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Role of three-body correlations in recombination of spin-polarized atomic hydrogen
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We present results of a calculation of the volume rate constant Lg~ of dipole recombination in

H$&, in which the bbb incoming state is determined exactly by means of the Faddeev formalism.

Inclusion of all three-particle correlations in the initial state does not resolve the discrepancies be-

tween Kagan's approach and experiment. As a first step towards an exact determination of the out-

going atom-molecule state, we present a calculation in which all three-particle collision aspects are

taken into account, except for rearrangement. This leads to values for Lg, which are a factor of 5

smaller than experiment, while the B dependence of the rate constant still shows a slowly increasing

behavior. On the basis of this state-of-the-art calculation, we thus localize the cause for the existing

discrepancies in rearrangement processes.

I. INTRODUCTION

In the last decade, dramatic progress has been made in
the creation and stabilization of gas samples of spin-
polarized atomic hydrogen. ' The interest in this field
has been stimulated by the realization that spin-polarized
atomic hydrogen is the only substance that remains in
gaseous form even at the absolute zero of temperature.
This would imply that a phase transition to the Bose-
Einstein-condensed state will thus be observable in a
weakly interacting Bose gas. Furthermore, the simple
structure of the hydrogen atom and the well-known in-
teratomic interactions allow for a first-principles ap-
proach to describe the physical properties of this gas.
Therefore, atomic hydrogen is an ideal medium to test
quantum-statistical theories. Beyond this, the experimen-
tal work has already led to numerous interesting applica-
tions.

In 1979 Silvera and Walraven created the first long-
lived sample of atomic hydrogen by polarizing the elec-
tron spins in a strong magnetic field using He-coated
cells. This leads to a population of only the two low-lying
a and b hyperfine states (a, b, c, and d are the hyperfine
levels of the 1s ground state of atomic hydrogen labeled
in order of increasing energy). In 1980 Statt and Berlin-
sky realized that a subsequent depopulation of the a
state with its admixed electron f state, by means of pref-
erential recombination of the a atoms, would lead to a
much more stable doubly polarized gas of b-state atoms.
This was first observed by Cline, Greytak, and Kleppner
who found lifetimes orders of magnitude larger than be-
fore. The next step towards Bose-Einstein condensation
consisted of compression of the doubly polarized gas to
higher densities. The occurrence of a rapid decay of the
gas in these experiments has retarded further develop-
ments to reach the degeneracy regime at high densities.
Explanations, restricted to two-body bulk and surface
processes, were found to be incapable to account for the

experimentally observed rapid decay. This led to the sug-
gestion that a three-body dipolar recombination process
could provide for the dominant decay mode of the gas
sample. Inclusion of a three-body term in the rate equa-
tion immediately resolved the previous discrepancies be-
tween experiment and theory concerning the two-body
contributions. Up to now, simple approaches to describe
the three-body part ' have failed to reproduce the ex-
perimentally observed magnetic field dependence of the
volume and surface rate constants. There exists an addi-
tional discrepancy with respect to the absolute magnitude
of the rate constant: For surface recombination the
theoretical value is roughly a factor of 6 too small. ' '"

A better understanding of the three-body dipolar
recombination mechanism is thus crucial to remove the
obstacles on the way to the degeneracy regime in
compression experiments. Therefore, it seems important
to perform a calculation, based on the Faddeev formal-
ism, ' ' in which the three-body collision aspects are tak-
en into account exactly. Furthermore, the use of the
Faddeev formalism, which has been sucessfully applied in
nuclear physics, is of interest in its own right, because it
opens possibilities for further applications of exact three-
body calculations in atomic physics. It turns out that,
compared to the case of Yukawa-type potentials among
nucleons, central (singlet- and triplet-) interatomic in-

teractions present more diSculties. This expresses itself
most clearly in the case of the singlet potential with its
numerous bound states. Obviously, this situation has no
counterpart in the few-nucleon problem.

