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Superconducting quantum interference device (SQUID) magnetometer data on a variety of
ceramics and crystals of Y-Ba-Cu-0 show a remanent moment which accurately equals the
difference of the field-cooled and zero-field-cooled moments in the low-field, low-temperature
range. This effect is argued to point to a flux pinning rather than a superconductive glass model,
particularly for the crystals. This holds true even when the glassy model is extended to include
screening effects.

I. INTRODUCTION II. EXPERIMENTAL RESULTS

Complementing preliminary reports, ' we present
here more complete data on the low-temperature
remanent moment as well as the related Meissner fraction
(field-cooled moment) of ceramic and crystal Y-Ba-Cu-0
over a field range from 10 mOe (I p T) to 60 Oe (6 mT).
We also extend the earlier discussion of the remanent
moment in both fiux pinning and superconductive glass
models.

Measurements of the Meissner fraction, that is, of the
field-cooled moment normalized by internal field, have
been widely used to estimate the fraction of superconduct-
ing material, particularly in studies of the new high-
temperature superconductors. The data we show here and
have shown earlier' demonstrate this to be unreliable
since the fraction depends strongly on the field applied
during the experiment. We have earlier proposed a theory
of this effect based on fiux line pinning; we will treat this
aspect of the problem in greater detail elsewhere.

Here we focus on the low-temperature remanent mo-
ment M„, , which is consistently equal to the difference
between the field-cooled (FC) and zero-field-cooled
(ZFC) moments MFc —MzFC in the same low-field range
where the Meissner fraction is changing strongly with
field. This simple rule is important because it sheds light
on the interpretation of magnetic properties in these su-
perconductors. Two rather different models have been
proposed, one drawing on conventional fiux-pinning con-
cepts in type-II superconductivity, the other based on
the notion of a granular superconductive glass. " We
argue that random polarity reversal of local moments is a
unique and defining characteristic of the superconduct-
ing glass state and is revealed experimentally by the
difference between M„and MFg MzFg. Thus the
equality of M„and MFC —MzFp indicates that super-
conductive glass effects make a negligibly small contribu-
tion to the macroscopic magnetic properties of these su-
perconductors at least in the low-field low-temperature
range. These concepts should apply also to conventional
low-temperature superconductors.

As described earlier, the measurements were per-
formed on a noncommercial SQUID magnetometer with
p-metal shielding and a solenoid electromagnet which
permits measurements in fields ranging from a few mOe
to about 60 Oe, depending on the size of the signaL The
background field is generally ——,

' mOe. The sample is

moved between counterwound pickup coils connected to a
SHE SQUID probe. The sample is suspended on a
phenolic holder in an exchange gas chamber of high-

purity copper, which is resistively heated to control tem-
perature. The very small fields and sample sizes in certain
cases give small signals; so special precautions must be
taken to avoid or correct for spurious background signals,
as described in the Appendix.

The samples are first cooled to low temperature in the
background field ("zero field" ). The field is subsequently
applied and moment measured as a function of slowly in-
creasing temperature, yielding curves labeled ZFC (zero-
field cooled) in Figs. 1-6. The temperature is then slowly
reduced through the superconducting transition, yielding
the curves labeled FC (field cooled) in the figures. Final-
ly, the field is turned off at low temperature (from 4 to 20
K; usually the measured moments are essentially tempera-
ture independent below 20 K or so). The resulting mo-
ment was measured as a function of slowly increasing
temperature, yielding curves labeled REM (remanent) in

the figures.
The data represent slow runs (half a day for one tem-

perature run from T, on down or vice versa), with the
hope of approaching equilibrium as closely as possible.
However, both the ZFC and REM data are intrinsically
metastable, and even the FC data may have some time
effects, particularly in the high-temperature regime. ' '
Only at low temperatures are all these data independent
of time to within experimental accuracy. Most earlier
studies of time effects have usually been conducted at
higher applied fields. '

Figures 1 and 2 exhibit the full temperature runs for an
Y-Ba-Cu-0 single crystal (sample c in Table I). Similar
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FIG. 1. Zero-field-cooled (ZFC), field-cooled (FC), and
remanent (REM) moments as a function of temperature, for a
0.25-mg Y-Ba-Cu-0 crystal (Ref. 19) (see Table I) with a I-Oe
field applied parallel to the c axis.

curves are obtained for conventional superconductors such
as V3Si, and, in particular, the low-temperature value of
the remanent magnetization equals the difference between
the FC and the ZFC values in all cases, at least in the
low-field regime we are considering here. We exhibit here
data for Y-Ba-Cu-0 only. A comparative study of high-
temperature and conventional superconductors will be
presented elsewhere.

