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We report on a study of memory effects in granular film systems. Experiments by Lambe and
Jaklevic and by Adkins et al. are examined. In the former, a granular film is embedded in a capaci-
tor, and the memory effect is an anomaly in the low-temperature capacitance-voltage plot centered
at the bias in which the capacitor was cooled. In the latter, the granular film forms one plate of a
capacitor, bias is applied between the capacitor plates, and the memory effect is an anomaly in the
low-temperature plot of the granular film's conductance versus bias, centered about the cooling
bias. In reviewing these experiments, it is found that there is lacking a theoretical understanding
which correctly addresses the roles of electrostatic and electrochemical potentials in establishing the
memory. Experiments are carried out on a Lambe-Jaklevic device which provide insights into the
effect and supplement the existing experimental results. Two theoretical models are proposed. One,
based on the idea of the Coulomb glass, predicts results inconsistent with some aspects of the exper-
imental results. The other is related to the ideas in the original Lambe-Jaklevic and Adkins et al.
works but resolves issues raised in considering their models and is consistent with all experimental
results.

I. INTRODUCTION

Metal island films are known to display memory effects
consistent with some kind of freezing-in of a charge dis-
tribution. Lambe and Jaklevic' performed measurements
on a "tunnel capacitor, " Fig. 1(a), in which an island film
of particles, typical diameter =100 A, is embedded in a
capacitor and is separated from the lower plate by a thick
oxide, and from the upper plate by a thin tunnel barrier.
When the sample is cooled from room temperature to 4.2
K, the capacitance shows an oscillation as a function of
bias applied to the sample Vs. This is shown in Fig. 2(a),
a plot of bC =C —Co versus V&, where C is the mea-
sured device capacitance and Co is the expected zero-bias
capacitance in the absence of the memory signal. Re-
markably, if the sample is cooled with a static bias ap-
plied during the cooling, the feature is centered not on
zero bias, but on the cooling bias Vzz. The magnitude of
the signal may be characterized by the quantity hC( Vsc)
and is found to be independent of V&c. Adkins et al.
measured the in-plane conductance of a granular film
evaporated on a dielectric substrate as a function of the
voltage applied to a field electrode on the underside of the
substrate, Fig. 1(b). If the sample is cooled in a field elec-
trode bias V&&, the low-temperature film conductance
displays a minimum at Vs&. Shown in Fig. 2(b) is a plot
of the ratio Acr/cr versus V& for a sample cooled with

V&c
——0, where hu is the difference between the measured

device conductance cr and the conductance oo expected
in the absence of the memory signal. In both experi-
ments, the sample "remembers" the bias it was cooled in,
displaying a memory which persists for long times at low
temperatures.

The similarity of the experimental results in the
Lambe-Jaklevic and Adkins et aI. experiments suggests

that the same physics is responsible for both memory
effects. However, the physical mechanism which pro-
duces these memory effects is not well understood. The
memory may involve Coulomb interactions between
charges on different particles, interactions between oxide
defect charges, and particle electrons, or both. We have
investigated the problem with theoretical models and ex-
periments, focusing on the Lambe-Jaklevic device where
we need not be concerned with the many-body problem
of charge transport in a granular film.
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FIG. 1. The sample configurations of (a) Lambe-Jaklevic —a

tunnel capacitor, and (8) Adkins et al. —a granular film field-

effect device.

38 6407 1988 The American Physical Society



R. E. CAVICCHI AND R. H. SILSBEE 38

(a)

S

D
C)

&1 o-
CU

I

~sc O

Cl

-0.4 -0.2 0 +0.2 +0.4
'k (volts)

(b)

Q2e-
1e--

=elc,

-2e

dVs

-6 -4 -2 0 2 4 6

V G (kilovolts)

FIG. 2. Memory effect in (a) Lambe-Jaklevic' and (b) Adkins
et al. devices. ' In both cases V&& ——0 V.

FIG. 3. (a) Circuit model for a small metal particle in either a
Lambe-Jaklevic or Adkins et al. device. (b) Charge added to
the particle as a function of applied bias at zero temperature
with VzD ——0. (c) Incremental capacitance deduced from (b).

In Sec. II we review the ideas and experimental results
of Lambe-Jaklevic and Adkins et al. Additional results
from experiments carried out by us on a Lambe-Jaklevic
type of device are also summarized. Then we consider
two possible models. One, described in Sec. III, assumes
the memory results from interparticle Coulomb interac-
tions, and is based on the idea of a Coulomb glass. How-
ever, it is not in accord with some aspects of the experi-
mental results. The other, presented in Sec. IV, is a po-
larization model based on ideas of the preceding two
groups, but giving a more detailed treatment of the roles
of the electrochemical and electrostatic potentials in the
problem. Finally, a discussion and summary of our re-
sults is given in Sec. V.

II. REVIE% OF EXPERIMENTS

charging staircase of Fig. 3(b), is a periodic sequence of 5
functions

e5( V+e/2cl+ ne/cl )

where n is an integer [Fig. 3(c)].
In the discussions that follow, it will often be con-

venient to refer to potentials at the particle rather than
across the device. We represent the applied bias Vs,
cooling bias Vsc, and step length e/ci by quantities that
are scaled down by a factor, y =ci /(cR +cr):

V=—yV

Vc—=r Vsc

e e—=r
C CI

A. Lambe- Jaklevic tunnel capacitor

Figure 3(a) shows a circuit model for one of the small
metal particles in the Lambe-Jaklevic device in which cz
and cr are the capacitance between the particle and the
upper and lower plate, and tunneling is represented by
the resistance R. What is unusual about this circuit is
that the geometrical capacitances cz and ci are so small
that the discreteness of the electron charge becomes im-
portant. This is illustrated in Fig. 3(b), a plot of the net
charge g, in units of a single-electron charge, accumulat-
ed on the particle as a function of Vs at zero tempera-
ture. The step length is given by e/c&. For a 100 A di-
ameter particle, cr is on the order of a micropicofarad.
This means that the change in Vs, associated with a
single-electron transfer, is on the order of 0.1 V. The in-
cremental capacitance, dg /d Vs, deduced from the

We shall use the prefix S in the subscript to denote volt-
ages applied to the device; the absence of S in the nota-
tion for voltages will mean voltages at the particle.

For samples we have used in our experiments, y is typ-
ically 0.2. The step length referred to the particle e/c
plays a crucial role in the discussion. It is the change in
electrostatic potential P of the particle upon the addition
of one electron and is called the charging voltage. We
also note that the mean energy level spacing 5 is about
two orders of magnitude smaller than e/c. We believe
that 5 plays no role in the memory effect, but it can be of
importance in the dynamics of charge transport at very
low temperatures.

We shall also find it convenient to express the mea-
sured device capacitance C as the sum of a geometrical
component C& and a particle-electrode tunneling com-
ponent C~. In a model device with X particles having
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identical cl, cz, and R, CG is given by

CG ——yNcz +Cz, (2)

where CN is the capacitance between the top and bottom
electrodes arising from regions in the granular film where
there are no particles. Cz is obtained by summing over
the incremental capacitance contributions of the indivi-
dual particles

1 —co R cRcl/y2 2

Cp ——Nc —¹~y,
1+(coRcI /y )

(4)

where co is the measuring frequency in radians per
second. C~ may be determined experimentally from
C (f) C( 00 ),—where f =co/2m. .