In Ref. 13 (further referred to as I) we started an exact
treatment of the three-body recombination process in the
bulk. Here, further developments are presented. In Sec.
II we review the method we use to calculate the effective
volume rate constant Lg in terms of the transition ampli-
tude f, which describes the transition from the incoming
bbb state to the outgoing atom-molecule state, induced by
the electron-electron magnetic dipole interaction. In the
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present paper we calculate the initial state rigorously, by
means of the Faddeev equation. In Sec. III this equation
is introduced, as well as our method for solving it. With
respect to the final state we follow two approaches. In
the first one all atom-molecule correlations are neglected.
Despite the rigorous treatment of the initial state this
does not resolve the discrepancies with experiment. The
relation with a initial wave function previously used by
Kagan, Vartan'yants, and Shlyapnikov is discussed in
Sec. IV, where also a simple, more accurate approxima-
tion of the exact wave function is presented. As we al-
ready mentioned in I, solving the Faddeev equation for
the final state is an even more diScult problem than the
determination of the initial state. In Sec. V we present an
approach to calculate the final state, in which all three-
particle correlation aspects are taken into account, except
for rearrangement. We show that this leads to a rate con-
stant, which displays a less strong field dependence than
in Sec. III. It is, however, still increasing with B, and
more importantly, the absolute magnitude of Lg now
turns out to be a factor of 5 smaller than the correspond-
ing experimental value. In Sec. VI we therefore come to
the conclusion that rearrangement (the dipole-exchange
mechanism introduced in I) must be the dominant decay
channel.

II. DIPOLE RECOMBINATION

The rate of decay of doubly polarized atomic hydrogen
can be described efFectively by means of the rate equation

discrepancies are probably in both cases caused by the
same mechanism, due to their similar features. There-
fore, it seems reasonable to concentrate first on the easier
case of volume recombination. We can distinguish be-
tween contributions due to single- and double —spin-flip
processes, for which the total final electron spin projec-
tion Mz is ——,

' or + —,', respectively,

L 'ff —L —~ /'2+ 2L + ~ /'2

g g

Here the factor 2 results from the fact that the final c
atom in the double —spin-flip process recombines immedi-
ately on the surface, removing an additional pair of parti-

cles from the sample. A weight factor somewhat different

from 2 is also sometimes used in experimental analyses.
Furthermore, L ' and L+' are related by'

L+' (B)=4L ' (2B) . (4)

In I we concentrated on

—L + &/'2+L —&~2
g

the rate constant representing the pure bbb ~H2+ H de-

cay, instead of the effective rate constant L', which is

more important experimentally.
We assume that the final molecule consists of particles

2 and 3 (pair I). Furthermore, we introduce the Jacobi
momenta p and q, p being the relative momentum of pair
1 and q the momentum of particle 1 relative to pair 1. As

we have shown in Ref. 11,

Geffn 2 L eff

where n is the atomic density, and 6' and L' are the
effective two- and three-body rate constants. The two-
body term describes the decay of the gas due to bb~ab
relaxation, in which the transition is induced by the weak
electron-proton and the stronger electron-electron mag-
netic dipole interactions. Both interactions give rise to
comparable contributions, because the electron-electron
dipole interaction only contributes in combination with
the hyperfine interaction. Under normal circumstances,
the density of the sample is so low that the probability of
collisions of an increasing number of particles strongly
decreases. This explains the fact that higher-order terms
in Eq. (I) can be neglected. However, the three-body
part, which describes the decay due to dipole recombina-
tion, is still important, because the transition is caused
purely by the electron-electron dipole interaction. As we
already pointed out in Sec. I the three-body term even
dominates for higher densities in compression experi-
ments. The rate constant L' can be written as a sum of
bulk and surface contributions

L' =L' +L,' —A,,h exp( —3so/kT).ff
In Eq. (2), A/V is the surface-to-volume ratio, A, th the
thermal de Broglie wavelength, and —co the adsorption
energy of an atom on the surface.

Up to now, simple models have not succeeded in ex-
plaining the experimental behavior of L' and L,' . The

( 27Th ) 2

4 X qf 0f I fq e&metr =+—,p q I thermal&
mH

U, t, m

(6)

which is essentially the transition probability, described
by

I f I, summed over all possible final-state quantum
numbers v, l, m, qf and averaged over all initial momenta

po and qo. In Eq. (6) mH is the mass of the hydrogen
atom, Ulm are the vibrational and rotational quantum
numbers of the molecule, and qf the relative atom-
molecule momentum. The integral over qf has reduced
to an angular integral over qf, due to energy conserva-
tion

2
Po 3q0 3qf+ 4

3p&B=
4

+—E,&+2MspaB . (7)
4mH 4mH

In Eq. (7) E,&
is the bin—ding energy of the molecule and

2(Ms+ —,')lM~B, the Zeeman energy needed to flip one or
two electron spins, JM& being the Bohr magneton. Furth-
ermore, po/mH+3qo/4mH is the small relative kinetic
energy of the three particles before the collision.

