b;)d;~~, &a, ).

n,
O ~~

FIG. 2. (a) Graphs for the kd self-energy assuming the ds
state (a boson) may be neglected. Broken wavy line and wavy
line are bare b-boson propagator and b-boson propagator in-

cluding self-energy of (b), respectively; otherwise notation same
as in Fig. 1; (b) Graphs for kk self-energy; (c) leading order in

1/N graph for b-boson self-energy.
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some graphs for the self-energy connecting d to k [Fig.
2(a)], the self-energy of the k propagator [Fig. 2(b)], and
the self-energy of the b boson.

Now the convention for ordering graphs in powers of
1/N is normally such that the energy scale should go to a
finite limit as N ~. This convention requires that V be
defined to be of order I/JN. ' Hence it is seen that
the boson propagator plus its vertices contains a factor V,
i.e., a factor 1/N. Fermion loops carry an rn sum, giving a
factor N. Diagrams with a given number of boson lines
having maximal number of fermion loops are the leading-
order ones. It is seen that the tadpole graph in Fig. 2(a) is
then the leading-order expression for the k-d self-energy.
This means that to leading order the k dself--energy is a
structureless point, which we denote by an open circle. In
fact, the tadpole graph is equivalent to a self-consistent
equation for the expectation value (b) of the b boson.

Of course, (b) is not gauge invariant and the expecta-
tion value strictly does not exist. This question has been
discussed thoroughly by Read. 3s Read found that the
correlation function (b(0)b(t)) behaves like

~
t

~

'/ at
long times, a geometrical behavior showing that b has
long-range order in time, and that, moreover, order is ap-
proached as N ~; hence (b) can be introduced, physi-
cal quantities so calculated merely developing 1/N correc-
tions from the lack of strict order in b at finite N.

Then, introducing (b), we have the mean-field Hamil-
tonian

Glr, (co) Gg to
zV2N,

N+ lS 8d
(3.8)

The densities of states are simply

p, (to) -— 1
Im g Gg(to) p, to-

xNs

zV
, (3.9a)

p,d(to) -— 1 (z V'/N, ) '/'
Imp Gi,d (a)) -p, (ai)

xNs N 8d

(3.9b)

pd (co) — ImGd (to) p, (to)
1 zV

xNs (co ed )
(3.9c)

A very simple model of the unhybridized oxygen band
DOS p, (co) is a square band

where N, is the number of unit cells in the lattice. Now
calculation of the expectation values in (3.5) and (3.6)
means integration of the imaginary parts of (3.7b) and
(3.7c) summed over k, a process normally requiring com-
plex lattice sums. We may greatly simplify it by introduc-
ing a model with k-independent V|„V|, V/(N, )'/.
Then, defining the Green's function of the unhybridized 0
band,

G|a(to) (a)+is —q, )

we have

Z A&tm&km + ed Xdim dim
p, (co) (2D) '8(D —co)8(to+D), (3.10)

+Jz g(Vi,dt cl e' "+H.c.)

+g (ed —Ei)(z —qN) —pN (3.4)

»th the notation Ji (b) An eq. uation for the expecta-
tion value (b) is obtained by differentiating the expecta-
tion value of (3.4) with respect to (b), 3s

ed N Z (dItm~tm)
Vk

k
(3.5)

Another equation is obtained by differentiating with
respect to 8d,

N(df do )—=nod qN —z . (3.6)

z VI2Ns
Gg(a)) io+is —ei, —N+ lS 8d

( V2) i/2

G~~(ai) - . Gl, (co),
co+ ls ed

z Vi;Gl, (ai)
Gd (ro) ~g (co+ is —eq) '+

k (co + is —ed ) '

(3.7a)

(3.7b)

(3.7c)

The expectation values in (3.5) and (3.6) have to be cal-
culated from the kd and d propagators. The leading N
self-energy for the k propagator is given in Fig. 2(b). The
kd and d propagators (with the d site at origin) are easily
derived from the k propagator by adding
Vg(b)/(co —ed+is) factors. Hence (for retarded propaga-
tors at T 0)

where 8(x) is the step function and (3.10) is DOS per
spin per 0 band (there being two 0 bands per unit cell,
one nonbonding, in the model). If we use (3.10), the re-
normalized upper and lower band edges e+ and e from
(3.9a) are

' 2
8d+ D 8d+ D

2
+p

2
+zv'

. i/2

(3.11)

where P +1 for the upper hole band and —1 for the
lower.

The DOS in the two oxygen orbitals is then the sum of
(3.10) for the unhybridized band and, for the hybridized
band, (3.9a). Taking D 2.4 eV and V 2.8 eV, and
Mattheiss's value ed 0, ' the result is compared in Fig. 3
with the density of states in the oxygen orbitals in the
Mattheiss calculation. ' The fit is fair. It suggests that
our model, whose essential approximations are the separa-
tion into hybrid and unhybridized 0 bands, and the
neglect of the k dependence of Vi„ is at least as good as
any other simple one the authors tried. A more optimal
shape for p, (co) would evidently have tails smoothing out
the sharp band edges in (3.10), resulting in more DOS in
the wings of the band structure in Fig. 3. Nevertheless,
the isotropic Vq model is a crude one. To make up for
some of its deficiencies, we shall in the following employ
modified parameters D 2.2 eV, V 2.0 eV, which are
found to give better overall agreement with experiment.

With the aid of these relatively strong approximations
we can calculate the expectation values (3.5) and (3.6)
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FIG. 3. Density of states of the oxygen p,p~ orbitals in the
Cu planes in La2Cu04. Bold curve, as calculated by Mattheiss
(Ref. 1); fine curve, according to the square band model with

D 2.4eV, V 2.8 eV.

0.04

0.6 l t l

analytically. Equation (3.5) becomes

Ei —cd -NV ~ f(ro —p),+ dco 1

co Gd 2D

where f(x) is the Fermi function. At T 0 it gives

P 8d
Ei —sd I ln

8— 8d

where I NV /2D. Equation (3.6) becomes

(3.12)

(3.13)

N
)UJ

0.2

0.6
6.0

5.0

I I I

1
I

I I

which at T 0 gives

(3.14)
3.0

0.0
I 1 I 1 I

0.04 0.08 O.I2 0.16

qN —z I (3.15)

Finally, we add a condition on the total number of holes
in the system, which from (3.9a) and (3.9c) is

N(2D) '(p —s- ) +qN —z

xi, + I —N(2D) '(p+D)e(p+D) . (3.16)

FIG. 4. Self-consistent calculation for normal state in model
for La2-„Sr~Cu04 of various properties vs hole concentration
xz. Top panel, change in hole concentration on oxygen (full
curve), broken curve indicates 100% of holes on oxygen. Middle
panel, characteristic energy scale T& sz —p; bottom panel, en-

ergy E2 of two-particle resonance. Parameters D 2.2 eV,
V 2.0 eV, E~ 3.8 eV (electron energy).