These data are generally temperature independent
through most of the region well below T„except for the
ultrathin Y-Ba-Cu-0 crystal (sample d of Table I) which
shows slight temperature dependence even at low temper-
atures. Some interesting anomalies occur in the high-
temperature region around T„but in this paper we con-
centrate on the low-temperature data. Figures 3-6 show
the field dependence of the low-temperature zero-field-
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cooled (ZFC), field-cooled (FC), and remanent (REM)
moments of a set of different superconducting samples
(b-d in Table I). Data on sample a have been given in
Ref. 3. The data are normalized by applied field but un-
corrected for demagnetization effects, for reasons to be
described below. The remanent moment, observed in zero
applied field, is normalized by the applied field during the
preceding field cooling.

The figures also show the difference between FC and
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FIG. 3. Low-temperature zero-field-cooled (ZFC), field-
cooled (FC), and remanent (REM) moments, normalized by
applied field H, t~~, for a high-density Y-Ba-Cu-0 ceramic (Ref.
18) (see Table I). The difference of MFc and MzFc is compared
to M&,m, they are closely equal.
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FIG. 2. Zero-field-cooled (ZFC), field-cooled (FC), and
remanent (REM) moments as a function of temperature, for a
0.25-mg Y-Ba-Cu-0 crystal (Ref. 19) (see Table I) with 60-Oe
field applied perpendicular to the c axis. There is a noteworthy
broadening of the transition as compared to the 1-Oe data in

Fig. 6.

FIG. 4. Low-temperature zero-field-cooled (ZFC), field-
cooled (FC), and remanent (REM) moments, normalized by
applied field H,~~, for a 0.25-mg Y-Ba-Cu-0 crystal (Ref. 19)
(see Table I) with field applied perpendicular to the c axis. The
difference of MFp and MzFc is compared to M„; they are
closely equal.
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FIG. 5. Low-temperature zero-field-cooled (ZFC), field-

cooled (FC), and remanent (REM) moments, normalized by
applied field Hz~~, for a 0.25-mg Y-Ba-Cu-0 crystal (Ref. 19)
(see Table I) with field applied parallel to the c axis. The
difference of MFC and MzFc is compared to M«m, they are
closely equal.

FIG. 6. Low-temperature zero-field-cooled (ZFC), field-

cooled (FC), and remanent (REM) moments, normalized by
applied field 0 ppt for a 0.13-mg, 20-pm-thick Y-Ba-Cu-0 crys-
tal (Ref. 19) (see Table I) with field applied perpendicular to
the c axis. The difference of MFC and MzFC is compared to
Mfgm they are closely equal. Note the shift to higher fields of
the dropoff in MFC.

ZFC moments, normalized to applied field, compared to
the remanent moment normalized by the same applied
field as described above. The two sets of data are essen-
tially equal within experimental error for all samples and
fields. The significance of this simple rule will be dis-
cussed below.

Properties and characteristics of the different Y-Ba-
Cu-0 samples are described in Table I. ' '9 A ceramic
Lai sSrn 2Cu04 sample was studied earlier in Ref. I, and a
low-density Y-Ba-Cu-0 ceramic' in Ref. 3. The only
weakly field-dependent Meissner fraction of that low-

density ceramic contrasts with the much stronger field
dependence shown in Fig. 3 for the high-density ceramic.
The crystals also show a strong effect for field in both
principal orientations, as shown in Figs. 4 and 5. Since
the demagnetizing factors for these two orientations are
quite different (see Table I), it is clear that this field
dependence is not some artifact of demagnetization but is
a bulk material property, whose origin has been described
elsewhere. 5 Similar results have been obtained for a
different Y-Ba-Cu-0 crystal prepared by a different

growth technique and reported on in Ref. 4. Finally, in

Fig. 6 data on a much thinner Y-Ba-Cu-0 crystal are
shown. The dropoff in the Meissner fraction is shifted to
higher fields. Optical microscopy indicates a comparable
twin density in the crystal, but the reason for the
difference in the Meissner effect requires further investi-
gation. Further discussion of these effects will be present-
ed elsewhere; in what follows we focus on the remanent
moment and its simple relation to the field-cooled and
zero-field-cooled moments in all these samples.

III. DISCUSSION: REMANENT MOMENT
IN THE FLUX-PINNING MODEL

We discuss next how the remarkable agreement be-
tween the remanent moment and the difference between
the field-cooled and zero-field-cooled moments can be un-
derstood in a flux-pinning model. In Sec. IV we show how
this effect can be used to measure the importance of su-
perconductive glass behavior in the macroscopic magnetic

TABLE. I. Properties of superconducting samples.