The dipole recombination amplitude f can be de-
scribed very accurately by means of a DWBA ap-
proach, " in which the extremely weak dipole interaction
is treated in the first order. The amplitude f, which is
essentially a matrix element of the summed dipole in-
teractions Vk (the pair k is denoted by the spectator par-
ticle) then reduces to:
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3 PlH 3
qg( —) ~ Vdg qp(+)fqf Ul~Ms Poqo 2~2 k=1

Here, S is the unnormalized symmetrization operator

S=(1+P23 }(1+P),

H«e, Go+'(E)=(E+i0 H—o) ' is the outgoing-wave
free propagator, in which Ho is the free Hamiltonian in-

cluding the Zeeman energy and E the total energy.
Furthermore, t', (E) is the t operator of pair 1 operating
in three-particle space, which obeys the Lippmann-
Schwmger equation

where t'(E)= &'+ &'Go+'(E)t'(E) . (14)

~12~23 + 13 23 (10)

P, - being a permutation operator of particles i and j.
In the fully symmetrized initial state S

I
4', +

& and
final atom-molecule state

I
'Pf '& of Eq. (7), the central

interactions in principle have to be taken into account to
all orders. The (+ ) and ( —) superscripts denote outgo-
ing and incoming asymptotic boundary conditions, re-
spectively. Since three hydrogen atoms consist of three
electrons and three protons, we have to solve six-particle
Schrodinger equations. As in the two-atom case, ' how-
ever, we reformulate these as three-atom Schrodinger
equations' by the introduction of effective interactions,
which are essentially the Coulomb interactions averaged
over the electron motions. These effective central poten-
tials consist of direct parts and contributions representing
the exchange of two or three electrons. Since there exists
no completely antisymmetric spin state of three electrons,
there is always at least one repulsive hydrogen pair.
Moreover, for our polarized initial state the three subsys-
tems are repulsive, which prohibits the particles to ap-
proach each other closely. Therefore, a three-body force,
describing the exchange of three electrons, can be
neglected. Throughout this paper we describe the central
interactions by a sum of pair (singlet and triplet) interac-
tions.

III. EXACT bbb INCOMING STATE

In this section we determine the wave function of the
bbb incoming state. The method we use is based on the
Faddeev formalism, which we introduced in I. We start
with a recollection of the main results of I and continue
the discussion started here.

The state S
I
4;+'& can be regarded to develop out of

the free state

leading to harmless singularities at p =q =0 (see I).
To solve Eq. (12), we introduce the angular momentum

basis'

I pq a & =
I pq (1A, )LML ( s ,

' }SMs &—, (15)

which is normalized according to

&p'q' 'Ipq &= 5(p —p') 5(q -q')
p 9'

(16)

In Eq. (15) l, s are the orbital and spin angular momenta
of pair 1, A, is the orbital angular momentum of particle 1

relative to pair 1, and LML, SMS are the total three-
particle orbital and spin angular momenta. Note that the
proton spins are left out of consideration in Eq. (15).
They remain polarized during the process and do not
influence the dynamics of the recombination. For the po-
larized initial state the spin angular momenta are restrict-
ed to s =1, S=—,', and Ms ————,'. Furthermore, only the
total orbital angular momentum L =0 contributes due to
the T =0 limit. This restricts the number of a channels
to be taken into account to a few even l =A. values.

With the help of the representation of the various
operators in the angular momentum basis as discussed in
I, Eq. (12) is a coupled two-dimensional integral equation.
In discretized form, using spline techniques to express the
functions in the values at the grid points, ' this equation
can be transformed to a matrix equation

Since we are only interested in recombination at very
low temperatures, we perform our calculations for T =0.
This simplifies the calculations significantly, because the
initial tnomenta po and qo are zero in this case, leading to
a trivial thermal-averaging procedure. At the same time,
the denominator of Go+' in momentum representation is

E p'/—mH 3q'—/4mH+3ptt& = p'/m—H 3q'/4—mH,

I tpo&=
I poqo& I

bbb & y, =a, +pE»y, , (17)

X& =t t(E)PGo+'(E)t', (E)S
I qo&

+t', (E)PG,'+'(E)
I
X &, (12)

where the amplitude IX& contains all terms of second
and higher order in t', :

S
I

q', +'& =S
I
qo&+(I+P)G.'+'(E)S

I qo&

+(1+P)G'+'(E) IX& . (13)

by successive pair collisions. This introduces all three-
particle correlations. The orbital part of the free state is
normalized as a product of two Dirac 5 functions in
momentum space. The multiple-scattering series is gen-
erated by the Faddeev equation

where the vectors y, and a, represent the amplitude
I
X &

and the driving term t ~PGo+'t ~S
I tpo&, respectively. The

matrix E» stands for the kernel t', PGo+' of Eq. (12}.
Furthermore, we added the strength parameter p, for
which we will finally substitute the value 1.