The last term in (3.16) comes in when p hits the edge of
the nonbonding oxygen 2p band. Wc have already
specified the parameters V and D. If we additionally
specify E~ and xs (the latter controllable in a limited
range experimentally), then we may solve (3.13)-(3.16)
for p, ed, and z, and calculate other quantities.

In Figs. 4-6 we exhibit results obtained by solving
(3.12), (3.15), and (3.16) with E~ = —3.8 eV (note this is
the one-hole energy) as a function of xs. In Fig. 4 we
show the shift in the self-consistent solution as a function
of xs. First, we note from Fig. 4 that the added holes go
mostly into the oxygen orbitals, in agreement with experi-
mental observation. ' As a result of this, there is little
change in the Cu charge with doping, and hence from
(3.6) little change in z with doping; z remains near 0.25.
Hence the characteristic energy scale T~ =ed —p does not
change significantly with doping (see Fig. 4). This scale is
a measure of the degeneracy temperature in the system,
and is seen to lie at around 0.5 cV. We also plot the posi-
tion E2 of the two-particle resonance associated with the
d state, defined in (4.6) below. E2 decreases, i.e., d be-

comes more accessible, with increasing doping in Fig. 4.
The chemical potential goes up with doping, due to hole-
hole repulsion.

The discontinuity in Fig. 4 at xi, 0.12 (i.e., 12% dop-
ing) in the La2-, Sr„Cu04 material occurs when, with our
parameters, the chemical potential p hits the top of the
nonbonding oxygen band. At this point a further drop in

p with increasing xq is sloyd down. It is incidentally
tempting to associate this discontinuity with discontinuity
in the Hall coefficient observed. ' Even more specula-
tive, the oxygen loss at xl, & 15% may be associated with
the possibility that holes in both the hybridizing and
nonhybridizing p orbitals can now go on to oxygen atoms
without energy penalty when p lies in the nonbonding ox-
ygen band. In any case, the region XI, & 0.15 has been lit-
tle explored experimentally due to the onset of oxygen
loss.

The DOS in the copper plus hybridizing oxygen bands
is shown in Fig. 5 for xs 0.1. We have made an
electron-hole inversion, so this is the electron DOS. The
oxygen part prior to hybridization is shown below the a
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FIG. 5. Self-consistent total density of states in La2-„-
Sr,Cu04 per spin vs energy (full curve) for D 2.2 eV, V 2.0
eV, E~ 3.8 eV (electron energy), xs 0.1. Dotted curve is un-
perturbed oxygen DOS, and broken curve is the projected densi-
ty of states seen in photoemission in mean-field theory.

axis, and is just a square band. The effect of hybridization
on the oxygen part is not to alter the DOS, but only the
band edges. The copper part, however, becomes strongly
enhanced, the "heavy-fermion" mass-enhancement effect,
in the bottom of the upper band. The quasiparticle DOS
at the Fermi level is relatively high.

Photoemission measures, in sudden approximation, the
Green's functions of the real electrons,

—i(Tcgt(t )ci,(0)),
and

—i(TDJ(t)D (0))= iz(Tdt—(t)d (0)), (3.17)

where the approximate result refers to the large-U, mean-
field approximation. We illustrate in Fig. 5 the photo-
emission DOS from (3.17). The occupied states are most-
ly but not totally Cu-like in the upper band. The photo-
emission DOS at eF is about 1.5 per eV per Cu including
spin. Its ratio to the maximum DOS in the combined non-
bonding bands in the Mattheiss calculation is around 15%.
The photoemission data ' for La~ sSrn 2Cu04 show, as ex-
pected, that most of the DOS lies in the nonbonding re-
gion (from 16 electrons). The DOS in the Fermi-level re-
gion is steeply falling with increasing energy, as in Fig. 5,
but the measured DOS at eF is only 4% of the DOS at the
maximum in the nonbonding region. This is less than the
theoretical estimate by a factor of about 4. We attribute
the discrepancy to surface contamination effects.

The paramagnetic susceptibility' and linear coefficient
of speci6c heat y are related to the quasiparticle DOS of
Fig. 5 by

&(0) -2pe lp, (p)+pd(p)]

1.4
0.0

I

0.05
I

0.10

X„

0.15 0.20

FIG. 6. Total DOS in La2-„Sr„Cu04 at the Fermi level per
spin, plotted vs xz, curves, as calculated self-consistently with

D 2.2 eV, V 2.0 eV (full curve, E~ 3.8 eV; dotted curve,
E~ 4.2 eV); open circles as deduced from experimental suscep-
tibility (Ref. 9) including core but neglecting Landau correc-
tions; triangle, as deduced from specific-heat jump (Ref. 8) as-
suming (4.22).

IV. SUPERCONDUCTIVITY

We now need to include the a boson, which is intimately
related to superconductivity in our model. To simplify the
notation, let us imagine that we have summed over all tad-
pole graphs [Fig. 2(a)], thus inserting the mean-field
corrections due to the b bosons, which are assumed not to
vary over 0 —T, . Let us diagonalize (3.4) to give

PMF g Eg+ Cg +Ckm+ +Z Eg —C~ —C~-
km km

+g (ed —E~)(z qN) . —(4.1)

d;Id;I —d;Id;I. Hence we can calculate the susceptibili-
ty directly from the quasiparticles. ) 2 is difficult to mea-
sure accurately due to comparatively larger diamagnetic
corrections, while y suffers from the uncertainty of beinII
induced from the C„jump at T,. s Typical values are '

1.54x 10 emu/mole and y 9.5 &&10 J/mole for
x 0.15. These are both compatible via (3.18), with the
estimated DOS of p=2 per eV per spin at eF in Fig. 5. In
fact, our parameter E ~ was chosen to be compatible with
these values.

In Fig. 6 we show the variation of X(0) with Zt, . 2 is
seen to increase slightly with doping, as observed. From
the curvature of the DOS in Fig. 5 we would also expect Z
to have positive T coefficient: indeed X does increase
slightly with T.

2K'y- kelp, (p)+pd(p)j.