Sample Description

Y-Ba-Cu-O, ceramic, low density
Y-Ba-Cu-O, ceramic, 95% density
Y-Ba-Cu-O, crystal, Hllc

HLc
Y-Ba-Cu-O, 20-pm-thick crystal

Ref.

17
18
19

Weight
(mg)

42
4.0
0.25

0.13

Approximate
demagnetization

factor

0.031
0.10
0.63
0.16
0.01

Tc

90.2
89
90.2

90.4
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properties.
The equality of M„and MFC —MzFc has a natural

explanation in the standard picture of flux pinning in

type-II superconductors. Let us first neglect demag-
netizing effects, to which we return later. 8, the magnetic
induction, is the spatial average over h(x), the local in-
duction field at position x in the sample, which is deter-
mined by the specific vortex structure of the superconduc-
tor. It is simply related to the applied field by
8 H, +4', as usual.

In the zero-field-cooled state at low fields with minimal
flux penetration, —4' is determined by the difference
between the applied field and h(x), as shown schematical-
ly by the shaded region in Fig. 7(a). The falloff at the
sample edges is due to London penetration, a negligibly
small effect except in the thinnest samples. By contrast, in
the field-cooled state, flux is trapped in the sample, as has
been described elsewhere. Once again —4aM is the
difference between the applied field and h(x), as shown
schematically by the shaded region in Fig. 7(b). Finally,
turning off the field, 4' becomes B, as shown in Fig.
7(c). The h(x) contour cannot shift in the bulk of the
sample because of the assumed pinning. Provided surface
effects are negligible, the two shaded areas of Figs. 7(b)
and 7(c) add up to that of Fig. 7(a). In other words [not-
ing that in Figs. 7(a) and 7(b) the shaded areas represent
negative M],

Mrem MFc MzFc ~

In the presence of a finite demagnetizing factor N, a
question arises of how to properly compare M„with
MFC —MzFC. Should one use, for example, magnetiza-
tion corrected for demagnetizing factors or not? We show

next that to test the flux-pinning model, one must simply
compare the raw measured magnetizations corresponding
to a given applied field. On the other hand, to test the
theory of MFc described earlier, one must use the mea-
sured moment with the demagnetization-corrected inter-
nal field of the field-cooled measurement.

To explain these points it is first necessary to recognize
that a magnetometer such as the SQUID system we use
here measures the total dipole moment of the sample, ir-
respective of the demagnetizing fields, and the dipole mo-
ment is determined by M, the magnetization or moment
per unit volume, times the sample volume. Next we use
the classic relation for the magnetic induction

(a) ZFC, TYPE Q
h(x)

(d) FC GLASS

X r, h!. .
h(x)

(b) FC, TYPE IIs PINNED

-4e M H

(e) REM, GLASS

h(x)

(c) REhl, TYPE II, PINNED (f) REM, PINNED GLASS

H ~ 0

FIG. 7. Schematic contours of applied field H and local mag-
netic induction h(x) across a superconducting sample. The be-

havior of a conventional pinned type-II superconductor is illus-

trated in (a)-(c), while the behavior of a superconductive glass
(Refs. 10 and 11) is illustrated in (d) and (e). In (a) zero-field

cooling with H & H, & gives flux penetration only within a Lon-
don penetration depth at the surface. The shaded area with

downward sloping lines corresponds to a negative magnetization
—4aM. In (b) field cooling leads to flux trapping and a
significantly reduced negative magnetization. In (c) the
remanent moment is positive and is indicated by the shaded area
with upward sloping lines. In (d) the random polarities of local
currents in the superconducting glass give moment variations on

a scale set by the structure of Josephson junctions in the materi-
al; their amplitude averages to zero for sufficiently large field.
In (e) the net remanent moment of the superconductive glass is

zero even though the local moments may be randomly positive
or negative. Finally, in (f) the hypothetical "pinned" supercon-
ductive glass preserves the configuration of (d) within the ma-

terial and gives a positive net magnetization.