Due to the oscillating behavior of the t operator and
consequently also of the solution as a function of momen-
ta, we need at least 40 p and 40 q Gauss-Legendre grid
points to describe y, . The kernel K» is therefore too
large to solve Eq. (17) by matrix inversion, even for a few
cz channels. Instead we solve it by iteration. Further-
more, we use Pade's method' because the Neumann
series diverges for the physical value p = 1, as a result of
the strength of the triplet potential. The iteration series
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converges for complex p values with
~ p ~

( I/
~

A, m» ~,
where X,„=2.0 is the eigenvalue of K» with the largest
absolute magnitude. Because of the compactness of
1 —K», it is possible to construct an analytic continua-
tion of y, (p) into the complete complex p plane in the
form of a meromorphic function, i.e., a ratio of two regu-
lar analytic functions. In our case the application of this
Pade method to the iteration series generated by Eq, (17)
leads to a nonuniformly converging behavior of the solu-
tion: For small p and q values y, converges rapidly, but
for larger p and q values we find no stable solution, at
least within a reasonable number of iterations. To solve
this problem we make use of a variant of the Nystrom
method. ' In addition to Eq. (17), with p replaced by 1,
we introduce the equation

Fourier transformation of the various terms of Eq. (13) to
configuration space, by means of

4 (r, R )=(rRa
~

S%';+')

3i
'+"f dp p J't(pr /$)

X J dq q j ~(qR /fi)% (p, q ) .

(22)

where 4 (p, q)= (pqa
~

SqiI+') is the orbital part of the
symmetrized initial state in the angular momentum basis.
In our special case of

y2 ~2 +K21y1 (18)

which links the solution y, based on the initial set of grid
points to that based on an alternative set, denoted by the
subscript 2. The number of points of this last set is sup-
posed to be only a fraction of the initi1 set. With Eqs.
(17) and (18) we subsequently formulate an equation for
Y, the direct sum of y1 and y2.

Y=A+KY,
~here

(19)

—1 +—12—22—2

22~2
(20)

and

+11++12C22K21 +12C22
(21)K-

C22K21 C22K22

In Eqs. (20) and (21) we used Czz for (1—Kzz) '. It can
be checked that the eigenvalues of the new kernel K of
Eq. (19) become arbitrarily small, when the set of points
denoted by 2 approaches that denoted by 1. In this limit
the matrix K becomes singular, its upper submatrices ap-
proaching the lower ones. If the sets of points are
different, one can systematically improve the vector A by
iteration of Eq. (19). That convergent procedure leads in
the upper component of Y to the desired solution y1. To
solve Eq. (19), the dimension of Kzz should be small
enough to be able to calculate the inverse C22, and on the
other hand, it should be large enough in order to obtain
small eigenvalues of K, i.e., in order for C22a2 to describe
the most essential correlations. A choice of 15 p and 15 q
points fulfills both demands, leading to a spectrum of ei-
genvalues of K, with

~

A, » ~
=0.15. Therefore, we now

find convergence after about 10 iterations.
We solved Eq. (19) with various numbers of channels.

The four lowest partial waves up to I =A, =6 are suScient
to describe the wave function of the initial state and to
find a converged transition amplitude. Furthermore, the
I =A, =O partial wave appears to be dominant.

AS we already pointed out here and in I, the wave
function in momentum space displays a lot of structure
and is not useful for a clear physical picture. To under-
stand the underlying physics, we therefore performed a

it is possible to write S
~

4', +') as a function of r, R, and
8

%(r,R, B)= g ( —I )'&2l+1Pt(cosB)% (r, R ),
7T

(23}

where 8 is the angle between the Jacobi coordinates r and
R (see Fig. 1}. Note that the free part S

~ yo) in Eq. (13)
contributes only an I =A, =O partial wave. This is also
the case for Go+'t~S

~
po), while the remaining terms

contain in principle all even l =A, partial waves. In Figs.
2(a)-2(c) we plotted %(r,R, B) as a function of r and R for
8=0, n /4, and ~/2. The wave function is symmetric un-
der a permutation of particles 2 and 3, leading to syrnrne-
try of %(r,R, B) with respect to the interchange of 8 and
~—0 due to the evenness of l =A, . In each of the figures
we observe that the wave function vanishes for r (6ao,
which is caused by the strongly repulsive triplet interac-
tion for small distances between particles 2 and 3. This
effect also plays a role in Fig. 2(a) for 8=0, when the dis-
tance between particles 1 and 2 is

~

R ——,'r
~

(6ao. In
Figs. 2(b) and 2(c) we see that qi(r, R, B) behaves for large
R essentially as the zero-temperature two-particle triplet

FIG. 1. The Jacobi vectors r and R.
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FIG. 2. The wave function of the exact initial state O(r, R, O)

as a function of r and R for (a) 8=0, (b) 0=m/4, and (c)
8=m. /2.

wave function P, (r) .For small-R values, however, 4 ap-
proaches P, ( ,'—r), because the distance between particles 2

or 3 from particle 1 is only —,'r in this case. Furthermore,
%(r, R, 8} approaches the free wave function
(rR

i
((s—,')SMs

i Stpo) =6/(2m%) for large distances r
and R.