(Incidentally we can show that D; tD; t
—D; t D; l

In (4.1)

Eg+ ed+(b) Vtan&g,

Eq =ed —(b) Vcot@,
(4.2)
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and the new eigenstates represented by the operators
Cpm~ are

d gm COSOgCgm+ sln8gCgm —,
(4.3)

c~ sinO~Cq ++cos@Cq

where

pe'" "'d;
w

they form part of a Fermi loop a —
1 factor is produced.

Next we consider the formal order in 1/N of the a boson.
The definition of the a-boson coupling parameter V'

diff'ers from that for the b boson by the factor I/Jn,
where N 2n, and thus the a boson becomes O(1/N ).

The Nambu-Gorkov formalism provides the generaliza-
tion of the self-energy graphs of Fig. 2(a) to the supercon-
ducting phase. The basic equations in a well-known nota-
tion are

Z(k, iro„) iro„(1 Z—(k, iro„)) rp

and +Z(k, iro„)a(k, iro„)r), (4.8)
(ed ek )

cot(20),)- (4.4)

+H.c.—N, ~ Vgq+q, qaqC~Cq+q~ sgnm
—1/2 %'

kqm

+H.c.+E2+aqtaq+Epgbqtbq,q''
q

where

(4.5)

g& & sin8& cos8g.

In Eq. (4.5)

E2 E2+ ed —E),

Ep sd —E),
(4.6)

are (hole) affinity and ionization excitation energies of the
d orbital with respect to a "bound state" at p —ed, and

a, -N, '"ge'" "a

(4.7)
N

—I /2 g
Equation (4.5) is to be employed without including the
tadpole diagrams, which are already contained within
mean field. Care is necessary when changing values of the
mean-field parameters (b) and ed due to 1/N corrections,
a procedure not required in this paper.

In the present notation all fermions are represented just
by full lines, the relative contributions of the k and d
states being taken care of by the coherence factors in the
vertices. The sign convention for diagrams containing a
bosons is best determined from a t'Hooft-like conven-
tion, where the a bosons are represented as two parallel
fermion lines of opposite spin but same directionality.
The fermion lines entering and leaving the a-boson propa-
gator then pass continuously through it, and whenever

In this section we set p =0 for simplicity.
We shall see that to the order perturbation theory con-

sidered in this paper, superconductivity involves mostly
states near the Fermi energy. Then we shall find that only
the lower (hole) band, i.e., the upper band in Fig. 5, are
important in pairing. We make use of this simplification
in rewriting P in terms of the quasiparticle eigenstates.

Hence writing (3.1) in the representation (4.1)-(4.4)
we have (dropping the minus subscript since it is under-
stood that only the lower renormalized band is included)

'P gEgCg~C~ N, ' g—
Vgg+q gbqC~Cg+q~

km kqm

G '(k, a)„)

while

lNpgZ Eg Z6
Z6 lN„Z+Eg (4.9)

G(k, ro„) -(detG ')

and

lN HZ+ Eg Zh,

z E, (4.10)
lN&Z —Eg

detG ' (iro„) Z —E) —Z d, (4.1 1)

Now we write out the diagrams for the self-energy X to
leading order in I/N. The rp part of Z gives the diagram
already considered in Fig. 2(a) [O(l)). In the normal
state, together with the condition (nd&+(btb& qN, this
gives back the self-consistency equations of Sec. III. We
shall assume that they are not significantly altered by su-
perconductivity, an assumption justified by the largeness
of the normal-state energy scale T»= p —

ed -0.5 eV rela-
tive to T, . The leading-N self-energy is frequency in-
dependent, hence Z 1.

Before evaluating the diagrams of Fig. 7 for the z~ part
of the self-energy, we have to address the pseudopotential
problem, which arises in considering Fig. 7(b). The con-
tribution [Fig. 7(b)l to the self-energy occurs in the
U ee model and was treated by Lavagna, Millis, and
Lee, and by Houghton, Read, and Won. These au-
thors only consider small energy transfer

~
ro

~
& T»

through the b boson. This on-shell approximation is
analogous to the ~ro~ &roD approximation in phonon
pairing theory, which is motivated by the decay of the

(b)

FIG. 7. Order (1/N) diagrams for the anomalous part of the
self-energy. %avy line, b boson; zig zag line, a boson; full line,
fermion propagator in the lower heavy-fermion hole band.

where Z is the self-energy, ~p the 2X2 unit matrix
rp;~ b;J, and rhj (I —b;J). Equation (4.8) defines Z
and 6 implicitly. From the Dyson equation the fermion
Green's function is
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phonon propagator in the region co» coD. However, the b
boson differs from the phonon propagator4 in that the
propagator does not die away but approaches a constant
in the region T~ & co & D, resembling the Coulomb part
of the kernel in phonon-mediated superconductivity. The
contributions from the rest of the energy region
D &

l m l & Tir can be included, in the same way as for
the Coulomb pseudopotential p* in conventional super-
conductivity, via a pseudopotential. Diagrams for the
pseudopotential part of the self-energy involve scattering
outside the

urn�)

(Tg shell and are shown in Figs. 8(a)
and 8(b). They are formally of order 1/N . Note that a
difference which the present model has from conventional
superconductivity is that here the pseudopotential is at-
tractive, whereas the low-frequency part of Fig. 7(b) is
repulsive, canceling part of the attractive term [Fig. 7(a)].

The procedure we adopt for structuring the calculation
then assigns these attractive pseudopotential contributions
to order 1/N . The contributions we are left with in

0(1/N) for the r~ part of the self-energy are to be evalu-
ated only with the energy transfer inside the cutoff,

Now in the usual spirit of pseudopotential theory we re-
place the b boson in Fig. 7(b) by its ro 0 value and s-
wave average over the q dependence, when we obtain a
contribution to the self-energy

1
1

0.2 g 1 (4.i2)
Np N g ~2+E2 +g2

h(k, ro„) gkk
2NV'

E2

1

Npgg I,

a(k', ro„,)

ro +E +6

0.2
N

(4.iS)

where additionally the k kF approximation has been
made in the gkk factor.

Making the BCS assumption that 5 is independent of
ro„up to the cutoff yields the solution A(k) Bgkk, and the
gap equation

only a very small difference whether we take the lower en-
ergy of the k' sum at p —Tz or at the lower band edge,
and we choose the latter, as in Refs. 28 and 29.