As first noted by Giaever and Zeller, in their study of
smail particles in a tunnel junction, if the work function
of the particle 8~ is different from that of the electrode
W„there will be a small residual difference VD(0) be-
tween the Fermi levels of particle and electrode at zero
bias. Figure 4 shows how this offset comes about at zero
temperature and zero bias. For the sake of clarity, we
leave out the factor —e, multiplying all potentials indi-
cated on this energy diagram. In Fig. 4(a) the tunneling
interaction is initially imagined to be turned off. The vac-
uum levels are aligned and the Fermi levels differ by an
amount

7C'
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Q=+2
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FIG. 4. Alignment of the Fermi levels of a single particle
with the bulk electrode. (a) The tunneling interaction is imag-
ined to be initially turned off. Switching on this interaction
causes the Fermi levels to align via the transfer of charge (b) and
(c). With each transfer, the particle's potential drops by e/c.
Finally, in (c), the situation is reached where no more charge
transfers occur. The Fermi levels remain separated by the resid-
ual amount VD, determined by the work functions of particle
and electrode, the charging voltage, and any random static po-
tentials in the oxide.

Cp ——gy (j) .
j S

Assuming a linear R in the circuit model, appropriate
only if Vs »e/cI Cp is instead given by

VD( V}=[[VD(0)+ V+e/2c]mode/c I
—e/2c . (5)

Charge transfer occurs at the thresholds VD( V) =+e/2c,
or at V=[VD(0}+e/2c]mode/c, and the capacitance
pattern as a function of Vs will be symmetric about a
voltage VD(0)/y. We define the electrostatic potential
between a particle and nearby electrode as a distinct
quantity

where 5$
„

is a possible contribution from an oxide po-
larization to P.

Because the work functions of different crystal faces of
a metal differ by amounts on the order of tenths of volts,
one expects a similar variation in hW from particle to
particle depending on a particle's shape and orientation.
This variation is large compared with the charging volt-
age e/c at the particle, about 20 meV for a 100 A diame-
ter particle. To see how this large variation in work func-
tions affects the capacitance measurement in the device,
consider an ensemble of particles with identical e/c, and
with a broad distribution of work functions, with V=O,
Fig. 5(a). With the tunneling interaction turned off, the
distribution of work function differences nn, (EW) is
equivalent to a distribution of VD among the particles
which we call n'( VD,'0) where the zero represents an ap-
plied bias of zero volts, and the prime signifies that the
tunneling interaction is off. The peak of the distribution
is located at 8' -8'„where 8' is the mean work func-
tion of the particles and depends on the metal which
composes the particles. If the particles and electrode are
the same metal, then W' —8', =0. When the tunneling
interaction is turned on, charge transfer occurs as de-
scribed in Fig. 4, and the Fermi level of a given particle is
translated by steps of e/c until it lies within a band of
width e/c centered about V~ =0—the "Coulomb zone. "
The collapse of the broad distribution leads to a distribu-
tion, n ( VD;0) which, if the width of the W distribution
is large compared with e/c, will be uniform between
+e/2c and equal to n„=N/(e /c), Fig. 5(b). Giaever and
Zeller assumed n ( VD, O) was constant to obtain good fits

VD (0)=6 W = IV~ —IV, .

When the tunneling interaction is turned on, the Fermi
levels are brought into closer alignment by the transfer of
electrons, Figs. 4(b} and 4(c). With each transfer, the
particle's potential changes by e/c. This transfer process
ends with VD(0) reduced to a value between +e/2c, Fig.
4(c). Lambe and Jaklevic' noted that if a given particle
has a nonzero VD(0), its periodic capacitance pattern will
not be centered about zero but will be offset from zero by
some amount VD(0)/y.

At this point we wish to precisely define the important
variables having to do with the electrostatic and electro-
chemical potentials at the particle. We define the quanti-
ty VD( V) as the difference in Fermi levels, or, equivalent-
ly, for the temperature regime of these experiments, elec-
trochemical potentials, between the particle and the near-
by electrode at a bias V. The bias dependence of VD is
given by
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slowed to the point that the response time to bias changes
is longer than any relevant experimental time ~,„,then
the polarization is effectively frozen. The distribution
n ( VD; Vc ) will have a permanent peak at VD ——0 like that
shown in 6(a), unaffected by changes in the applied bias.

At a bias V, it is only those particles at the extremes,
+e/2c, of the distribution n ( VD; V) which contribute to
the incremental capacitance C so that C~an(e/2c; V).
If the sample has been cooled at a bias Vz, leaving an as-
sociated peak in n ( VD; Vc) at VD ——0, then the peak will
contribute an excess capacitance only when the bias is set
such that V= Vc+e/2c+ne/c, bringing the peak to the
end of the distribution n( VD', V). The relationship be-
tween Cz( V) and n ( VD', Vc ) can be expressed as

-e /2c e/2c Vo Cp(V)=ey n([(V —Vc e —/2c)m ode/c];Vc); (7)

FIG. 5. The translation of a broad distribution of VD into a
zone of width e/c for an ensemble of particles with a given e/c.
In (a) the bold line indicates the distribution of VD before the
tunneling interaction is turned on. This is equivalent to the dis-
tribution of 8'p-W, among particles with different W~. When
the tunneling interaction is switched on, particles are translated
into the zone as described in Fig. 4. The arrow indicates an

e/c-wide piece of the boldface curve being translated into the
zone. (b) The resulting pileup of such pieces (dashed line)
causes the distribution n( VD', 0) to be uniform and equal to n„
within the zone and zero outside of it.

Cp is thus a periodic mapping of n ( VD; Vc ). Note that if
n ( Vn; Vc)=n„, then C~ =yNcr =—Cp „,the zero-
frequency limit of Eq. (4). Figure 6(b) shows Cp(V) re-
sulting from N( VD;0) in Fig. 6(a).

The actual sample will consist of a distribution of e/c,
thereby washing out the sharp feature associated with the
bumps in C ( V) at V= Vc+e/2c, yielding a capacitance
hole that has a width I corresponding to an average e/c
for the system as indicated by the dashed line in Fig. 6(b).
If the distribution of e/c in the sample is narrow enough,

to their conductance data. However, a constant n ( VD;0)
implies a constant distribution of offsets VD(0)/y be-
tween ke/2cz, and therefore the periodic structure for
individual particles is washed out in the sum Eq. (3).

To understand how a nonuniform distribution of VD

arises during cooling and leads to a capacitance feature
centered about the cooling bias V&, Lambe and Jaklevic
gave an explanation summarized here. Consider an en-
semble of particles with differing VD but with identical
e/c. Let VD(Vc) be the difference in Fermi levels be-
tween particle and electrode at bias V&. The application
of a bias Vc results in a distribution n ( Vn', Vc) that is
shifted in VD by the amount Vc with respect to n ( VD;0),
with charge transfer moving those particles which are
biased out of the "Coulomb zone" back in at the other
end of the distribution

(a)

(c)

-e/2c
I

0 +e/2c Vp

V&-e/2c V& V&+e/2c

n(vp;

n ( VD; Vc ) =n([( Vc+ VD+e/2c)mod e/c] e/2c;0) .—

(6)

Cp(V)
-e/2c 0 +e/2c Vp

With a broad distribution of work functions, the distribu-
tion of VD is expected to be uniform and equal to n„.Ac-
cording to Lambe and Jaklevic, as the sample rests in a
given bias some polarization process occurs which tends
to align the Fermi levels of the particles with that of the
electrode, giving a peak in n ( VD; Vc) at VD =0. If this
polarization responds rapidly to bias changes, the peak
shifts as the bias is changed and no evidence of it is seen
experimentally. If the sample is cooled, however, so that
the thermally-activated polarization processes have

V&-e/2c V& V&~ e/2c

FIG. 6. Capacitance resulting from n ( VD, V& ). In (a) and (b)
the distribution is modeled as a peak at VD ——0 after Lambe-
Jaklevic while in (c) and (d) we model it as having holes at
+e/2c. (a) and (c), n ( VD, V&) frozen-in at the cooling bias. (b)
and (d) resulting C& vs V. A superposition of ensembles of par-
ticles with different e/e is indicated by the dashed line.