It is of interest in this connection to point out the role
of the various terms in Eq. (13). It turns out that the
(1+P)GD+'

~

B term contributes only in that part of
configuration space where all three particles are closely
together. Similarly, a Go'+'t, 'S

i yo) term contributes
only when the distance between the atoms of pair i is
small. Note that PG o+ 't

&
is effectively equal to

Go+'(tz+t3). Taking particle i apart, the nonzero part
(I+Go+'t )S

~ po) of Eq. (13} converts a free three-
particle state into a state in which the pair i wave func-
tion is distorted to a triplet scattering state.

We now turn to the calculation of the effective rate
constant L' with the help of Eqs. (6) and (8). It turns
out that the expansion of P, ( i+R ——,'r

~

) in partial
waves I =A, converges very slowly, due to the fact that
((},(r)=0 for r (6ao. Therefore, the contribution of the
term PGD+'tiS

~ go) to 4(r, R, 8) and to the dipole ma-
trix element cannot be calculated in the angular momen-
tum basis. We calculated it in the momentum basis

~ pq )
i
(s—,

' )SMs ) .
Another numerical problem arises from the strong in-

crease of the dipole interaction at small r. The fully
correlated initial state gives rise to a suppression of the
small-r contribution to the 1/r magnetic dipole integral.
It turns out, however, that the separate terms in Eq. (13)
lead to large (but finite) contributions of the order of a
"free" matrix element, which cancel when added. The
ensuing loss of accuracy is easily avoided. The magnetic
dipole interaction has an artificial IIr dependence only
as a result of the Shizgal approximation, according to
which the electronic magnetic dipole moment of the H
atom is located at the position of the proton. This is a
good approximation, except for small distances, where
the dipole interaction should rapidly decrease to negligi-
ble values. We therefore multiply it by a function g(r)
which damps its 1/r behavior near the origin and which
is equal to 1 for distances r &6ao. Clearly, apart from
this restriction, the precise form of g(r) is unimportant.
This is confirmed by numerical results.

In a previous calculation of Kagan, Vartan'yants, and
Shlyapnikov both the exact initial- and Anal-state wave
functions were replaced by simple approximations. As a
first step we now follow the same procedure for the final

state: we neglect all atom-molecule correlations. In this
case, the dipole interaction Vk for k =1 does not contrib-
ute to the transition probability, because it can cause no
transition from s =1 to s =0. Furthermore, the results
presented here do not include any contribution of the
dipole-exchange mechanism, as a result of the neglect of
all atom-molecule interactions. The calculation can be
regarded as an improvement of the original evaluation of
the Kagan dipole mechanism.

As in previous calculations, the major contribution to
f turns out to be supplied by the v = 14, I =3 molecular
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state, while the small remaining fraction comes from the
v =14, I =1 state. In Fig. 3 we present the separate con-
tributions Lg

—+' to the effective rate constant, evaluated
with the help of the exact initial state, as a function of
magnetic field B. In Fig. 4 we also plot the total effective
rate constant L' as a function of B (curve 2). For com-
parison we also give the results of the calculation of Ka-
gan, Vartan'yants, and Shlyapnikov (curve I). The
difference between the curves is small, both in absolute
magnitude and in B dependence. We will come back to
this remarkable resemblance in the following section,
where we compare the initial states of both calculations.

Since the results are still not in agreement with experi-
mental data, we come to the important conclusion that
the poor treatment of the final state is the cause of the
discrepancies. A better treatment of the final state,
which was also the aim of our earlier calculation of the
dipole-exchange mechanism in I, will be discussed in Sec.
V.

0
10,

B
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C

R
C)

VS~

10
10

10
4

0
0

0
10

FIG. 4. The effective rate constant Lg as a function of B,
Curve l: Kagan's result. Curve 2: exact initial state, undistort-
ed final state. Curve 3: exact initial state, (in)elastically distort-
ed final state.

V)

E

C)

CV

+I

2

10

FIG. 3. The single — and double-spin-flip contributions

Lg and Lg+ ' to the rate constant as a function of magnetic
field B. Curve 1: Lg+', exact initial state, undistorted final

state. Curve 2: Lg+', exact initial state, (in)elastically distort-
ed final state. Curve 3: Lg ', exact initial state, undistorted
final state. Curve 4: Lg ', exact initial state, (in)elastically dis-

torted final state.