Equations (4.12) and (4.13) are the contributions to 5,
giving the gap equation

2NV' /l(k n )'
a(k ro )-

2+E2+&2E2 k'n' ~n'+E g~ +6
0 2 A(k', co„)

(4.i4
NP N gn o)2.+Ek.+a

Now in the second term of (4.14) the cutoff for k' very
different from kF has been denned in an approximate way.
By redeffning how the cutoff in this term is done, we may
analytically solve the integral equation (4.14) on shell. To
do this, we insert an extra factor gz,k./gzk, which is unity
at k k' kF, into (4.14), to obtain

(4. i 3)

where p is the DOS at the Fermi surface.
The diagram of Fig. 7(a) is the same as already con-

sidered in Refs. 28 and 29, and is given by

2NV'
2+E2+&2

2NV'

E2

1

Nposin Hg,

2
gk'k'

'
COn +Eg +8 gI I

2 2 2 2

0.2
N

(4.16)

Due to the narrowness of the lower hole band, it makes

(al) (a2) (b)

(c)

FIG. 8. Order (1/%2) diagrams for the anomalous self-
energy. (a), (b) As for Fig. 7, except that the broken line in-
volves propagator in the upper heavy-fermion hole band. (c),(d)
Here full lines represent fermion propagators in both upper and
lower bands.

In (4.16) we have used the identity po pcos ek, .
The k sum in (4.16) may be evaluated to logarithmic

accuracy (see Appendix A), giving at T T,

4$f'2p
T, 1.14', exp — —u

E2
(4.17)

1 0.2u~ 1—
Nposin 8g,

where m, s—s~, and we have set N 2, when u-0.5.
For simplicity, we have assumed p» po. Equation (4.17)
is useful for intuitive purposes, but for numerical evalua-
tion we return to (4.16).

Equation (4.17) shows that the attractive interaction
between the quasiparticles responsible for superconduc-
tivity is essentially exchange via the d state. This is op-
posed by the intrinsic quasiparticle-quasiparticle repulsion
u, which plays the role of p* in conventional phonon-
mediated superconductivity. It is the near cancellation of
these two terms which is responsible for the relatively
modest values of T„observed in high-T, superconductors,
despite the large values of ro, —1 eV. We would like to
stress here that the value of u is obtained explicitly from
our solution in contrast to the empirical nature of the
analogous p* parameter which appears in conventional
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FIG. 9. T, vs hole concentration xq. Points, data from Ref.
20 and from Torrance (Ref. 56). Full curve, present model with
U 5.9 eV, and DOS in the nonbonding band taken from Ref.
49 as 20 eV '. Dotted curve, extension and results assuming
that hole concentration in the p band above xq 0.12 continued
to be given by xz.

superconductivity.
In Fig. 9 we plot T„obtained by solving (4.16) numeri-

cally at T T„versus hole concentration x~. The
Coulomb repulsion U, which is frequently quoted as being
in the range 6.0-6.5 eV (recently the estimates have tend-
ed to increase slightly) is taken at U =5.9 eV to optimize
the fit to the data at one point. In this figure we have tak-
en the density of states in the nonbonding band from our
more-accurate calculation (which gives 20 eV ) and in-
serted in into the third term in (3.16) instead of (2D)
It is first seen that the behavior at low xl„where the I/N
expansion can be expected to fail due to dominance by
spin fluctuations, is not accurate. However, the trend of
T, to increase with xq, and to saturate at x1, -0.14, is
given correctly. The origin of the saturation is simply that
when the chemical potential, which lies in the p band,
hits the top of the high-DOS nonbonding band, xi, in the
p band stabilizes. We interpret the subsequent fall in T,
at xq 0.3 As some kind of extrinsic effect; it is most un-
likely that doping in the p band reaches such a high level
as 0.3 in this material. As regards the slightly low value
of U 5 9 eV, we know from the experimental a
coefficient' that part of the pairing force comes from
phonons in the La material. Our calculation compensates
for neglecting phonon-mediated attraction by increasing
the exchange, and thus decreasing U.

In Fig. 9 we also show the extrapolation of T, (xq ) if the
chemical potential were imagined not to hit the nonbond-
ing band. It is seen that T, increases rapidly with xl, . We
propose that the explanation of higher T, in other (e.g. ,
1:2:3)materials may be found in Fig. 9, in terms of their
energy-band structure, enabling higher levels of doping to
be sustained in the p band without holes getting into the
nonbonding band.

The properties of the solution to (4.16) at low tempera-
tures are closely similar to BCS. For Vq V, the gap is of
course isotropic. It turns out that even in more realistic

models, near isotropy of the gap is retained.
At T 0, the k sum in (4.16) is again calculated to log-

arithmic accuracy (Appendix A). Comparing (A6) and
(A10), we retrieve the BCS result

2~ =3.5k' Tc (4.IS)

where A=gz, g, b'. The result (4.18) is confirmed by nu-
merical solution of (4.16) both at T=T, and at T=O.
Result (4.18) is essentially inevitable given that the two-
particle scattering kernel associated with Fig. 7 is fre-
quency independent until the very-high-energy cutoff Tlr
is reached.

Similarly, the specific-heat jump may be calculated by
the methods given in Sec. V, and gives

ACv 1.43 y T, , (4.19)

where v is the volume per Cu atom.
One effect of pressure is to induce approximately equal

but opposite changes in the energies of the d and d'o
states relative to the d state. We expect

E) E) —6, U~ U, (4.2i)

where 6 ap, and a & 0. The strongest effect of b on T, is
expected to be in decreasing E2 by b, thus increasing T, .
Pressure should also increase Z by decreasing T/r, and
thus increasing

~ E~ ~. Now we may define a quantity y'

which for small pressures is independent of the unknown
coefficient a,

(4.22)

The quantity y' may be calculated numerically from our
formulation, giving y' 5.8 at xp =0.13. an experimental
determination gives y'=3.9. We expect our estimate to
be too large because of the neglect of phonons, which do
not couple to pressure in the manner we describe.

A remarkable feature of the present formulation of
high-T, superconductivity is its intimate relationship with
a-boson dynamics. In fact, the phase transition at T, is
signaled by a divergence in the a-boson propagator. This
may be inferred from the form (2.18) for the order pa-
rameter, which suggests that

~
a

~
might diverge at T, .

More explicitly, the diagrams for the two-particle propa-
gator may be rearranged into the series for the a-boson
propagator (Fig. 10). Hence a divergence in the two-
particle propagator at T, implies that the a-boson propa-
gator becomes soft at T,. %'e see that as T is lowered,
first the b boson becomes soft at T~, then the a boson be-
comes soft at T,. Is superconductivity then a Bose con-
densation in the present theory?