38 ELECTRIC-FIELD-INDUCED MEMORY EFFECTS IN. . .

as in the Lambe-Jaklevic data of Fig. 2(a), additional
damped oscillations may be seen on either side of V~ be-

fore the dephasing of the different periodicities is com-
plete.

Later in this paper we present a model in which
n ( VD; Vc) is made nonuniform by the creation of a hole
at the ends of the distribution, e/2c, as in Fig. 6(c}rath-
er than by a peak at the center. In this case, the sharp
feature in the capacitance-bias characteristic is at VC

[Fig. 6(d)], so that a distribution of e/c will not tend to
wash out the sharp feature. Thus, after averaging over a
distribution of e/c, a narrow hole in the end of the distri-
bution can, in principle, produce a I that is narrower
than e/c, while a narrow peak in the center of the distri-
bution cannot.

The maximum deviation of n ( VD, V&) from n„in Fig.
6(c}occurs at VD =+e/2c. We define a quantity

H:n„——N(e/2c; Vc)

to be the depth of the hole in n ( VD,
' Vc). H is related to

the maximum deviation b C( Vc ) of Ct, from C „by
6C ( Vc }—:Cq „—Cp( Vc ) =e y H,

where the latter equality follows from Eq. (7}.
The Lambe and Jaklevic discussion suggests a polariza-

tion process in the oxide between particle and electrode
which reduces VD towards zero for all of the particles.
However, in considering candidate polarization process-
es, it is important to distinguish between the electro-
chemical potential, i.e., VD, which is crucial in the dis-
cussion of the electron transfer, and the electrostatic po-
tential P, which defines the fields which may induce rem-
nant polarization of the insulator. The particle shown in
Fig. 4(c) illustrates this point. Two electrons have been
transferred from the particle to bring the particle's Fermi
level to within e/2c of the Fermi level of the bulk elec-
trode. This has left the particle positively charged. P is
represented in the diagram by the difference between vac-
uum levels of the particle and electrode. A polarization
responding to this electrostatic potential will raise the po-
tential energy for an electron on the particle, reducing
the difference between vacuum levels, thereby increasing
VD. Thus, for some particles, the polarization actually
increases the difference in Fermi levels between particle
and electrode, while for other particles, the polarization
may reduce this difference. Positive and negative shifts of
VD are equally likely, giving no tendency, on average, to
bring the Fermi levels of the particles into juxtaposition
with that of the electrode.

If the polarization process involves thermal or pho-
toexcitation of electrons into the conduction band, it is P,
together with the kinetics of the electron trap, which will
determine where the electrons go. Electrostatic poten-
tials also govern the motion of ionic charge in the oxide.
We know of no polarization process which responds only
to the electrochemical potential difference and is con-
sistent with all of the aspects of the experiment. The puz-
zle, then, is to find a mechanism by which the medium
response, driven by electrostatic potential changes, can
respond in a systematic fashion to the relative positions

of Fermi levels. The answer is found in focusing on the
behavior of those particles which are at the ends of the
VD distribution rather than on finding a mechanism to
provide a peak at the center of the distribution, as sug-
gested by Lambe and Jaklevic.

To gain a better understanding of the phenomenon, we
have both duplicated the Lambe-Jaklevic experiments
and carried out additional experiments on a tunnel capa-
citor. The sample-making procedure we have used for
our experiments is described in another paper. We sum-
marize some of the most significant results herein.

1. Frozen-in memory hole

A tunnel capacitor cooled in a bias, Vc, displays a ca-
pacitance signal like that in Fig. 2(a). The oscillation
EC(Vs) is centered about the cooling bias. Depending
on the distribution of e/c in the sample, the oscillation
may be strongly damped and only appear as a hole
without the side lobes associated with subsequent oscilla-
tions. The magnitude of the signal b, C( Vc) is indepen-
dent of the cooling bias.

2. Square-wave cooling

Lambe and Jaklevic also found that two holes could be
produced by cooling the sample in a 1 Hz square-wave
bias, alternating between Vz„and Vz~. At low tempera-
ture, they observed capacitance holes at Vzz and Vzz.
hC( Vs } for each of the holes has half the amplitude of a
single hole. The frequency of the square wave is observed
not to infiuence the position or depth of the holes; we
have seen this effect using square-wave frequencies up to
20 kHz.

3. Hole associated with temperature range

We have found that a memory hole may be associated
with a temperature cooling range. If the sample is cooled
from T3 to T2 in a bias Vzz, and then from T2 to T, in a
bias Vzz, the sample will display two holes: a broad hole
at Vs&, and a narrower hole at Vsti (Fig. 7). If the sam-

ple is annealed to temperature T2, the hole at Vzz will be
erased, but the hole at Vz„will remain.

4. Magnitude of memory hole

To characterize the magnitude of the memory hole
bC(Vc), one needs to determine C~. As indicated by
Eq. (4), this can be done from the frequency dependence
of C. Lambe-Jaklevic report on capacitance measure-
ments at only one frequency. The tunneling barrier in
their samples is thin enough that the rate that character-
izes electron transfers between a particle and the nearby
electrode, v=y/2m. Rcl in the circuit analogue of Fig. 3,
is large compared to the frequency of the ac measuring
signal for all particles in the device. We have been in-
terested in studying the dynamics of the tunneling pro-
cess ' and have produced samples with tunnel barriers
thick enough that our available frequencies (100 Hz —50
kHz) span the range f &vto f &v.

Figure 8 shows a comparison of our experimental re-
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Cp(f), supports the statement that the frequency depen-
dent capacitance and capacitance memory hole in the de-
vice can be attributed to particles characterized by the
same distribution of tunneling times. The scale factor is a
characterization of the magnitude of the memory hole in
terms of the total capacitance contribution of the parti-
cles. For the sample in Fig. 8, the magnitude of the
memory hole is about 5% of the capacitance of all the
particles.
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FIG. 7. C( Vs) at 4.2 K for a sample cooled from 300 to 42 K
bias Vsc =0 V, and from 42 to 4.2 K in a bias Vsc = —0 35

V.

suits for C (f} and b, C ( VC,f) at 4.2 K. We note that
samples without particles show almost no dependence of
C with frequency and no memory effects. C(f = oo } is
about 1760 pF. The scale for the right-hand ordinate axis
for the memory hole plot was chosen so that one point-
at 150 Hz —would lie on the sample capacitance curve.
The observation that as a result of this single choice of
scale factor all the memory hole data lie on the curve

5. Fixed-temperature hole development

Lambe and Jaklevic observed that if a sample was sub-
jected to a bias V&„,different from the cooling bias V&z,
for a time ~&z long compared to the time it takes to
sweep the bias in a C- V measurement vz, a subsequent C-
V measurement revealed that a small capacitance hole
had developed, centered about Vzz. Meanwhile, the hole
at Vz& had decreased in amplitude. An alternative way
of observing this time-dependent effect is to apply a step
voltage from V&& to V&~ and to observe the C as a func-
tion of time t after the step. The experiment monitors the
development of the new hole by measuring the decrease
of capacitance at its center Vz„. An advantage of this
technique is that one may observe processes that occur
on a time scale that is short compared to the time it takes
to sweep the bias in a Lambe-Jaklevic measurement. Fig-
ure 9 shows a typical capacitance decay taken at 0.14 K.
This sample had a b,C( Vc } of about 10 pF when cooled
from room temperature to 4.2 K. The signal shown in
Fig. 9 represents an average of 16 traces using a square-
wave bias of magnitude V&& —Vz„——0.1 V at 0.2 Hz, tak-
en with the aid of a signal-averaging oscilloscope. For
comparison, also shown in Fig. 9 are attempted fits to
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FIG. 8. Frequency dependence of device capacitance C (cir-
cles) and capacitance memory hole depth hC( V&) (triangles).