8 H;+4+M,

where the internal field is

(2)
field cooling the internal field is H, —4xNMFc, so that

~Fc =Ha —4&NMFc+4&MFc . (5)
H; H, —4xNM. (3)

MzFC —H, /4x(1 —N) . (4)

The measured field-cooled moment MFc is determined
in a complex way by pinning, as discussed elsewhere. Be-
cause this value is, in general, different from MzFc, the
internal fields of the two experiments are different. For

The measured zero-field-cooled moment, assuming com-
plete exclusion of flux, is just MzFC= H;/4rr, which
leads to

BFc~4m(I N)M„I . — (6)

Eliminating BFC and solving Eqs. (5) and (6) for M„,

Finally, we consider the remanent moment when the
field is turned off. If we assume all the flux in the bulk of
the sample remains pinned, as illustrated in Figs. 7(b) and
7(c), B remains by definition BFC. To determine the
remanent moment, we note that it will generate its own

demagnetizing fields —4xNM„. Since the applied field
is now zero, we have
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and substituting Eq. (4), we recover Eq. (1) identically.
We conclude that the raw comparisons in Figs. 3-6,

which verify Eq. (1), support the flux-pinning picture. A
prediction of the unusual field dependence of MFc in this
picture has been given earlier and will be extended to in-
clude demagnetizing effects in later work.

p -(1/2c) gX;J xI/x;J, (10)

Equation (7) leads' to a Josephson-like current be-
tween grains i and j

IJ (2eJJ/h)sin(l'; —
1'J

—8;J),
and a cluster moment

IV. REMANENT MOMENT IN THE
SUPERCONDUCTIVE GLASS MODEL

fj
";,-(2~/eo)„. A dl,

aJ j

and where 4o is the flux quantum hc/2e.

(8)

A. Superconductive glass model:

Introduction

The superconductive glass model " offers a very
different interpretation of the reduction in field-cooled
moment from its ideal Meissner ratio of 100%. In the fol-
lowing sections we develop the expected behavior of the
low-temperature field-cooled, zero-field-cooled, and
remanent moments in this model. We extend the model
beyond earlier treatments so as to compare as well as pos-
sible to experiment, but as will be seen, even with these ex-
tensions there remain significant problems in the compar-
ison to crystal data. Finally, then, this analysis points
back to flux pinning as the most coherent interpretation
for the magnetic properties of crystals. Nevertheless,
many of the ideas in this section may still be relevant to
ceramics, where a glassy model is physically more plausi-

le.
We start with a brief review of the model, ' which con-

sists of a system of superconducting grains, usually taken
to be small compared to the London penetration depth,
and described by a complex order parameter with phase 1';
for the ith grain. The grainsi and j are coupled by a cou-
pling energy J'J, with the Hamiltonian

8 QJg/cos(~; p/ A~J), (7)
l,j

where the phase factor or "gauge field" A;J is determined
by the vector potential A according to

where X;J is the vector joining the origin to the midpoint
between grains i and j and where x;J is the vector distance
from grain i to grain j.

Insight into the predictions of this model can be ob-
tained by considering a single loop of N grains enclosing
an area S, connected by equal coupling energies J, as dis-
cussed by Ebner and Stroud. ' The gauge-field phase fac-
tors A;, between two grains, given by 2zBS/N@o, deter-
mine the current I according to Eq. (9) and the moment
IS/c from Eq. (10). There are multiple states for the sys-
tem, corresponding to N different choices of the phase
difference 1';J 2xm/N between two neighboring grains,
where 0&m ~ N is an integer. Whenever 8 is near a
multiple of pp/S, it is favorable for the system to adjust
the phase difference p;, to compensate for A;, . Lowest en-

ergy for this system (see Fig. 1 of Ref. 10) thus corre-
sponds to the zigzag current pattern illustrated by the
solid lines in Fig. 8 for the case of a loop with N 6 ele-
ments, and the moment is proportional to this current.
Between these states, however, are energy barriers; so
low-temperature field excursions cause the current to fol-
low the full sine waves in Fig. 8 into the metastable
dashed regions.

If the loop sizes or shapes are random, the resulting
random gauge-field phase factors A;J give rise to random
currents and hence random moments. Figure 8 shows that
if the field 8 is of order 4o/S with S an average loop size
of a distribution spread over a range S, the currents can
be of either sign, i.e., clockwise or counterclockwise
around the loop, and the corresponding moments can be
either positive or negative. In fact, simulations of more
complex systems show" that above some lower critical
field H„', which is probably determined by the size of the
array, and which is in any case considerably smaller than
@o/S, the magnitude of the net array moment actually
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FIG. S. Current for the first four fiux states of a six-member Ebner-Stroud (Ref. 10) loop. Two cases for determining the FC,
ZFC, and REM moments are illustrated for H/(%0/S) equal to 0.6 and 2.75. The first case, labeled 1, corresponds to Hclose to zero,
so that M„closely approximates MFc —MzFC. The second case, labeled 2, corresponds to the limit for true glassy behavior in which

M„m has no simple relation to MFg MzFC.
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drops with increasing field because of increasing local mo-
ment reversal. The moment reaches essentially zero for
applied fields of order @0/S. At this point there are equal
numbers of local moments pointing up and down, and the
system can be termed completely frustrated. This pro-
vides a possible interpretation for the experimental field-
dependent Meissner fractions shown in Figs. 3-6.