IV. COMPARISON WITH THE CALCULATION
OF KAGAN

As we pointed out in the previous section, the ap-
proach of Kagan, Vartan'yants, and Shlyapnikov leads
to an effective rate constant Lg, which displays a similar
behavior as a function of B, as the results obtained in Sec.
III. We here investigate the reason for this resemblance.
In both approaches the correlations between the final
atom and molecule are neglected. Therefore, the only
difference between the calculations is the character of the
initial state. We first analyze the features of Kagan's in-
coming state and subsequently discuss their effect on the
transition probability.

In the initial state of Kagan, only the correlations be-
tween the recombining atoms (pair l) and among the par-
ticles interacting via the dipole interaction (pair 2 or 3)
are taken into account in the form of a product of two
pair wave functions. For instance, in the Vz term of Eq.
(8):

(«~ &
~

q";+')~6$, (r)P, (
~

—R ——,'r
~

)
~

bbb) . (24)

For the contribution of V3 to f, the second triplet wave
function in Eq. (24) should be replaced by P, (

~

R —
—,'r

~

).
As in Sec. III the zero-temperature wave function P, (r) is
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normalized as 1/(2vrA) for larger r values.
The spin part of the initial state is symmetric under all

particle permutations. Because of the boson character of
H atoms, the orbital part of the wave function should
also be completely symmetric. However, because of the
fact that not all particle pairs are distorted by the triplet
interaction, Eq. (24) is only symmetric under a permuta-
tion of particles 1 and 2 and not under an exchange of
other atoms. Therefore, an expansion of Eq. (24) in par-
tial waves l, describing the dependence on the angle 8 be-
tween the Jacobi vectors r and R, shows that unphysical
odd-l values contribute to the wave function and the tran-
sition amplitude. Moreover, the contribution of the odd
partial waves to f is essential in Kagan's model in order
to obtain reasonable results: Odd-l values have to be in-

eluded to obtain a vanishing wave function for small dis-
tances between the particles 1 and 3, interacting by the
dipole force V".

To compare Kagan's wave function Eq. (24) with our
exact initial state, we plotted the spatial part of Eq. (24)
as a function of r and R in Figs. 5(a)—5(d) for 0=0, m/4,
n/2, and m.. Notice that the figures for 8=0, m/4, and
~/2 look very similar to the corresponding surfaces for
the exact wave function presented in Fig. 2. In spite of
the lack of syrnrnetry of Kagan's wave function, it
possesses the essential elements of the exact initial state.
For O~m, however, the difference between the wave
functions becomes significant, as can be seen by compar-
ing Fig. 5(d} with Fig. 2(a}. This results from the neglect
of correlations between particles 1 and 2, which is of im-
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FIG. 5. Kagan s approximation to the initial state 0'(r, R, 8) as a function of r and R for (a) 8=0, (b) 8=+/4, (c) 8=m. /2, and (d)
8=m.
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portance for 0=m. The asymmetry of the wave function
with respect to the exchange of 8 and m —8, which can be
observed by comparing the surfaces for 8=0 and 0=m. ,
demonstrates again that Eq. (24}contains odd-I values.

An essential element in understanding the effectiveness
of Kagan's approach can be found in the zero-
temperature approximation. This causes the wave func-
tions to "heal" within distances of roughly 10ao. In a
way the atoms behave as transparent objects, except for
smaller distances. Therefore, the wave function of Kagan
is a good approximation of the exact initial state for the
complete three-particle configuration space, except for
the part where the distance

~

R——,'r
~

between particles l
and 2 is less than 10ao. Apparently, the contribution
from this forbidden region is of minor importance for di-
pole recombination.

The relative error, due to the contribution from small

~

R——,'r
~

values is roughly proportional to 1/rb, i.e., to
the average strength of the dipole interaction between
atoms 1 and 3, when particles 1 and 2 are within the for-
bidden region. Here, rb is the most probable distance be-
tween the bound particles, directly after the recombina-
tion. Obviously, the error in

~ f ~

increases for more
strongly bound states. For the dominant v =14, l =3
state, the error turns out to be roughly 20%%uo. For the
v =14, l =1 state it has already increased to a factor of 2.
Therefore, we conclude that the applicability of Kagan's
approach decreases when the contribution of lower
bound molecular states increases. %e come back to this
shortly (Sec. V}.