T urne otter step ( sec)

FIG. 9. Device capacitance C( V~ ) vs logt when the bias is
switched from Vs& to V» at 0.14 K. The magnitude of the
voltage step Vsc-Vs„ is 0.1 V. Data represent an average of 16
traces. Also shown are attempted fits to an exponential (dashed
line) and logarithmic time dependence (solid line).
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C =Cx)exp( —t /hatt )+Cxz

with C~, =10 pF, C~2=2884 pF, and ~~ = 1 sec, and to a
logt dependence with a slope Cs of 6 pF per decade. The
data agree qualitatively better with the latter fit. The
characteristic slope Cs depends on temperature and Vs~.
At fixed temperature, Cs increases from zero at
Vs~ ——Vsc to its maximum "~1"~««s~ —Vsc )0.05 V.
Cs increases with decreasing temperature until it satu-
rates at a maximum value below 2 K.

6. Lowest temperature for hole freezing

There exists a minimum temperature T;„belowwhich
it is not possible to freeze a memory hole by further cool-
ing. If a sample is cooled between temperatures T2 and
T, in a bias V&, and T2 & T;„,there will be no memory
hole at Vz. T;„is typically a few degrees Kelvin.

B. The Adkins field-effect device

The experiments of Adkins et al. can be described in
a way closely analogous to those of Lambe and Jaklevic,
using the same variables. In Fig. 3(a), ca corresponds to
the capacitance between a particle and the rest of the
film, while cz corresponds to the capacitance between the
particle and the field electrode, and the resistor
represents tunneling in the film plane. In the charging
staircase, Fig. 3(b), Q corresponds to the number of elec-
trons accumulated on a particle as a function of field elec-
trode bias. As before, if Vs is the bias applied to the sam-
ple, the step length is e/ct. To describe potentials be-
tween the particle and the surrounding film, the scale
transformation by a factor ct/(c„+ct) is again useful
and we can refer to the bias and charging voltage by the
quantities defined in Eq. (1). As in the Lambe-Jaklevic
experiment, there will be a distribution of work functions
8' among the particles. %e can again, if somewhat less
precisely, define a quantity VD as being the difference be-
tween the Fermi level of a particle and the mean Fermi
level of its surrounding particles. By the arguments given
in connection with Fig. 5, one may expect that VD will be
uniformly distributed between +e/2c in the absence of
the memory effect.

The conductivity o in the plane is assumed to be via
thermally activated hopping. In their paper, Adkins
et al. demonstrate that, if for all the particles the charg-
ing staircase were centered about V=O (VD=0), the
difference in activation energy between V= 0 and
V=e/2c would give rise to an enormous change in con-
ductivity with V. If all the capacitances were the same,
the effect would be periodic in V. The same arguments
used in the discussion of the Lambe-Jaklevic memory
hole, however, may be used here to show that one expects
two effects —the distribution of particle size and the uni-
form distribution of VD —to completely wash out this
enormous periodic conductance. Nevertheless, the exper-
iments show a small (few percent) dip in the conductance
at the cooling bias rather than zero.

Adkins et al. explain the observed effect in terms of
the development of a polaron in the dielectric as a

response to the mean charge state of a particle during the
cooling. At low temperature, when the field electrode
bias is equal to the cooling bias, the particle is in its
"ground state. " Moving the bias away from Vs& reduces
the excitation energy needed to add a charge to the parti-
cle, thereby increasing the number of carriers in the film
and the conductivity. However, the experiment of
Lambe-Jaklevic, in which cooling the sample in a square
wave results in two memory holes, suggests that it is not
a mean charge state that is responsible for the memory
hole. Furthermore, the argument does not include a dis-
cussion of the role of electrochemical potential VD, and
thus how to handle particles like those in Fig. 4(c), where
the induced polarization would actually reduce the ac-
tivation energy.

III. COULOMB-GAP MODEL

The Coulomb glass model is a many-body problem
concerned with how n

&
charged particles are distributed

among n2 sites where n2 & n, . The particles interact with
one another via Coulomb repulsion. The system is glass-
like in that configurations for the assignment of the n,
particles on the n2 sites that are nearly equal in total en-

ergy may be widely separated in phase space. For the
system to move in phase space from one state to another
of equal or lower energy, may require passing through
states of much higher energy. If the thermal energy
available is much less than this effective energy barrier,
the time constant for the system to make such a move
can be prohibitively long. The system can be stable in a
local energy minimum point in phase space, even though
there are existing lower-energy states. Efros and
Shklovskii gave a simple argument to show that in the
ground state the density of states for adding an electron
to the system has a gap at the Fermi level.

One possible explanation for the memory effects in the
granular films is that the system is behaving like a
Coulomb glass. In this view, the N particles act as sites
for the electrons. The cooling bias defines the single-site
energies VD (Vc). There are many possible distinct
configurations for the assignment of charge to the parti-
cles, which vary in total energy because of the complex
interplay of the Coulomb interactions between charges on
different particles and the distribution of single-site ener-
gies. At high temperatures, there is enough thermal en-

ergy to cause fiuctuations in the charge states of the indi-
vidual particles. These fluctuations allow the system to
gain access to a subset of the many nearly equivalent
configurations. As the temperature is lowered, the
charge states of fewer and fewer particles are fluctuating,
allowing the system less freedom in reaching alternative
low-energy configurations. The glass, upon cooling,
freezes into one of a number of local minima in the space
of available configurations, the particular minimum de-
pending upon the detailed history of bias and tempera-
ture.

If, by changing the bias from V& to V, an additional
electron is added to the system at low temperature, its ad-
dition to a particle destroys the careful local arrangement
of charges designed to minimize the Coulomb energy. If,
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because of the low temperature, no rearrangement of
charge is allowed, the energy of the state with the added
charge will be higher than that of the true ground state at
the altered bias by the order of the Coulomb interaction
between particles. This extra energy, or Coulomb gap,
suppresses the transfer of charge. In the Lambe-Jaklevic
experiment, the gap causes a reduced capacitance. For
the Adkins experiment, since transport is via excited
states of the system, the gap will cause a reduction in the
conductivity. If variable range hopping is the transport
mechanism, the conductivity of the granular film is pre-
dicted to display a crossover from a exp( —T '~

) to
exp( —T ' ) dependence.

We note that Coulomb-gap effects are more likely to be
observable in the Adkins experiment than in the Lambe-
Jaklevic tunnel capacitor. This is because in the Lambe-
Jaklevic experiment, the presence of image charges in the
nearby tunneling electrode causes the effective interaction
between particles to be dipole-dipole. Nevertheless,
Davies has worked out the theory for this system and
has determined that there is still a weak coulomb gap.

It would seem, then, that the idea of a Coulomb glass
in the granular film could explain the reductions in ca-
pacitance and conductance observed in the experiments
when V = V&. We have sought a means of distinguishing
the Coulomb glass model from other models. One pre-
diction, peculiar to the Coulomb glass model, has to do
with the nonergodic properties of the glass. Consider the
Lambe-Jaklevic experiment with the sample in the
ground state with bias Vz at zero temperature. Add elec-
trons one at a time by moving the bias away from V&.
Added electrons will go onto the particles offering the
lowest-energy state available. However, because T=O no
rearrangement of charge can occur, and so the system
cannot reach the true ground state corresponding to the
system with the new number of electrons. If the number
of electrons added to the system is on the order of the
number of sites (particles), all vestiges of the correlations
characterizing the ground-state charge distribution will
have disappeared. Suppose the bias is now returned sud-
denly to Vz, i.e., in a time short compared to the transfer
time constant. Instead of the electrons being removed
from the particles in the reverse order of their addition,
the order of removal in response to a step change in po-
tential will be primarily determined either randomly or
by the details of the tunneling rates of the various parti-
cles, and not by the energetic relations which defined the
order of slow filling of the sites. Since rearrangement
processes are forbidden at T-O, the system is most un-
likely to return to the particular ground state correspond-
ing to V&. The effects associated with the system in the
ground state, reduced capacitance in the Lambe-Jaklevic
experiment and reduced conductivity in the Adkins ex-
periment, will no longer be present.