In the next section we calculate the critical properties of
the model in terms of the a-boson field, and show that the
critical region is narrow, resembling superconductivity
rather than superAuidity. However, due to special
features of the present systems, e.g. , the high T, and the
high mass along the z direction, the critical region is pre-

again the BCS result. The critical field is also found to
take essentially the BCS value

(4.20)



38 THEORY OF HIGH-T, SUPERCONDUCTORS WITHIN AN. . . 6523

FIG. 10. Rearrangement of diagrams for the two-particle
propagator as a series for the a-boson propagator.

dieted to be observable, with width —1 K, in agreement
with recent data.

V. CRITICAL FLUCTUATIONS

The various mechanisms for the formation of a super-
conducting condensation generally imply a specific struc-
ture of the many-body Hamiltonian. The parameters of
such a Hamiltonian predict, for example, a specific critical
temperature T,. For the Hamiltonian discussed in the
preceding section, T, in the weak-coupling limit is given in

Eq. (4.17) in terms of the basic entries to the original
Hamiltonian in Eq. (2.7). These are V, Eb E2, xl„p, and

po, which is the density of states at the Fermi surface for
the dispersion q, . However, a second feature which goes
in tandem with the prediction of the critical temperature
is the width of the critical region around T, . Here we cal-

culate this region for the Hamiltonian of Eq. (2.7) in the
weak-coupling limit in terms of the same basic parame-
ters. We also discuss in Appendix 8 the possibility of
more-complex order parameters than the two-component
xy model of Eqs. (2.7) or (2.10), and their implication in

the critical region. It is important to carry out such calcu-
lations since they provide further restrictions to the type
of Hamiltonians which successfully predict both measur-
able quantities, T, and the critical fluctuations around T, .
Since in high-T, superconductors (and perhaps also in su-

perconductivity of the heavy fermions) x (i.e., the
Landau-Ginsburg parameter) is very large (100) and the
Cooper pair size is relatively small ((0=50 A; both x and

go are very anisotropic), the critical region should be ob-
servable and should therefore provide an important addi-
tional guide to the microscopic structure of the Hamil-
tonian.

In this section we show that even if the critical proper-
ties are discussed in terms of a bosons, whose propagator
diverges at T„ the width of the critical region is narrow
(but observable) in contrast to the properties of a Bose
gas. Rigorously, the following discussion in terms of a bo-
sons is based on the 1/N counting of Ref. 28. In this tech-
nique only Fig. 7(a) is to leading order, and the a-boson
expectation value (a) is nonzero for T ( T, . To leading
order in 1/N the quantity u is zero. Nevertheless, the only
effect of the introduction of u is to rescale T„which may
then be assumed to take its experimental value.

We first write the partition function for Eq. (2.7) in a
functional integral form, i.e.,

r

~~0 Pdk, ;
Z Q DbDb~DaDa~DdDdtDcDc

2~
~p

x exp —,dry(r)

(S.la)

where

+Eo b(r;)+pat(r;)
dr

+Ep a(r;)

+gd (r;) +E~ d (r;)+gcq +q, cq +g [Verb(r;)dtcq~' "+H c]..
dr kai

+g[Vqat(r;)d~q~' "sgn~+H. c.]+i+A;[dt(r;)d (r;)+bt(r;)b(r;)+at(r;)a(r;) —1].
ia

(s.lb)

In Eq. (5.1), D is shorthand for Q; Dd (r;), . . . , etc. In the functional integral form of Eq. (5.1) the integral over cq
and d (r;) are anticommuting and b(r;) and a(r;) commuting complex Grassman numbers. The additional integrals
over A,; ensure that the constraint in Eq. (2.3) is satisfied.

We next take Eq. (5.1) and develop a corresponding Landau-Ginsburg (LG) free-energy density expansion for a(r;)
to get

Pf(x) g 2 a&[a~ (x)+a2(x)]+ 2 a2 [V~ta~(x)]2+ y2 a~(x) +[V~~a2(x)] +y
Z

a2(x)
2

+a3[a ~ (x)+a2 (x)+2a ~ (x)a22(x)] (S.2a)
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and a2 is the expansion of P, tr2(q, T T, ) around q -0, i.e.,

Z—=e t' = Da(x)exp —Pg(f(x)4 x
(s.2b) tr2 Pc 2

tr(q', T, )q 0.
8q

(S.4c)

f P f[E2+A, + a2(q, T)][ai (q)+az (q)]]
a,q

+tr4(T) g [ai (x)+a2 (x)+ai (x)a2 (x)],
a, x

where

1

P ~&, lgi -E(k-q)] [gi+E(k)]

(S.3a)

(s.3b)

Here we took the continuum limit of r; x and x=x[I,z.
The subscripts 1 and 2 in Eq. (5.2a) are the real and
imaginary components of a(x); a(x)—:ai(x)+ia2(x)
The critical region of Eq. (5.2) corresponds then to the
universality class of an isotropic two-component Heisen-
berg model (i.e., the x-y model). The anisotropy in the
spatial dimension z is given by y and represents the large
anisotropy in the mass in the plane xt and perpendicular
to it along z (i.e., c axis) (see below).

The coefficients ai, a2, and a3 of Eq. (5.2a) can now be
calculated by making a free-energy expansion of Eq.
(5.2b) to fourth order in a(q) (see Fig. 11) using the di-
agonalized form given in Eq. (4.5). Also, around the
phase transition line of (at(q)) we expect the quantum
fluctuations in a(q) to be unimportant and we can ignore
the term at(q)(a/ar)a(q) in Eq. (5.1) and replace the
Bose operator by a classical complex number a (q). Then

Finally, the quartic coefficient a3 is

Q3 p lC4(T, ) . (s.4d)

The Matsubara sums are trivially performed. What about
the sum over k? Unlike most properties discussed in the
preceding sections, the critical region depends crucially on
the large mass anisotropy. The coupling of the various
mass components turn the critical region into clearly a
three-dimensional system. We, therefore, must account
for the dispersion of Ei„or more precisely ei„along the c
axis. A very reasonable approximation for q, is

g2
+—+ll+ (s.sa)

2m

In order to determine the a2 term [Eq. (5.4c)] analytical-
ly, we further approximate e1, by

k k+ (s.sb)
2m 2m

(the critical region will not depend very strongly on these
approximations). Because of the very large gap at the
zone boundary at G/2, along the z direction, k, is ter-
minated at G/2. Finally, since m«m, the shape of the
Fermi surface (FS) is assumed to be cylindrical. The
sums over k then give, for a1, az, a3,

and

gi —E k gi+E k

where E(k) is defined in Eq. (4.2), V(k) sin(281, )V, and
the suin over g~ are the usual Matsubara sums. The criti-
cal temperature T, is then given by

x2(O, T, ) E2+k—=E2 El+ed . (S.4a)

a~ and a2 are related to two different expansions of
a2(q, T): ai is the expansion of Px2(q-O, T) around T„

and

(2bV ) pot

[(bV)'+e)]T, '