Guided by the success of Kagan's approximation for
the initial state, an obvious improvement to Eq. (24)
would be a Jastrow-like expression:

S
~

0";+')~6$, (r, )$, (r2)P, (r3)(2M) ~
~

bbb ), (25)

with r, =r, rz ———R——,'r, and r3 ——R——,'r. This wave

function contains the pair correlations in a completely
symmetric way. Furthermore, Eq. (25) describes correct-
ly the behavior of the initial state, in the case that one of
the particles is separated from the others. In Figs.
6(a)—6(c) we plot Eq. (25) as a function of r and R for
8=0, m/4, and m/2, respectively. The difference with
the exact wave function is hardly observable. Only when
all three atoms are located close to the forbidden region,
there are small deviations. We conclude that Eq. (25)
provides for a simple and accurate approximation of the
T =0 bbb incoming state, also for more strongly bound
molecular states.
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V. THE FINAL STATE 0. OOS

A calculation of the outgoing atom-molecule scattering
state based on the Faddeev formalism is in principle pos-
sible. However, as we already pointed out in I, the solu-
tion of this problem is even more diScult than the deter-
mination of the initial state, because of the rapidly oscil-
lating character of the singlet t matrix and the numerous
bound states, which enter into the calculation. Further-
more, the number of u channels which have to be taken
into account is at least a factor of 6 larger, and the solu-
tion now depends on the strength of the applied magnetic

G. OOS

FIG. 6. The wave function 4(r, R, 8) of Eq. (25) as a function
of rand R for (a) 0=0, (b) 0=@/4, and (c) 0=m/2.
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field. Therefore, we present as a first step a calculation of
I 4f '& in which atom-molecule (in)elastic scattering is

included. The only approximation left is the neglect of
rearrangement processes.

Our starting point is the three-particle Lippmann-
Schwinger equation'

quantum numbers v and I, while atom 1 is free. In the
angular momentum basis it can be expressed as follows:

lf &
I (0l) ™s&

=g(lm ~v ILMI. )I'k„(qf) I 0 iqf~& I(0-,'}2Ms &,

G', '(E)=(E—i0—Ho —Vt } (27)

(26)

The channel resolvent operator GI '(E) of pair 1 is given
by

(29)

where the spherical harmonics Y&„describe the angular
dependence of

I
g&, and (lmkp,

I
LMI ) is a Clebsch-

Gordan coeScient. For reasons of linearity we can re-
place

I
qt & in Eq. (26) by the vector

where

Ho=p /mH+3q /4mH+2p&BS, (2g)

I y„(qfA&I (0,—,')—,'Ms &

= f&p p $,1(p)
I
pqf(lA, )LMI &

I
(0—,')-,'Mz&, (30)

is the free three-particle Hamiltonian operator, including
the Zeeman energy. The driving term

I qt & of the
Lippmann-Schwinger equation (26) was used in Sec. III
instead of the exact final state

I 4& '& to calculate the
rate constant. It is an undistorted wave function, in
which pair 1 is bound with vibrational and rotational

and solve Eq. (26) for such a vector separately.
Taking into account the possibility that the molecule

changes its vibrational and rotational quantum numbers
during the collision with the atom, but excluding rear-
rangement of atoms leads to the following expression for
the final state:

I Pf '& = r fe"(p" }'f&q" (q")'4.-i (p")n.-i-~-(q" }
I p "q"(l"~")LMI.&

I
(o-,')-,'Ms & . (31)

Th«un«ton p„-I-q-(q") describes the motion of the atom in the channel denoted by the quantum numbers U", l", and
A,". The vibrational quantum number v" runs over all possible bound states, belonging to a specific angular momentuml" of pair 1. Furthermore, l" is limited to odd values, due to the singlet character of the subsystem. In connection with
the fact that l"+A,"=even (see I), this restricts A,

" to odd values, which obey the triangular rule
I

l" L
I
(A,

"(l—"+L. Note that Eq. (31) does not include a sum over L,Mz and Mz due to the fact that the central
interactions conserve these angular momenta.

The solution of the Lippmann-Schwinger equation (26) is in principle not defined uniquely: the state P,2Pz3 I

4f
and P,3P23 I

qtf '&, for which pair 2 or 3 is bound, respectively, obey the homogeneous equation and can be admixed ar-
bitrarily. ' However, our special choice Eq. (31}for

I 4& '& in which rearrangement terms are excluded prevents the
appearance of these undesired solutions.