We have performed this test on a Lambe-Jaklevic de-
vice. At low temperature we slowly sweep the bias away
from V& and then suddenly step it back to Vc. We ob-
serve that the capacitance hole remains. Indeed, the re-
ported stability of the memory hole, despite repeated
sweeps of the bias to voltages much greater than e/c
away from V& in the Lambe-Jaklevic and Adkins experi-

ments, indicates that the Coulomb glass does not dom-
inate the physics of the devices. Once the glass was
moved away from its ground state by a slow change of
bias away from V&, it is questionable that even with a
slow return of the bias back to Vc it could then retrace
its path through phase space to find the ground state. It
might be interesting to search for some loss of the
memory hole with voltage sweeps in a device of the Ad-
kins et al. type as a small effect atop the larger memory
effect which is probably due to oxide processes as dis-
cussed later. The observation of an irretrievable loss of a
portion of the capacitance hole after an initial sweep
away from the cooling bias would provide more convinc-
ing evidence for the Coulomb glass state than the hard-
to-establish crossover of the power law of the conductivi-
ty exponential.

IV. POLARIZATION MODEL

The model presented here for the memory effects is
based on the idea of a relaxation of the dielectric medium
surrounding a particle, and is qualitatively related to the
ideas discussed in the experimental work of Lambe-
Jaklevic and Adkins et al. The model resolves the ques-
tion raised in the discussion of Fig. 4(c): What roles do
the electrochemical and electrostatic potentials VD and P
play in the creation of the memory hoIe? It also provides
a context for understanding the experimental results de-
scribed above for the Lambe-Jaklevic devices.

In this model, the dielectric is treated as homogeneous
but nonideal. The nonideality is the freezing of polariza-
bility upon cooling, presumably due to motion or reorien-
tation of defect or impurity species present in the dielec-
tric in low concentration. On the size scales ( —100 A) of
concern here, the defects can hardly be thought of as
homogeneously distributed; one might expect, for exam-
ple, a single defect to reside in the tunneling barrier be-
tween the particle and electrode. In the Appendix we de-
scribe a model in which the particle s VD is influenced by
a neighboring two-state defect, and in which the energies
of the two defect states are altered by the electron occu-
pancy of the particle. The results of the model are simi-
lar to those predicted by the homogeneous dielectric
model, although some significant differences do arise.
However, existing experiments are unable to distinguish
between the models. We choose the homogeneous model
for presentation below as the more straightforward to de-
velop.

Crucial to the model is the quantized nature of the
charge transport process which determines the electro-
static fields to which the medium is to respond. To illus-
trate this point, consider the case which involves a parti-
cle large enough that its charging voltage may be neglect-
ed and in which the work functions of particle and elec-
trode differ by 58'. The electric field between the parti-
cle and electrode will be equal to 68'/d, independent of
the bias applied to the device, where d is the separation
between particle and electrode. The large particle is able
to align its Fermi level with that of the electrode by the
transfer of charge. Now, for a small particle, the bias
must change by e/c in order to induce a single charge
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e/c V

FIG. 10. Electric field between particle and tunneling elec-
trode as a function of applied bias. The e/c-wide ramps on the
sawtooth are regions of fixed charge on the particle, indicated
by Q for a particle like that in Fig. 4.

transfer. This gives rise to an electric field that increases
linearly with bias until a charge transfer occurs, where
the potential drops by e/c and the field by (e/c)/d. The
field-bias characteristic for a small particle is the
sawtooth of Fig. 10, where the average electric field is
hW/d. The field at zero bias is determined by the num-
ber of charges transferred to bring the Fermi levels into
alignment to within e/2c and by any random static fields
in the oxide. Random static fields play a role that is simi-
lar to the distribution of work functions, and for clarity
will be deleted from the following treatment.

The dielectric medium develops a polarization
P=(e—l)E/4m in response to the electric field from the
charged particle. The dielectric response may be decom-
posed into two components. One part involves mecha-
nisms, e.g., electronic or ionic polarization, for which the
equilibrium configuration may surely be reached at any
temperature in response to local charges in the electro-
static field. It makes no contribution to the memory
effect. The other part describes a dielectric process re-
sponsible for the "freezing-in" of remnant polarization in
the dielectric. The rate at which these processes respond
to changes in the electric field is assumed to decrease
strongly with reduced temperature. We describe this
part of the dielectric response in terms of a time and
temperature-dependent contribution to the dielectric con-
stant ef ( T, t) which is the response of these processes in
the medium to a step electric field change. The processes
in the medium may respond with a broad distribution of
time constants ~. For example, one simple model for
ef ( T, t ) is the relation

ef(T, t)= J g(T, r)(1—e ' ')dr, (9)
0

where g ( T, r ) defines the contribution to the dielectric
constant at temperature T and at t = 00 of processes with
relaxation time ~. For thermally activated polarization
processes, ~ will depend exponentially on 1/T. Processes
with 7)'T

p
a time characteristic of the experiment in

question, are said to be "frozen" and will not contribute
to the polarization of a medium in an experiment. If the
medium is cooled from a temperature T2 to T, in the
presence of an electric field E, those processes which are
fast (r &r,„~)at T2 and slow at T, leave a frozen polar-
ization in the medium proportional to the field in which
the medium is cooled:

5P f( T» T2 ', r«z ) =5ef ( T» T2', r«z )E/4rr

where

(10)

Below the lower temperature T~ this contribution to the
total polarization is fixed and unaffected by changes in
the applied field on time scales of less than ~,„.The ex-
istence of dielectric processes which can give rise to this
dielectric response is supported by the observed decrease
in the dielectric constant with decreasing temperature
and decreasing frequency in capacitors formed without
particles.

A. Frozen-in memory hole

For simplicity we shall focus on the dielectric between
the particle and nearby electrode. Freezing processes in
material between the particle and distant electrode con-
tribute to the memory hole in a similar way. Consider an
ensemble of particles with the same e/c, with a distribu-
tion of work functions that is broad compared to e/c.
Figure 11(a}is a potential energy diagram of such a sys-
tem with an imposed bias Vc ——0 with the tunneling in-

teraction turned off. Particles with different work func-
tions are displaced horizontally for clarity. When the
tunneling interaction is turned on, Fig. 11(b), charge
transfer is induced to bring the Fermi levels of the parti-
cles all to within a band of width e/c that is centered
about the Fermi level of the bulk electrode, as described
previously. It is essential to note that the electrostatic
fields in this system are quantized to the values (Qe/c)/d
where Q is the number of electrons transferred to the par-
ticle. It is this field, dependent upon the charge state of
the particle but not upon the position of its VD within the
+e/2c band, which drives the polarization of the medi-
um. Note again the apparent paradox that the field driv-
ing the medium polarization is independent of small
differences from particle to particle in Fermi level or
work function, yet it is the polarization induced by this
field which is supposed to shift the VD distribution in
such a way as to bring the Fermi levels into a closer
match with that of the substrate. To see how n ( VD;0) is

affected by the freezing-in of polarization, it is useful first
to imagine the particles at zero temperature and the
dielectric at finite temperature. Cool the dielectric be-
tween the temperatures T2 and T&. As a result of the
cooling and the local electrostatic field of a particle, some
polarization is frozen-in. Let VD represent the difference
in Fermi levels between particle and electrode before the
polarization develops and VD be this difference after the
polarization develops. The polarization will alter the
electrostatic potential P by an amount 5P,~

4rrd 5P with——

5P =5ef(Qe/c)/d .