3 rrpoPF (2bV ) e)
4 T,3 [(bV)'+e$]' '

0.0495 xpoPF (2bV')'e)

T,' [(bv)'+e)]' '

y '=43/2
m PF

(S.6a)

(5.6b)

(5.6c)

(s.6d)

i.e.,

—,
' ai p, tr2(q-O, T)T-T,(T —T, ) . (s.4b)

In Eq. (5.6), t (T —T, )/T„po is the density of states
for the cylindrical FS of Eq. (5.5) per two spins, and PF is
the Fermi momentum perpendicular to the z direction. By
making a small q expansion of xz(q, T) we must introduce
a cutoff on the q vectors. This cutoff A reflects the range
of x2(q, T). From Eq. (5.3b) we find

Tc
A, C m,

F

(bV) +e
8d

2 (S.6e)

FIG. 11. Free-energy contribution of Eq. (5.3) to fourth or-
der in the Bose fields aq. The filled squares are the Bose fields

aq and the arrowed lines the "heavy-fermion" propagators
&c~tc~&.

where C is some constant of order unity. Our description
of the critical region will, however, not depend on its pre-
cise value. A are the two cutoffs depending on the two
directions. The differences in the two cutoffs will, howev-
er, not aff'ect the critical region and we drop the index a.

It is important to appreciate this A cutoff. The initial
microscopic Hamiltonian of Eq. (2.7) correlated the state
E2, of the two electrons, over a lattice distance. It is, how-
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P,f-g -' [a'+a'(q f+ y'q, )]it/(q) it/(q)
q

I+, g [il/(qi) y(q2)l
qlq2q&

x[i)/(q, ) it/( —q, —q, —q, )] (s.7)

ever, wrong to then think of the size of the bound Cooper
pairs as in anyway related to this length scale. The size of
the Cooper pairs, or more generally the entities making up
the order parameter a, corresponds more closely to A
If the size of the pair is smaller than the interpair dis-
tance, then A is closely related to this interpair distance
(this is so in He). If the opposite is true (this is gen-
erally the case in a superconductor condensate) then A

is closely related to the pair size, or so-called pair correla-
tion length (0.

We return to Eq. (5.2a) and perform two-scale trans-
formations. First, we define it/—=2bV a. Then

and

(bV ) +ed T,uo C2y &d, po

m

PF

4

Ad —4

(S.8c)

where

Ci =8/3 x 0.066 C2 = [0 05/(0. 066) ] x 2 x ( 3 )

[these coefficients came from the coefficients in Eq. (5.6)];
Ao LA. The scaled free energy in Eq. (5.8a) is precisely
the form studied extensively by Rudnick and Nelson.
They developed crossover functions which provide a de-
tailed description of the critical region to first order in
a=4 —d.

Very briefly, the idea is to solve the flow of r(0) and
u(0) under the renormalization-group (RG) transforma-
tions, to lowest order in s and u (0). These flow equations
for Eq. (5.8a) are

where d is the spatial dimension,
y

has two components
y—= (yi, y2), and ai ai(2bV ), a2 a2(2bV ),
a3 as(2bV ) . The second transformation scales all
lengths by X and redefines il/ p/(a2)'/A. After also
redefining yq, ~ q„Eq. (5.7) now takes the form

Ao

p,f-g 2 [r(0)+q'](((q) ((i(q)q'

and

dr(l)
2 + Au(I)

dl 1+r(l)

du(l)
I + Bu'(I)

[1+uO)]' '

(5.9a)

(5.9b)

where

(b V') '+.$ T,rO-C,
2

PF
t, (5 8b)

+ " , g [(t(qi) (((q2)]
u(0)

LO qlq2q3

x [(j)(q3) ~ p( —qi —
q2 qs)], (5.8a)

where A 4(N+2)K4, B 4(N+8)K4, K ' 8z, and
the coarse graining is given by 1. With the initial bound-

ary condition r(l 0) r(0) and u(l 0) u(0) [where
r(0) and u(0) are given in Eq. (5.8)], Eq. (5.9) can be
solved. For large enough I, r(l) is driven away from the
critical line and the partition function Z, or equivalently

F, can be then derived by standard perturbation expan-
sion. The results for the free energy F above T, are

t'0
p.F -Lo K4[lnll+t(0)l+t(0) —t'(0)ln[t(0)]j+ ' g(l)(4-»/(/v+s) —I'4(d-2)y 2u(O)(N —4) . (5.10a)

For T& T„

P,F -Ld ~' + ' ( ) g(l)(4-N)/(/v+s)
y 2(d —2) 4u (0)(N —4) 4

(s.lol )

where

t(0) -r(O)+ —,
' ~u(0),

g(l) -1+ (e"—1) .

(S.IOc)

(s. lod)

Finally, the number of coarse-graining steps (I) are given

by
47

(0)82//g (I ) (N+2)/(N+8)
1 (S.IOe)

Incidentally, for technical reasons P,F was not previ-
ously derived for general N using the flow equations (1 la)
and (11b). Our results agree with field-theoretic calcula-
tions.

To order s, Eq. (5.10) gives a detailed description of the
critical region for the free energy of Eq. (5.8) [or
equivalently Eq. (5.2)] in terms of the basic parameters V,

E~, E2, XI„and p of the microscopic Hamiltonian Eq.
(2.7) (T, is a function of these parameters). To imple-
ment it we only need to eliminate I in Eq. (5.10e) in favor
of t(0) and introduce the results in Eqs. (5.10a) and
(5.10b). This can, in general, be done numerically; we de-

lay such a calculation to when finer experimental data of
this critical region becomes available. Here we take the
simpler task of discussing only the width of the critical re-

gion using the Landau-Ginsberg-like criterion. A com-
mon way of identifying the critical region is to measure
the specific heat C„=B F/Bt . For the critical region to
be observable it needs to dominate the common classical
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C„jt(0)[Q(l) ' —I H
8u(0) t)t'

(5.11b)

and the LG criteria for the fluctuation to dominate the
jump is

C„/AC„) 1. (5.11c)

Then, using Eq. (5.10), we get the region of temperature
where Eq. (5.11c) is satisfied as

PF 2 T, c)+b V
t&C3 y ', 512

CF C

where C3=(10&2'5)/3 and is related to the coefficients
Ci and C2 in Eq. (5.8), cF PF/2m. Inside this region C„
carries the exponents of a two-component isotropic
Heisenberg model; i.e., C, =t ', where

1 + (4 —N)c
2 2(N+8) '

With the accepted value of y '=m, /m=50, ' T, 100
K and cF=2 eV, and mass enhancement [(c$+b V )/
c)]'~ =5, we get a critical region of 1 K, in very good
agreement with the latest experimental observations. '

The most exciting aspect of this result is that each feature,
believed to be unique to high-T, superconductivity, plays
a crucial role in Eq. (5.12). To be specific, without mass
anisotropy we would be off by =10, and without mass
enhancement we would be off by =25.