Such reversed polarity moments are physically measur-
able, and we propose that their presence should be con-
sidered as a defining experimental test of the superconduc-
tive glass. This is because the random gauge fields giving
random current polarities are a central feature of the
theory. If this feature is absent and all the moments point
in the same direction, then the system can be equally well
treated by a conventional critical state and flux-pinning
model for an Abriksov vortex lattice.

For example, flux line decoration techniques should
permit the direct observation of the reverse polarity mo-
ments. The density of the lines would differ from that ex-
pected for conventional flux pinning, since in the glass it is
determined by the structural arrangement of Josephson
junctions, whereas in the Abrikosov lattice it scales as
H/eo. Magnetooptic decoration techniques might direct-
ly detect the sense of the flux lines through the sign of the
magnetooptic Kerr rotation. ' Yet another method is to
measure the difference between the remanent moment and
MFc Mzpc, as will be discussed in the following sec-
tions.

B. History-dependent moments in the
superconductive glass model

Next let us consider the behavior of field-cooled, zero-
field-cooled, and remanent moments in a superconductive
glass model without screening (i.e., 8 H), appropriate
for the limit of small coupling J. The important effect of
screening will be discussed in the next section.

Let us first consider the effect of a low field (H «@0/S)
on the single loop described above and in Fig. 8. Zero
field cooling corresponds to starting at H 0 in the lowest
energy state and moving along the initially solid contour
down and to the right in Fig. 8. This generates a negative
or diamagnetic moment called MzFc i in the figure, al-
though in this model without screening, the moment is
usually small compared to the conventional Meissner
screening M/H —I/4x. Field cooling follows the same
contour unless the field is slightly larger than @0//2NS, in
which case the system hops to the next solid segment, as
shown by MFc, 1 for a field H/(@0/S) 0.6 in Fig. 8. The
remanent moment is determined by following this contour
to zero Geld, giving a net positive value called M„~ in
the figure. In the limit of large N, the remanent moment
equals the difference of the field-cooled and zero-6eld-
cooled moments at the same field because the first two
contours are parallel to each other.

However, at higher fields, for instance at H/(@0/
S)-2.75, Fig. 8 shows that the zero-field-cooled moment
MzFc 2 corresponds to about —0.25, while the field-
cooled moment MFg2 corresponds to +0.25 and the
remanent moment M„2 to 0. Clearly, because of the

nonlinearity, there is no necessary connection between the
remanent moment and MFc —MzFc.

This argument may now be extended to a more complex
system with an uncoupled distribution of loop sizes S ran-
domly distributed over some interval of order S. For 6elds
of the order of the average @0/S, there will then be a dis-
tribution of values of H/(@0/S) spreading over a full
wavelength of the sine-wave contour in Fig. 8, and the dis-
tribution of moments of individual loops will take on all
possible values, both positive and negative, such that the
average moment will approach zero in a large system. A
schematic distribution of the local induction 6eld h(x) is
shown in Fig. 7(d), where the positive and negative spikes
around the average level of the applied 6eld H represent
the random moments of the different loops.

When the applied field is reduced to zero without any
hopping from contour to contour, the average remanent
moment must also be zero because the starting points and
distances traveled along the 8 axis in Fig. 8 are all ran-
dom. It is reasonable to suppose that a more complex
model of coupled loops would behave similarly, although
this needs to be verified by simulation. It is important to
note that in this model without screening the 6eld H is an
independent variable; so there is no tendency to trapping
or pinning of flux in the usual sense. The final distribution
of the local induction field at H 0 will look like Fig. 7(e),
where on average the random distribution of local-field
variations is similar to that of Fig. 7(d), but it is translat-
ed downwards by an amount H and the precise moment
values at any given location are randomly different.

Thus, in a model with no screening, zero field cooling
cannot lead to any exclusion of field. The zero-field-
cooled state will resemble that of Fig. 7(d), though again
with a different precise contour of h(x). Thus, the net
zero-field-cooled moment will also be zero. Although
M««MFc —MzFc 0, these predictions obviously bear
little relation to the experimental results where MzFc and
M„are both substantial. A first step to correct these
difficulties and to provide a mechanism for the complete
flux exclusion observed in zero 6eld cooling is to introduce
screening into the superconductive glass model.

where as usual 8 0+4+M and where g is a positive di-
rnensionless parameter which measures the strength of the
screening. Solving for 4', one has

4' —rIH/(I + rj) . (12)

C. Superconductive glass model with screening

As a first step towards introducing screening in the
superconducting glass model, let us imagine a system of
loops of area S a with centers on a simple cubic grid of
lattice parameter a. Let us assume the system has an nee-
dle shape, so that overall demagnetizing factors are negli-
gible. In the low-field limit 8«@0/a2, we may expand
the sine in Eq. (9) and calculate a magnetization or mo-
ment per unit volume p/a (in cgs units) by combining
Eqs. (8)-(10):

4+M —(8x Ja/N@0)8= —rIB,
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Thus if rl is large the system is fully screened (8 0),
whereas if rl is small 4aM is inadequate to compensate for
H.