Substitution of Eqs. (30}and (31) in the Lippmann-Schwinger equation (26) and a subsequent projection of the equa-
tion on

I P„,q'A, '
&

I
(0—,

'
)—,'Mz & leads to a set of coupled one-dimensional integral equations:

nU id q ) =fiU Ufi(ifivt.
5(q' —qf ) 1

q' E I E''I'+3qf /4—m H 3q' /4m H i0— —

f~q" (q")'V, I ~,.-l-t;(q' q")n.-l A-(q"». (32)

where we used the energy conservation relation (7) to rewrite the energy denominator. The coupling matrix of Eq. (32)
is given by

x fdp" (p") P„-I-(p")(p'q'(1'A, ')LMI
I
((0—,')—,'Mz

I

x( V~+ V3)
I
(0—,

' }—,'Ms &
I p "q"(l"A,")LMI & . (33)

In our notation we suppressed the label L of the coupling matrix, since this has the unique value 2. This results from
the fact that the dipole interaction, being a tensor operator of rank 2 in orbital space, causes transitions from L =0 in
the initial state to L =2 in the final state. Equation (33}is essentially the Fourier transform of a matrix element of the
nonspherical atom-molecule interaction
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(36). The wave function in coordinate space can subse-
quently be evaluated by means of a Fourier transforma-
tion

f ~'(~')'~. I''(e'V (e'R )
0

(37)

In Figs. 8(a)—8(c) we plot the real and imaginary parts of
these functions for A, '=1,3, 5 and U'=14, l'=3, while the

final channel has the quantum numbers v=14, 1=3,
A, =3. Note that q, , z (R ) vanishes for small-R values as
a result of the repulsive character of V. Scattering within
the elastic channel A, '=A, =3 is observed to be dominant.
The coupling to other O', I' states, except for U'=14,
/'=1, is so weak that the solution in these channels
would be hardly visible on the scale of Fig. 8.

With the help of the final state presented here, we cal-
culate the effective rate constant, as well as the partial
contributions Lg

+—', as a function of 8. The results are
presented in Figs. 4 and 3, respectively. Although the
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magnetic field dependence is now less strong, L' is still
increasing in the range 6-8 T where experimental data
are available. Furthermore, the magnitude of Lg is
roughly a factor of 5 too small in this range. Therefore,
we are led to the important conclusion that rearrange-
ment (the dipole-exchange mechanism of I) is an essential
ingredient of the decay mechanism and should be includ-
ed in any future attempt to give a realistic description of
volume recombination.

Compared to the case of the undistorted final state, the
contribution to the dipole matrix element is largely
suppressed for small atom-molecule distances R due to
the repulsive character of the nonspherical interaction,
especially for small angular momenta A, of atom 1. This
is the reason for the smaller absolute magnitude of L' .
The incorporation of three-particle correlations in the in-
itial and final states explains the weaker field dependence
of L' . In the calculation of Kagan, the final momentum

qf of atom 1 relative to the molecule is to be induced by
the dipole interaction. This momentum transfer de-
creases for increasing magnetic field strengths, leading to
a strongly increasing 8 dependence of the rate constant
(Fig. 4; curve I). Part of this momentum change can be
provided by the additional triplet interactions, taken into
account in the exact

~

4I+ ' ) . This gives rise to a first
sign of a weaker 8 dependence (curve 2). The efFect is
further amplified by the incorporation of the final atom-
molecule interactions, because the eftective repulsive in-
teractions can cause large-momentum changes of the par-
ticles (curve 3).

We end this section with an important remark con-
cerning the approach of Kagan, Vartan'yants, and
Shlyapnikov. In Sec. IV we explained that Kagan's ap-
proximation with respect to the initial state is excellent,
as long as the contributions to L' are dominated by ex-
tended bound states. The relative contribution of the

v =14, 1 =1 state increases due to the inclusion of the
final-state interactions. A replacement of our exact initial
state by the approximation Eq. (24) indeed turns out to be
disastrous: The absolute magnitude of Lg increases by
roughly a factor of 2 in a Kagan-like calculation, due to
the overestimate of the v = 14, 1 = 1 contribution.

VI. CONCLUSION

We presented a calculation of the efFective bulk rate
constant Lg in which all three-particle collision aspects
are included, except for rearrangement. Kagan's approx-
imation with respect to the initial state appears to be ex-
cellent, as long as the contribution to the transition prob-
ability is dominated by extended bound states, like the
v =14, 1=3 state. Inclusion of the initial-state correla-
tions gives rise to a weaker B dependence of Lg . The
dependence on the magnetic field strength becomes even
weaker due to the incorporation of (in)elastic atom-
molecule scattering in the final state. The absolute mag-
nitude of Lg is now roughly a factor of 5 too small. We
therefore conclude that rearrangement (the dipole-
exchange mechanism) is very important. Furthermore, it
seems probable that the dipole-exchange mechanism is
also essential to resolve the disagreement with experiment
in the case of surface recombination.
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