VI. CONCLUSION

This paper considers a model of high-T, materials in
which there is both electron hopping from Cu to oxygen,
and from oxygen to oxygen, with a large Coulomb repul-
sion U on the Cu atom (Anderson lattice model). We
solve it by the 1/N expansion technique, where N 2 is
the degeneracy of the d state, working in this paper only
to leading order in 1/N. Pairing is assumed to be s wave.

At this relatively crude, but physical, level of approxi-
mation, a remarkably good account of the basic experi-
mental features of these systems is obtained. The normal
state is described as a heavy-fermion fluid with a mass
enhancement m /m-8 (though (b) 4). Features of
the normal state which are described correctly include the
paramagnetic susceptibility and linear coefficient of
specific heat, and the fact that most of the weight of added
holes is on oxygen, while the states at cF are mostly d-like.
Treatment of a much more accurate model by Papacon-
stantopoulos and the present authors confirms the
present results. Miyakawa and Nagaoka have shown
that the heavy-fermion state is also consistent with the
Hall coefficient. As regards superconducting properties,
the value of T, and its variation with doping is satisfacto-
rily reproduced, as is the width of the critical region. The

jump in C„below and above T„ this is the LG criterion.
From Eq. (5.10), the jump in Cv is given by

~C„-, , [t'(0)].1 8
16u 0 Bt2

The critical fluctuation contribution is given by

gap-to-T, ratio, however, has the BCS value, a disagree-
ment with the data which is currently being investigated.

A unique feature of our description of high-T, super-
conductivity is the role of the a boson, which describes the
d state. This boson becomes soft at T„as if for a Bose
condensation, even though the narrow Ginzburg region is
instead typical of superconductivity. The change in

weight of the d state at T, is only about 1/1000, however,
The adjustable parameter we have used is the value of

the "oxide gap,
" the d p d' p excitation energy.

Defined from the center of the 0 band, our value (3.8 eV)
lies in the range of estimates by Schluter and Hybert-
son, ' and by Stechel and Jennison, but a lower value
has been proposed from calculations by McMahan, Mar-
tin, and Satpathy. The value of U, 5.9 eV, is slightly
below the range 6-6.5 eV favored by some experimental-
ists. This is to be expected because of our neglect of the
contribution of phonons to pairing, which is significant in

the La material.
Calculation of the effects of higher-order diagrams,

such as those illustrated in Fig. 8 for the 1/N corrections
to the anomalous self-energy, is highly desirable. In the
present formulation, the ultraviolet corrections noted by
Houghton and Sudbos form part of this calculation.

Pauling resonating-valence-bond (RVB) theory and
many other (e.g., bag model s) proponents have worked
with the reduced model (Hubbard model) which projects
out both the oxygen and d subspaces, replacing them re-
spectively by direct Cu-Cu hopping and by exchange. We
do not, of course, know the exact solution of either model,
but within the present approximation we notice significant
differences between the full and reduced models.

(i) The Hubbard model, even if interpreted in terms of
Wannier (mixed Cu and oxygen) orbitals, is not con-
sistent with the duality that added holes go into oxygen,
but states at the Fermi surface are mostly Cu-like.

(ii) Because the hole concentration on the Cu changes
little with doping, the energy scale T» in the two-band
model is almost doping independent, whereas it is propor-
tional to doping in the Hubbard model. The former result
is consistent with the observed susceptibility.

(iii) The variation of the d ds excitation energy E2
plays an important role in establishing the trend of T, in
this paper, but there is no such trend in the quantity which
depends on it, exchange, within the one-band model.

(iv) Attractive diagrams of order 1/N [Figs. 8(a) and
8(b)] are missing in the Hubbard model.

These differences between the full and reduced models
may be irrelevant in discussing generics such as topologi-
cal (e.g., whether Bose or Fermi statistics) properties, or
phenomena depending on dimensionality, but their neglect
is seen to be dangerous at a more detailed level.

The most dramatic distinction between the RVB and
the Fermi-liquid formulations is that RVB works with
separate "holon" and "spinon" degrees of freedom. The
holon concentration equals doping xp, in contrast to the
Fermi liquid whose Fermi surface contains I+xp, holes
(Luttinger theorem). It is not yet clear whether the for-
mulations are equivalent. Even if they are, explanations
of, e.g., the dependence of the Hall coe%cient and T, on

x~ may eventually emerge more naturally in terms of
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holons.
We comment briefly on the interpretation of T, varia-

tions between different materials which emerges from the
picture proposed here. An important limiting factor on T,
is found to be the saturation of doping in the p orbitals
because of the onset of hole transfer into other bands. We
suggest that the essential difference between the 1:2:3and
2:1:4materials is the delayed onset of this saturation, al-
lowing the 1:2:3materials to reach a higher hole concen-
tration, and hence a higher T,. An important role in our
theory is played by the mapping between the a boson and
the order parameter, and thus by the singlet nature of d
state. This is in practice due to crystal-field splitting, and
we think that at least one role of the planar structure is re-
lated to the requirement for a strong tetragonal crystal-
field splitting. This suggests a speculation on the new

Ba~ „K„Bi03materiaL Let us suppose it is analogous to
the Cu materials but involved s —s ' —s fluctuations, in-
stead of d' —d —d fluctuations. Bi satisfies the re-
quirement that s and s be both singlets even in a cubic
field, whereas Cu requires the strong tetragonal crystal
field. Hence KBi03 can be cubic within the present mech-
anism, as it is.
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+ln
8+ P

—a )'+b'V']'"

—21n
[(C 8 )2+b2V2] I 2

(AS)

Now sd —p=bv(bv/D), suggesting that for sufficiently
small b we may assume the b V terms are the largest in
the square roots in (AS). This approximation gives us a
simple result for S

1.14',S=2ppln
T

(A6)

where co, [(s —tu)]'/2. Substituting (A6) into (4.10)
yields (4.11). Next we wish to evaluate to logarithmic ac-
curacy the sum

In order to evaluate S to logarithmic accuracy we may
approximate (A3) by

S pob V — +
~+' dE 1

, (A4)
4 s- 4 c ~ E (& E)2yb2V2

where c T/1. 14. The coefficient c is chosen so that were
[(sd E)—+b V ] energy independent, (A4) reproduces
(A3) correctly, thus building in logarithmic accuracy.