Let us estimate g, assuming that the coupling energy J
can be related to the critical current density J, by
J, -2eJ/ha . This gives

rl-8z J,a /c@o. (i3)

There is, of course, uncertainty in equating the macro-
scopically measured current density with this hypothetical
microscopic parameter J, because frustration might make
it impossible for the sample to simultaneously support a
current density J, everywhere. In this sense the estimates
for rl are a lower limit. Typical parameters for Y-Ba-Cu-
0 ceramics and crystals are given in Table II. A
presumed grain size for the hypothetical glassy crystal is
taken to be a twin spacing of order 100 nm, following on
the suggestion that twin planes might be acting as
effective Josephson junctions. The estimates in Table II
show that typical ceramics fall in the strongly screened
limit while crystals may be only weakly screened.

Going beyond the weak-field limit, we expect onset of
nonlinearities in M vs H or 8, just as discussed in the
predeeding section. Let us define this to occur when 8 be-
comes a fraction fof 4o/a, which, according to Eq. (12),
implies

H„//(eo/a ) f(rl+1) . (i4)

TABLE II. Typical parameters for Y-Ba-Cu-0 ceramics and
crystals (see definitions in text).

J, (A/cm, T-0)
a (cm)
Z (cm)
g 8z J,a /c@p
a/2A,
4p/a' (Oe)
H„, (Oe, f -O.Ol)
Zg, g/a - (a/2zg) '~'

Hcr;~, g (Oe)
) g, ;/a-g
H.,;&,; (Oe)

Ceramic

2x10'
10
10-'
80
50
0.2
0.162
0.79
2
0. 1 1

0.2

Crystal

2x10
10-'
10-'
0.8
0.5

2000
36
0.79

201
1.1

284

The fraction f has been calculated in several simula-
tions' "and is of order 0.1 to 0.01, although as discussed
elsewhere these results most likely depend on the size of
the array used in the simulations and will drop as the ar-
ray becomes larger. We will use the value f 0.01 below.

This "nonlinearity" critical field can be compared to a
number of other critical fields derived by considering
screening without nonlinear effects. In addition to the
possibility of screening by local internal currents, there is
the possibility of screening by a current running through
junctions adjoining the surface of the sample. This situa-
tion, recently treated by Clem, is controlled by a Joseph-
son penetration depth between two adjacent grains having
a London penetration depth A, assumed much larger than
the Josephson barrier thickness. This penetration depth

can be expressed, using our dimensionless screening pa-
rameter g, as

ZJ g/a - (a/2) rl ) ' '. (is)

4~(M«« MFC+MzFC)/H =fs . —

For the derivation to be consistent, A,q ~ must be less than
the grain size a; otherwise the problem shifts to the inter-
granular limit discussed below.

From the Maxwell equation dh/dx -4n J/c, one derives
a critical field beyond which the junction is no longer able
to carry enough screening current to fully shield the sam-
ple:

H„;,g/(4o/a ) (rla/2X) '/ /2x.

Here, the subscripts "g" refer to the "grain" and the fact
that the results depend on the intragranular London
penetration depth A, .

Estimates in Table II show that for both ceramics and
the hypothetical glassy crystals, the condition XJ s ~ a is
approximately satisfied, although clearly somewhat lower
values of J, would have given the opposite result. We re-
call, however, that the local J, is likely to be larger than
the measured bulk J, as discussed earlier. Comparing
now H„~ with H,„;,s, we find that for f 0.01 and for the
Table II parameters, the latter is larger.

These estimates show that surface currents can shield
the interior even at fields which would induce nonlineari-
ties (local moment reversals) in the granular supercon-
ductor. Thus it provides a way to reconcile the essentially
complete flux exclusion generally observed in zero-field-
cooled measurements with glassy suppression of moment
in field-cooled measurements at one and the same applied
field. In other words, zero field cooling in fields below

H„;ig will give full flux exclusion. For the Table II pa-
rameters, this corresponds to 0.2 Oe in the granular ma-
terial and 200 Qe in the hypothetical glassy crystal, well
within the range we have studied. On the other hand, field
cooling should give near complete flux expulsion (because
of the large q) only below H„i 0.16 Oe for the ceramic
and partial flux expulsion below 36 Oe for the crystal,
with the flux expulsion dropping towards zero at 0.2 and
2000 Oe, respectively. While these predictions qualita-
tively resemble some of the FC and ZFC data, we have
not found a way to adjust the input parameters so as to
match the data quantitatively.