The shift in electrochemical potential VD —VD =5/~„is
as indicated by the vertical arrows in Figs. 11(b) and
12(a). As a result of the polarization potential shift, an
additional charge transfer will be induced for those parti-
cles with VD near the Coulomb threshold to a state of in-
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creased charge magnitude; the threshold is at —e/2c for
negatively charged particles and at + e/2c for positively
charged particles. The polarization process leaves gaps,
indicated by the double-ended arrows, at the ends of the

VD distribution: at + e/2c for negatively charged parti-
cles and —e/2c for positively charged particles, Fig.

I

12(b). The gap is a consequence of the step increase in
the magnitude of the electric field experienced by those
particles for which a charge transfer is induced by the de-
veloping polarization. The magnitude of the gap,
b, VD(TI, T2, r,„),is related to the difference in 5$,I

be-
tween neighboring charge states, Q and Q + 1 by

~VD(TI& T2&rexp) ~epol(Q + 1) ~epol(Q) ~~f( Tl ~ T2~rexp) '
c

(12)

Here, ~,
„

is the sweep time in the capacitance-voltage
measurement.

%hen we now allow the particles to be at nonzero tem-

perature, their charge states are subject to thermal Auc-

tuations. The probability of a particle being excited to its
neighboring charge state of lowest energy is given by the
Boltzmann factor,

e
exp —e

I VD I

2C

I ( Tf, Tf +d T) = kTf
(13)

The dielectric medium around a particle will therefore
experience the switching electric field from the particle's
fluctuating charge state. This has the effect of causing
the frozen-in hole in n ( Vn', 0) to have a width I" given by

for polarization freezing between Tf +dT and Tf. Since
the area of the hole must be conserved, the depth of the
hole in n ( VD ,0),'H ( Tf, Tf +d T) will be

5Ef ( Tf y Tf +dT, rexp )
(14)

kTf /e

The argument given above for '.he case Vc ——0 may be
easily generalized for nonzero cooling bias. In this case
the gaps develop in the distribution n ( VD; Vc ) at
VD=+e/2c to produce a distribution like that in Fig.
6(c). From this model the roles of electrochemical and
electrostatic potentials VD and P are resolved. The elec-
trochemical potential defines the biases at which electron
transfers occur. At a given cooling bias, the polarization
which develops and freezes-in may cause a charge
transfer only in particles whose VD is near the Coulomb
threshold. The charge transfer causes a step change in P,
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FIG. 11. Potential energy diagram of an ensemble of parti-
cles with a unique e/c, but a broad distribution of 8'~ (a) before
and (b) after the tunneling interaction is turned on. (a} The vac-
uum levels of all particles are aligned with the vacuum leve1 of
the electrode. Horizontal position in the diagram reflects a
specific value of fY~. (b) All particles have VD within +e/2c of
the electrode Fermi level. Subsequent slow polarization of the
medium in response to the change in charge state will cause the
potential energy to add an electron for positively charged parti-
cles to increase by an amount P „uparrows) and negatively
charged particles to decrease (down arrows) ~

FIG. 12. Development of gaps in n(VD', 0) for an effective
medium model. (a) An abbreviated version of Fig. 11(b) where
the freezing polarization changes the energy of particles accord-
ing to their charge state. As in Fig. 11, horizontal position in

the diagram reflects a specific value of 8'~. Horizontally-
hatched lines indicate Fermi levels before development of polar-
ization. The resulting state after polarization develops is indi-
cated with a boldface line for particles that remain within the
Coulomb zone, and a vertically-dashed line for particles in

which a charge transfer is induced by the polarization potential.
(b) The situation after the polarization-induced transfers occur.
The absence, represented by double-ended arrows, of positively
charged particles with VD & —e /2c +b, VD and negatively
charged particles with VD & e/2c —6 VD results ln gaps in

n ( VD, O) distribution near +e/2c.
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increasing the magnitude of the electric field. This in
turn, increases the polarization, moving the particle's
electrochemical potential away from threshold. We pro-
pose, then, that the better expression of the effect of the
medium polarization in producing the memory hole is
"to provide VD shifts away from threshold" rather than
"to shift potentials to bring the Fermi levels into a better
match. "

We may now apply this model to understand the other
experimenta1 results mentioned earlier.

B. Square-wave cooling

For cooling in a single bias Vc the memory hole is
made at the ends of n ( VD', Vc ), near the Coulomb thresh-
olds at +e/2c. For particles with VD near zero, the po-
larization shifts as many particles into a range of VD as
away from it. During a square-wave cooling where the
cooling bias alternates between Vz and V~, in general,
particles with VD near +e/2c for one bias are away from
threshold at the other bias. During the half of the cycle
when the voltage is Vz, freezing polarization will cause
gaps to develop in n ( VD; V„)near VD =+e/2c. During
the other half of the cycle, when the voltage is Vz, the
freezing polarization causes gaps in n ( VD,

'
V~ ) near

VD
——+e/2c. The gap which has developed in n ( VD', V„)

now appears as a dip somewhere inside the distribution
n ( VD, V~). The freezing polarization shifts just as many
particles into this region of VD as away from it. When
the voltage returns to V„,the development of the gaps in
the ends n ( VD; V„)continues. The freezing of each hole
is analogous to the freezing of a single hole, but since
only half of the polarization that freezes is effective in
producing a given hole, each hole is of only half the
depth of the single hole. The frequency of the square
wave is irrelevant to the argument as long as it is below
the inverse of the particle's charging time constant and
well above the inverse of the cooling time. The holes in
the distribution n(VD; V„)or n(VD; V~) will be mea-
sured in the capacitance-bias sweep according to Eq. (7}
with either V„orV~ replacing VC.

If the square-wave bias were of amplitude exactly equal
to e/c, this argument would suggest that one would ob-
tain one hole of the same depth as for single bias cooling.
Actually, the distribution of e/c in the sample assures
that this condition cannot be met for all particles, though
there will be some interference between the two capaci-
tance features unless the amplitude is much greater than
e /c.

C. Holes associated with freezing temperatures

This effect is similar to the square-wave cooling experi-
ment. If the sample is cooled from temperature T3 to T2

in a bias V„,gaps develop in the distribution n ( VD; V„)
near VD

——+e/2c. When cooled from T2 to T, in bias
V~, these gaps are now a dip somewhat in the middle of
n( VD', Vz), and new gaps develop near VD =+e/2c for
n(VD, Vz). The model predicts a hole width I =kTf/e
at freezing temperature Tf. Thus the memory hole
frozen in between T3 and T2 will be wider than that
frozen in between T2 and T, . The data of Fig. 7 agree
with this prediction. However, a quantitative effort to fit
a theory to the shapes of the two holes must take into ac-
count the distribution of particle sizes. Moreover, the ap-
propriate dist, ribution changes with temperature. This is
a result of the fact that because of the periodicity of the
capacitance for fixed e/c, a hole wider than e/c cannot
be made, so when kTf/e & e/c, the hole is washed out.
Therefore, only particles with e/c & kT/e can contribute
to a memory hole. Indeed, the data of Fig. 7 can also be
explained with the assumption of a broad distribution of
e/c. As the temperature is reduced, particles with small-
er and smaller e/e contribute to the memory hole, mak-
ing the net hole width narrower. We have not undertak-
en a theoretical fit to the data, but point out the possibili-
ty of making a memory hole that is narrow compared to
the average e/c in the system as described in Sec. II, in
connection with Fig. 6.