Now (A4) may be evaluated, obtaining to logarithmic
accuracy

I

pob V 8— pS ln
(s —/2)'+b V [(a- —a )'+b V ]''

APPENDIX A

22
S'-(V'/4N, )g E +62 '/2 (A7)

In this appendix we wish to evaluate various k sums to
logarithmic accuracy, starting with

S g tanh
sin (2g) PEI, (Al)

4%, g Eg

where EI, is given by Ep in (4.2). We note that dE Jdet,
is from (4.2) and (4.4),

Eg
cos 8.

dq,

Hence since N, ' -po fd~, then (A 1) becomes

where 6 hq, . Following the previous derivation, S' may
be written

b 2V'2 (A8)J g [(s E)2+b2V2] I/2(E2+g2)

By a similar ansatz to that in (A4), (A8) is approximated
by

t
c' ~c+ dES' ~pob V —

I + . (A9)' [(ed —E) +b V ]E
sin (2') PEI,5 pp dEg tanh4 (A2) where now c' d,/2. Hence from (A6)

Hence, using (4.2) we have (abbreviating (b) to b)

S b2V2
'+ dE 1

h
PE

E (cd E)'+b'v'—
(A3)

2coc5' 2ppln

APPENDIX B

(A10)

where energies are with respect to p as energy zero, and
the cutoffs for the lower quasiparticle (hole) band are
specifically inserted.

In this appendix we consider the extension of the
Langrangian density of Eq. (5.lb) to bosons of higher
symmetry, i.e.,
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Z Q DbDb Da „Da „Dd„Dd„Dc~Dc~ exp — dtL(t)
l

where

(al)

L(t) gb (r;) +En b(r;)+ g a „(r~) +Ez a, (r;)dt l,m, n dr

+ddt(r;) +E~ d (r;)+gcj~ +q, c~
im t t

+g [Vqb(r;)dtc~e' "+H.c.]+ g [Vivat„(r;)d~c~e' "sgncr+H. c.]
kmi kmni

+i g A;[dt (r. ;)d (r;)+bt(r;)b(r;)+at„(r;)a„(r;) —1] .
imn

(B2)

This is a SU(p) &U(1) form of the Lagrangian. Here N is the number of independent components of the antisymmetric
tensor a „(r;). If m and n run from 1 to p, then N p(p —1)/2. U(l) accounts for the phase and amplitude of a „(r;).
The index Rm should not be confused with Eq. (2.11). What are the physical possibilities for such a generalization.
Suppose the localized d manifold has m degenerate states. (For the CuO plane without crystal-field splitting m would
equal 5 per spin) and suppose the d-k hybridization conserved angular momentum, then Eq. (B2) would be relevant.
When the representation of an occupied point group of the manifold m is greater than one, Eq. (B2) will split into smaller
invariants. For Cu-0 the partially occupied manifold is believed to be 1 (with, of course, two spins), in which limit Eq.
(B2) reduces to Eq. (5.1b). Equation (B2) after integration over the b, d, and c fields gives the following LG free-energy
density:

Pf(x) +[2 r(0)[a'„(x)a„' (x)+a „(x)a„(x)]+[V~~a'„(x)V~~a„'~(x)+V~~a~„(x) V~~a„(x)]]
r

+ g (v(0)[[a',„,(x) a„', , (x)]'+[a',„,(x) a„', ,(x)]']
m lm 2n ln 2

+u(0) [a ',„,(x)a„', , (x)a ',„,(x)a„', ,(x)+a,„,(x)a„, , (x)a,„,(x)a„, , (x)

+2a ',„,(x)a„', , (x)a,„,(x)a„, , (x)]), (s3)

where the superscripts 1 and 2 refer to the real and imaginary components of a~„, namely a „a'„+ia „We have.
evaluated the flow equation for r(l), u (I ), and v (I) for arbitrary N of Eq. (B3) to linear order in e. After a lengthy cal-
culation which is somewhat similar to Refs. 47 and 48, we get

dr(l ) R„u(l ) +R„v(I)

du(l) R„„u (I)+R„,u(l)v(l)

(B4)

(B5)

and

dv(l)
dl

-ev(l) —K4
S,„v (I)+S„„u(l)v(l)+S„„u (I)

[1+r0)]' (B6)

where R„4p—2, R, 2p —2p+8, Ruu Sp —4, S„, 48, S„, 4p —4p+32, S„„12p—8, S„„7[recall that
N -p(p —1)/2]. Equation (B3) has four fixed points:

u (0) 0, v*(0) 0, (B7)

u'(o)-o, v'(o)- K4S„' (B8)

v~+(0) -e —b+ (b —4ac) ~ e —K4R„„v+(0)
K4Ruu

(B9)
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and

—b —(b —4ac)v* (0) -e
2

e —K4R„,v —(0)
QQ

(B10)

and the two crossover exponents p+ and p (which deter-
mine the stability of the fixed points) are

(atl+a22) ~ [(all+a22)

4(all+a22 a12a21)]

r K4[R„u (0)+R„v (0)] .

For Eqs. (B7)-(B10)
r

2
~uU&uv ~uu&uU

&uu &u2u
a K4 S,„—

Suv 2SuuRuv —1
&uu &uu

and

The corresponding fixed point for r is given by

(Bl 1)

(B12)

(BI3)
and

a~~ 1 — [2R„„u (0)+R„,v (0)],
K4

K4
a)2 ~ — R„,u (0),

a2t — [2S„„u (0)+S„„v (0)l,
K4

8

(BI6)

(B17)

(B18)

(B19)

v —I+ [R„u (0)+R,v (0)] (B15)

(B14)
K4R 2„

The corresponding exponent v (which relates to the
specific-heat exponent a 2 —dv) for the four fixed points
is given by

a„-1— [S„„u~(0)+S„v'(0)].K4
(B20)

We, of course, recognize that these results are premature
for any experimental implication; this might not be so for-
ever. In particular, superconductivity in the heavy-
fermion systems, with large f-shell degeneracy, might be
an appropriate system; future high-T, materials might
also become relevant.
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