The remanent moment poses further problems. In the
range of fields where flux exclusion is largely complete but
flux expulsion is dominated by glassy effects, we can make
the following rough model. We assume conventional flux
pinning with pinned magnetization M~ in a volume frac-
tion f~ of the sample, for instance within the grains. The
remainder of the sample f~-I —f~ can be assumed to
consist of glassy regions where the magnetization is totally
neutralized by random orientation of the local moments.
During Geld cooling only the "nonglassy" regions develop
screening currents, and so the field-cooled magnetization
MFc is just f~(Mp H/4x). The remanent m—agnetiza-
tion M„ is f~M~, while the zero-field-cooled magnetiza-
tion is, according to our above discussion, the complete ex-
clusion H/4z. Combining t—hese quantities, we find
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This suggests that the difference between M„and
MFC —MzFC is a measure of the "glassy" volume fraction

fg. Experiment shows that this fraction is zero within ex-
perimental error in all the systems, including, surprisingly,
the ceramic samples studied so far (see Fig. 3 and Ref. 3).

We can make a simple estimate of fg which shows the
sensitivity of this test. According to Fig. 13 of Ref. 11,
simulations show that at H/(@0/S) 0.03, M has dropped
10% from its peak value because of glassy polarity rever-
sals. The value 0.03 corresponds to the ratio of our largest
measurement field of 60 Oe to 40/S 2000 Oe (see Table
I). Since the glassy fraction does not contribute to the
remanent moment, we would expect fz in Eq. (17) to be
of the order of 10%, whereas our experiment shows it to be
within experimental error (1%) of zero.

Nevertheless, one should not be too hasty to reject the
glassy model. We consider several other possibilities for
reconciling the model with the data. One is to consider
that the condition A,J g (a for the Josephson penetration
model is not satisfied and that the field penetration
spreads across many grains. This limit was first treated in

the context of high-temperature superconductors by Ra-
boutou eral. , who derived the effective intergranular
Josephson penetration depth, which in our units can be
simply expressed:

(18)

The corresponding critical field is

H„;i,;/(@o/a ') - (il/2) ' '/2x. (19)
For the Table II parameters, the condition A,J; & a is

not at all satisfied for ceramic material but is marginally
satisfied for crystals, particularly if J, is low. H„;&; works
out to be 284 Oe for the crystal. In principle, this could
extend the range of full flux exclusion to higher fields
(H& i, ; & H, q, g ), but the same problem with the
remanent moment arises as in the earlier treatment of
Hg $ g namely that the remanent moment should measure
the glassy fraction, and experiment shows it to be essen-
tially zero.

Above these critical 6elds, there is nothing in the naive
model (i.e., ignoring flux pinning; see below) to prevent
full penetration of the applied field, which will be only
partly shielded by the frustrated magnetization it induces
in the sample. Thus one would expect significant devia-
tions from full ZFC flux exclusion at fields in the range of
0.2 or 284 Oe for ceramics and crystals, respectively (see
Table II). This is again largely in contradiction with the
crystal experiments, where the lower critical fields are ob-
served to be significantly larger, at least for Hllc.

Because of the glassy effects, one cannot assume a
coherent Josephson-like penetration once the field exceeds
H„~. Glassy regions reduce screening and increase flux
penetration. They do this increasingly as the glassy frac-
tion increases above H„i and approaches 1 near @o/a . At
this latter field the effective penetration depth should
diverge. It would be an interesting problem, though
beyond the scope of this paper, to simulate this effect nu-
merically in a random lattice of Josephson junctions.

Finally, we consider yet another possible avenue for the
glassy model to explain the experimental findings.

Throughout the discussion so far, we have assumed, fol-
lowing the original models, that the internal field is an in-
dependent variable, determining the magnetization but
not being affected by it. In effect, this amounts to ignor-
ing the possibility of flux pinning. Thus, as illustrated in
Figs. 7(d) arid 7(e), when applied field is turned off, it has
been assumed that the moments are modulated but that
the average level of h(x), corresponding to the applied
field H, simply shifts to zero. From a macroscopic point
of view this is a reasonable assumption since the average
energy of a fully random system is the same in the zero-
field remanent state as in a field of order @0/a .