D. Magnitude of the erat'ect

The effect that is seen at 4.2 K is the superposition of
holes frozen-in through the entire temperature range of
cooling. Equation (14) gives the depth H of the hole in
n ( VD;0) for polarization freezing near Tf. The accumu-
lated capacitance hole

b C ( Vc, T2, T),r,„},
created by cooling the sample in a single bias V~ from
temperature T2 to T„is obtained by combining Eqs. (8),
(11),and (14):

2e /c deafb C ( Vc, T2, T„r,„)=c~ 2~ 1& exP 7 kT dT t:xPs P, g(r,„p,T)dTCp

(15)

To obtain an upper-bound estimate for the magnitude, we
replace d ef /d T (r,„,T) with the constant
e@(Tz) ez(T, )/T2 ——T, , where e@(T) is the experimen-
tally measured dielectric constant of a sample without
particles at temperatures T. The resulting estimate is
conveniently expressed as
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E. Fixed-temperature hole development

As mentioned earlier, the freezing of polarization is
probably due to reorientation of defect or impurity states
in the oxide. The characteristic rate 1/v for the reorien-
tation of a two-state defect can be approximated by

1 1 Es/k& —»(2ME—&/s')'/'———e ' +Er Tp
(17)

where M is the defect tunneling mass, and s, the tunnel-

ing distance. The left term on the right-hand side of Eq.
(17) represents thermal activation while the right term is
a Wentzel-Kramers-Brillouin (WKB) tunneling term.

I

where C@(T) is the capacitance of a sample without par-
ticles at temperature T. The dependence on the ratio of
T, and Tz is in rough accord with the experimental ob-
servations, an example of which is the approximately
equal magnitude of the two holes in Fig. 7. Between 77
and 4.2 K we observe a hC@ IC@ of —,', ; e@ is about 5; and

e /c/kb T is of order unity. We obtain an upper bound
of 30%%uo. The fact that this result is about six times larger
than the observed effect indicates that only a fraction of
the temperature-dependent dielectric constant is involved
in the freezing of polarization.

Defects responsible for the freezing-in of polarization be-
tween T2 and T& have a time constant ~ that is short
compared to an experimental time 7

p
at the higher tem-

perature and long compared to ~,„atthe lower tempera-
ture.

The hole development at fixed temperature occurs in
the Lambe-Jaklevic experiment when the sample is sub-
jected to a given bias for a time ~„,that is long compared
to the sweep time ~z. Defects with ~ such that
~z &~g&~ contribute to the capacitance hole at the new
bias.

In the capacitance-decay experiment, the hole develop-
ment is seen in this way: If the sample rests for a long
period of time in a bias V„,the defects go to the lower-
energy states that produce the gap in the distribution
n ( VD', Vz ) at e/2c. When a large voltage step is applied,
switching the bias from V„to Vt), V„—Va & elc, the ca-
pacitance Cz will rise sharply from the low value associ-
ated with the hole at e/2c to the average capacitance
C& „away from the hole. After the step, the capacitance
will slowly decay as the defects go into the states that
produce a gap in the distribution n ( VD; Va ) near
VD ——ke/2c. Substituting Eq. (17) into Eq. (9) and con-
verting the integral over ~ to an integral over barrier en-
ergies E~, we obtain for the time-dependent dielectric
constant

ef(T, t)= e 1 —exp
0 TO

—t
(

F. /kT ——2 (2 E /A' )'
) N(E )dE (18)

ef ( T, t ) =ez n p k T ln ( t /rp )

The capacitance decay Cp(t) is given by

(19)

Cp(t) =Ct, „1— ef ( T, t)
e /c

(20)

Using Eq. (19) we obtain the slope Cs of the logarithmic
decay

where N(Et) ) is the number of defects with a characteris-
tic barrier energy between E& and Ez+dE&, and which
contribute Ep to the dielectric constant. Integrating over
a uniform distribution of Ett, N(Ee)=np, yields a time
dependence that is logarithmic in the thermally activated
limit and nearly logarithmic in the tunneling limit. For
the thermally activated regime, the result is

The ratio of hC ( Vc ) to the slope given by Eq. (21) is

ln ln ln(10) .
70

This relationship is valid in a temperature window
defined at high temperature by the condition kT &e Ic,
and at low temperature by the neglect of tunneling of de-
fects in the oxide. Experimentally, due to the distribu-
tion of e/c in the sample, this window is too narrow to
support a quantitative analysis of the data. A qualitative
comparison of this ratio with slope, 6 pF/decade, of the
decay seen in Fig. 9 and the hole depth hC( Vc)-10 pF
seen in the same sample, yields an experimental ratio that
is too small by about a factor of 10. This may indicate
that the distribution N(Ee ) is not constant, but rather in-

creases with decreasing E~.

Cs —— ——(e /c)npe~Ct, „/ln(10) .C
d log)p t I rp

(21) F. Lowest temperature for hole freezing

Using the same model, the magnitude of a capacitance
hole EC(Vc, T2, T, ), frozen between temperatures T2
and T„is obtained by differentiating Eq. (19) with
respect to temperature and using the result in Eq. (15).
The result is

Setting the activated and tunneling rates in Eq. (17)
equal, and equal to 1/~,„,determines a characteristic
temperature below which it is no longer possible to freeze
defect states. This temperature T;„is

70
. pA ln

EC(V&)=(e /c)npe ln In Cp„.
T1 +0

(22)
+exp

2k
(23)
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Using rois,„—10 ', s —1 A, and for M, the mass of an
oxygen ion, we obtain a temperature on the order of a
few degrees Kelvin. This rough estimate agrees with ex-
perimental results we have obtained on the temperature
dependence of the I ambe-Jaklevic memory hole which
saturates at about 2 K. These observations are in rough
agreement with those of Rogers and Buhrman who see a
crossover from activated to tunneling behavior at about
10 K.

Q:

Wp

+2 +1 0
I,

e/c

V. DISCUSSION AND CONCLUSIONS

We have examined the problem of electric-field
memory effects in two different granular film systems
with the purpose of understanding the physics of the
memory hole-freezing process. A key question raised in
considering previous experiments is: How is it that oxide
polarization charges, which respond to electrostatic po-
tentials, end up having a systematic effect on the electro-
chemical potential distribution which has to do with the
work functions of the particle and electrode?

The answer, we believe, lies in the quantized nature of
the charge transfer process. As the polarization near a
particular particle develops in response to a change in
bias, the difference in electrochemical potentials of parti-
cle and electrode VD gradually changes. For most of the
particles this shift simply moves them uniformly in the
VD distribution n ( VD; Vc ) without changing the distribu-
tion density. There are some particles, however, for
which the difference is increased to the Coulomb thresh-
old at +e/2c, where a charge transfer results. The
charge transfer causes a further large step in the electro-
static potential P and thus, electric field in the dielectric.
It is this large step that causes the additional polarization
that shifts the particle further into the distribution leav-
ing a gap at the ends of n ( VD; Vc). The effect of the po-
larization is to shift particles VD away from threshold
rather than towards zero. The oxide charges are able to
sense the Fermi level distribution because those charges
near a particle with VD close to the Coulomb threshold
experience a jump in electric field, while those near parti-
cles away from the threshold do not.