However, it is possible that the local disordered dipolar
fields modulate the internal field in such a way that local
barriers develop against flux change. This could lead to
pinning of the overall flux distribution h(x). A simulation
of such pinning in random Josephson arrays would be an
interesting problem for the future. Let us simply assume
here that it is very strong. In this case reducing the ap-
plied field to zero would cause a change from the
configuration of Fig. 7(d) to that of Fig. 7(f). The same
pinning would prevent penetration of flux in a zero-field-

cooling experiment. In this case it is obvious that the con-
dition M„MFc—MzFC would be satisfied.

This hypothesis resolves some basic problems in com-
paring glassy theory to experiment. However, the glassy
model now becomes difficult to distinguish from more con-
ventional flux pinning, at least from a macroscopic point
of view. But the microscopic parameters of the flux pin-
ning picture would now have a different interpretation, the
activation barriers and jump distances being determined
by the random Josephson array rather than by conven-
tional defect pinning.

The two pictures can be distinguished microscopically,
however, because, as mentioned earlier, the distribution of
moments in the superconductive glass picture bears no
necessary relation to a set of well-defined Abriksov flux
lines with flux quantum @0 hc/2e. Magnetic decoration
techniques are sensitive to the variations in h(x), and
therefore the density of decoration centers is a good indi-
cation of the nature of the moment distribution. Such ex-
periments, performed on crystals, have shown a flux lat-
tice at sufficiently low temperatures, with quanta @0 in a
field range where, based on Table II parameters, a
significant glassy contribution should occur. This obser-
vation would appear to exclude the superconductive glass
interpretation, even with the pinning hypothesis, at least
in the low-temperature regime.

V. CONCLUSIONS

In summary these considerations, coupled with our ob-
servations of remanent moment and the earlier flux
decoration experiments, argue against the superconduc-
tive glass interpretation for crystals, at least in the low-
temperature, low-field range. This point of view is sup-
ported by the earlier semiquantitative interpretation of
the field dependence of the field-cooled moment and also
by the explanation of the irreversibility line, ' using a
more conventional flux-pinning picture.

However, for Y-Ba-Cu-0 ceramics, it is now an estab-
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lished fact that the boundaries between grains act like

Josephson elements; so it would seem that the criteria for
the superconducting glass model are all present. In this
case it would be more difficult to do a decoration experi-
ment: The field range is significantly less (see Table II)
and sample inhomogeneity makes interpretation of the
images more difficult.

There are two possibilities to explain the good agree-
ment between M„and MFc —MzFc in ceramics. One is

to invoke strong glassy flux pinning; this hypothesis still
needs to be investigated in theoretical simulations to
demonstrate its plausibility. The other is to suppose that
the large grains of the ceramic dominate the macroscopic
magnetic behavior so that the glassy contributions, while

present, are simply smaller than present experimental er-
ror. This is plausible because the intergranular regions,
where glassy contributions should originate, represent
only a small fraction of the total volume of high-density
ceramics. A possible approach to this problem would be
to study much finer grain ceramics, a topic of considerable
interest in any case for synthesis of possibly higher current
density material.
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APPENDIX

We describe here some details of our experimental re-
sults and analysis which become important at low fields
and for small sample sizes where signals are very small.
An example of zero-field-cooled, field-cooled, and
remanent measurements on the ultrathin crystal are

0.3—
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0. 1
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0.0E
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0.2 — ~ —REM
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—40 —20 20
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FIG. 9. Field-cooled, zero-field-cooled, and remanent mo-
ments of another thin crystal similar to that in Fig. 6, in a range
of positive and negative fields around zero. The results show the
offset due to a background ferromagnetic impurity when the
sample signal is very small.

shown in Fig. 9 for fields of ~ 50 mOe. The data, which
normally would be expected to intersect zero, show an
offset which can be interpreted as a background signal. In
this region the traces of signal versus sample position in
the magnetometer show distortion, suggesting the pres-
ence of tiny ferromagnetic impurities on the sample hold-
er. These signals vary in size in different measurements,
and even with reasonable precautions about cleanliness,
we have not been able to routinely eliminate these effects.

Without taking this effect into account, the data of Fig.
9 might mistakenly be taken to indicate a large enhance-
ment of M/H near zero field. They could also mistakenly
be taken to indicate a failure of the rule M„m

MFC Mzpc. However, we interpret the intersection of
these curves with the vertical axis in Fig. 9 as a back-
ground ferromagnetic signal which we subtract off from
all the data. Then we see that the M„rule is preserved
and M/0 is well behaved near zero field. This correction
has been made in Figs. 3-6.
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