The model provides a satisfactory qualitative explana-
tion of all experimental results obtained by Lambe-
Jaklevic and us on tunnel capacitors:

(a) the existence of the memory hole hC ( V) centered at
the cooling bias Vsc',

(b) the observation of two holes, centered about Vz
and V~, when a sample is cooled in a square-wave bias
that alternates between Vz and Vz,

(c) the association of memory holes with the tempera-
ture window used to create them;

(d) the magnitude of the memory hole b C( Vc );
(e) the approximately logarithmic time dependence of

hole development at a fixed temperature;
(f) lowest temperature for hole-freezing T;„.
Further experimental work could determine if the

memory effect is a useful way to study defects. If a nar-
rower size distribution of particle-electrode capacitances
could be produced, the capacitance memory signal frozen
in different temperature ranges would give information

I
(
I)

I)

Q: +3 +2 +1
1F-2

e/c

FIG. 13. The microscopic analog of Fig. 12 with an ensemble
of particles with distributed 8'~ (horizontal axis). Each particle
is associated with a dipole defect with a crossover field E, that
satisfies 0 & E, & e/(cd). (a) Horizontally-hatched lines indicate
state before defect "freezes" where there is no net effect of the
defect on n( VD', 0). Arrows indicate shift AVD associated with
dipole freezing into the lowest-energy state for the particle-
defect-electrode system. This value of E, causes an upward
shift for particles with Q & 0 and a downward shift for particles
with Q &0. Vertically-hatched lines indicate particles for which
a charge transfer is induced. (b) After charge transfers have oc-
curred. A gap only develops in Q = + 1 and Q = +0 states.
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APPENDIX: MICROSCOPIC VERSION

The memory effect depends on the properties of the
dielectric medium surrounding the particle. Given the
small size of the particle, one may expect local variations
in the field and temperature dependence of the dielectric
constant to be important in determining how a particle's
VD shifts during cooling. For this reason, we consider a

about the barrier energy and concentration of defects.
The capacitance decay signal due to tunneling of defects
can provide complementary evidence about the defect
tunnel barrier distribution for small barrier heights. In
the samples we studied this was a nearly uniform distri-
bution.

The other model discussed here, the Coulomb glass,
predicts effects that are inconsistent with the major ex-
perimental results. In the Lambe-Jaklevic device, the
dipole-dipole nature of interparticle interaction greatly
reduces the magnitude of Coulomb glass effects. In the
Adkins et al. device, however, it may be possible to ob-
serve the kind of nonequilibrium effects described here.
It may also be possible to make a similar structure with a
lightly-doped, compensated semiconductor on the insu-
lating side of the transition which might show this type of
effect. Experiments of this type have been recently car-
ried out by Monroe et al. '
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microscopic model for the freezing-in process. This mod-
el may be considered a closely related submodel of the
homogeneous dielectric model, as most all of the physics
described earlier applies here. In addition, the model
provides an appropriate context for discussing experi-
mental results which have to do with the detailed proper-
ties of the dielectric. An example is tunneling effects in
the dielectric, which must be discussed in terms of a mi-
croscopic model.

The oxide surrounding the particle may be expected to
contain defects which may have a thermally-activated ro-
tational or translational mobility, for example, a dipole
with two stable orientations, or an ion moving between
sites. There is also the possibility of thermally- or photo-
excited electrons moving to or from trap states. For sim-
plicity, we consider a two-state dipole defect with a mo-
ment of magnitude p, which in state A is represented by
the vector —pi, and in state 8 by the vector pi, where i is
a unit vector perpendicular to the plane of the junction
pointing from particle to electrode. The defect is as-
sumed to alternate between its two states at a rate

1 1 —E~/kT
e

T 7 p
(Al)

where I/ro is an "attempt" rate constant and Es is an ac-
tivation energy. The defect freezes in one of its two states
at a temperature Tf, for which ~ is longer than the
relevant experimental time v,„~.

The ener y of the two states of the defect in an electric
field, E=—i is given by

U~ ———pE + 8'q,

U~ ——pE+ W~,
(A2)

b, VD
—— (e/c) .

ed
(A3)

The quantity p/ed is equal to E~ used in Eq. (18). To cal-
culate the effects of nonzero temperature for kT/e ~ e/c,

where W~ s are site energies having to do with the local
configuration for states A and 8. The condition U„=Uz
defines a crossover field,

E,=(W„—Ws)/2Pi =E,i . —

For fields greater than E„the defect prefers state A and
for fields less than E„it prefers state 8.

We consider an ensemble of particles with a distribu-
tion of work functions, each associated with a defect of
moment p and crossover field that satisfies
0 & E, & e /( cd ), where d is again the particle-electrode
separation. As in Sec. IV A imagining the particles to be
at zero temperature and setting Vc ——0, we allow the di-

poles to orient according to the electric field for each of
the charge states of particles in the distribution [Fig.
13(a)). Only those particles in the two charge states
whose oxide fields immediately bracket E, [Fig. 13(b)]
give rise to a gap in n ( VD;0). This is contrasted with
eff'ective medium version of the model in Figs. 12(a) and
12(b), where gaps develop in n ( VD;0) for particles in all

charge states (except Q=O). The magnitude of the gap is

one can model a particle and a nearby defect as a four-
state system, with the particle in one of two charge states,
the ground state and the lowest thermally excited state,
and the defect in either of its two states, A and B. Define
VD to be the difference in Fermi levels between particle
and electrode in absence of interaction with the defect,
and VD to be the difference in Fermi levels with the in-

teraction turned on and in a frozen state characterized by
the Boltzmann distribution over the four levels at the
freezing temperature. For a particle with a given VD &0,
the four states and their energies are

U ~
——pE. + W~

U~+) q e(——e/2C+ VD ) pEJ+—)+W„,
UJ+& s ——e(e/2C+VD)+pEJ+&+ Ws,

(A4)

where j is the charge state of the ground state in the ab-
sence of defect polarization, determined by the difference
in work functions between particle and electrode, j+ 1 is
the lowest excited charge state, and E is the electric field
between particle and electrode given by j(e/c/d). We
can use this model to calculate the depth H of the hole in
n ( VD', 0) in an ensemble of particles fiuctuating between
charge states j and j+ 1, with VD &0, and associated
with defects that have Ec halfway between E, and E~+,.
For these particles, the lowest-energy state of the
particle-defect system is when the charge state is j and
the defect state is A. A gap should appear at the
Coulomb threshold —e/2c, as in Fig. 13(b). At T&0
some of the defects associated with these particles will
freeze in state 8. The fraction of these,
f(VD= e/2c, —n) which result in a VD frozen-in at
—e/2c, is the number that in absence of the interaction
had VD ———e /2c +b VD and is given by

e . e ' +e j+ ~

—U ~/kTf —U. +1 B/kTf

2C' Zf VD ———

—eel VD /kTf
2e

=kTf/e ehVD &kTf &e /c .
—eb, VD /kTf )n„kT&&eb, VD,H=(1 —e

(A6)

eh VD
n„ehVD &kTf &e /c . (A7)

For the range eL VD & kTf & e /c, the result is essentially
the same as that obtained in the effective medium version
of the model Eqs. (13) and (14). If kTf is greater than or

where Z is the partition function for the four states, and
Z, U~ s, and UJ +, s are evaluated at Vn = e /2c-
+5VD.

One finds with this model, a hole in the ends of
n ( VD', 0) of a width I and depth H that depend on freez-
ing temperature

I =EVD kT &ehVD,
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on the order of e ic, the four-state model will break
down as thermal fluctuations excite the particle to several
charge states.

The two versions of the polarization model give some-
what different pictures of which particles are involved in
the freezing of a memory hole. In the linear model, all
particles near the appropriate end of the VD distribution
are involved in creating the gap in n ( VD,

' Vc), where in
the microscopic picture, only particles in charge states
with electric 6elds near Ec participate. In general, there

will be a distribution of Ec which depends on the charac-
teristics of the oxide and its defects. The shape of this
distribution may have experimental consequences. For
example, if Ec is equal to zero for all defects, one could
cool the sample in a bias strong enough to saturate all of
the dipoles in the thicker oxide layer between the particle
and distant electrode, thereby reducing the hole size.
This effect is not seen, however, indicating that the distri-
bution of Ec is broad.
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