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Double-chain approximation for the Ising model
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A double-chain approximation for the Ising model is formulated. With the approximation, tran-

sition temperatures for several numbers of nearest-neighbor chains are obtained.

I. INTRODUCTION

Cluster methods have been used, and played an impor-
tant role in the study of critical phenomena for many
years. ' Recently, Suzuki has developed the coherent-
anomaly method (CAM), in which cluster methods have
been used intensively. ' New cluster methods would
also be interesting from such a standpoint.

Here, a double-chain approximation is introduced, in
which the solution of the Ising model on a double chain
is used. In this approximation, transition temperatures„
for example, are easily obtained for an arbitrary number
of nearest-neighbor chains z. The square lattice and the
cubic lattice correspond to z =2 and 4, respectively.

By use of the solution of the Ising model on a double
chain, a double-chain approximation is formulated in Sec.
II. In Sec. III, some results, including transition temper-
atures for several z are given, and we mention a critical
property applying the CAM to the present approxima-
tion.

II. FORMULATION OF THE APPROXIMATION

The double-chain approximation considered here can
be thought of as a natural extension of the pair approxi-
mation. As a result, a similar formulation is possible.

The free energy per one pair for the double chain in
Fig. 1(a) is denoted by f ' ' and the free energy per one
site for the single chain in Fig. 1(b) is denoted by f"'. In
the figure, J and h represent a ferromagnetic coupling
and an external field, respectively. Effective fields for the
double chain h " and for the single chain 0 " should be
determined self-consistently. Both chains are assumed to
obey the periodic boundary condition. As the free energy
is a function of the magnetization m, with partition func-
tions for the double and single chains denoted by Z' ' and
Z' ", respectively, f ' ' and f("become
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where z is the number of nearest-neighbor chains.
The Ising model considered here is described by the

following Hamiltonian:
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This is just the one-dimensional Ising model in a field.
With the notation of v=—pJ and B"'=—p(h +H "),
lim [(lnZ~(')/X] becomes
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The sum in the first term is over all nearest-neighbor
spin s.

First, we consider the single-chain part. The effective
Hamiltonian for the single chain corresponding to the
Hamiltonian (4) is given by

A("= —J g S;S;+(—(h +H ")g S; .

lnZ"'
—pf'2'= lim 2P(h +h )m— ,

lnz'"
pf"'= lim ——p(h +H ")m, (2)

(b)
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where N is the length of the chains and we consider the
N~ ~ limit. As in the case of the pair approximation,
the free energy per one site is given by

FIG. 1. (a) A double chain and (b) a single chain. A coupling
and an external field are denoted by J and h, respectively, and
h "and H "are effective fields for the double chain and the sin-

gle chain, respectively.
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where k, is the larger eigenvalue for the 2&(2 transfer
matrix. The relation between the magnetization and B'"
is given by

+exp( —P&' ')

= lim Isj =lng, . (10)

m =sinhB'"(sinh 8'''+e )

This can be solved inversely and becomes

(7) With 8 =p(h +h "), 2), is given by

rI&2r' cos(0/3)+ —,'(e cosh28 +e 'cosh2v) . (11)
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In this expression, r and L9 are given by

r' =—,'[(e "cosh2v+e 'cosh28)

Next, we consider the double-chain part. The
effective Hamiltonian for the double chain is given by

A' '= —J g (S; iS;+»+S;2S;+, 2+S;,S, 2)

—(h+hE"}g(S, , +S, 2} .

and

—3e sinh2v(cosh28 +cosh2v)]'/2,

0=are tan —q

(12)

Because this is the Ising model on the double chain in a
uniform field, with the maximum eigenvalue for the 4)(4
transfer matrix denoted by 2)„ lim~ „(lnZN'/N) be-

comes
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where eH(x) is the Heaviside's step function and p and q
are expressed by v and B as follows:

p =—', [3e "sinh2v( cosh28 +cosh2v) —e "cosh2v+ e "cosh28 ) ],
(14)

q = —,', [ —2(e "cosh2v+e "cosh28) +9e 'sinh2v(e "cosh2v+e "cosh28)(cosh28+cosh2v) —27e "sinh 2v] .

The magnetization is given by

r 2r—cos( 8/'3 )
g]
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Unlike the single-chain case, it seems difficult to solve it
inversely.

Using (1), (2), (3), (6), and (10), the free energy is rewrit-
ten as follows:

pf (m) =—( —ln2)~+28m)+(1 —z)( —ink, ~+8"'m) .
2

(16)

The magnetization can be obtained by solving the follow-
ing equation:

III. RESULTS

Magnetizations for arbitrary z can be obtained from
(16} and (18). As an example magnetizations for z =2
(square lattice) and z =4 (cubic lattice) are shown in Fig.
2.

Transition temperatures can be obtained by solving
(18) directly or more simply by seeking the zero point of
the coefficient of the first-order term in m when the left-

Bf(m)
a

In the case of h =0, (17) becomes

(17)
I.O
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2

(18)

As noted earlier, it is difficult to express B as a function
of m. The magnetization is obtained by solving (18}nu-
merically. Among solutions, the real magnetization mini-
mizes the free energy (16), which can be proved from a
thermodynamic inequality and (17).
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FIG. 2. Magnetizations for z =2 (square lattice) and z =4
(cubic lattice) in the double-chain approximation.
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(19)

Critical coefficients of the susceptibility for z =2, 3, 4,
and 6 in the double-chain approximation are given in
Table I. We need another approximation to apply the
CAM. In the single-chain approximation, the transition
temperature T,"', and the critical coefficient 7'" are ob-
tained from the following equation:

and

z „,exp(2J/k~T, ")=1
ks T,'" (20)

y (1)

zJ(2J/ks T,'"+1)
The critical exponent y is estimated by

(21)

hand side of (18) is evaluated in terms of m. The latter
method can be applied when the transition is second or-
der as in the present case. In (18), B'" can be evaluated
easily in terms of m using (8), and it is also a simple task
to evaluate B by using (15). The transition temperatures
T, for z =2, 3, 4, and 6 are given in Table I, together
with the exact value for z =2 and a Monte Carlo renor-
malization group result for z =4. In the table, critical
coefficients of the susceptibility, which will be explained
later, are also shown.

Next, we mention an application of the double-chain
approximation to estimate the susceptibility exponent y
by means of the CAM theory. In the CAM theory, at
least two cluster approximations are needed to calculate
critical exponents. Here we use the double- and single-
chain approximations to estimate the critical exponent of
the susceptibility.

In a cluster approximation, the susceptibility Xo(T)
near the critical point and its critical coefficients 7 are re-
lated by the following equation:

TABLE I. Transition temperatures T, in the double-chain
approximation for z =2, 3, 4 and 6 and the real values T,* for
z =2 and 4. Critical coeScients of the susceptibility g in the
double-chain approximation, which are defined by (19), are also
given.

kq T, /J

2.575 88
3.739 54
4.815 77
6.888 39

'Reference 5.

kBT, /J

2.269 18. . .

4.511 53. . .

0.826 56
0.404 21
0.275 90
0.17300

ln(T'"'/X)

In[(T, —T,*)/(T,"'—T,*)] (22)

where T,' is the real transition temperature. From (22),
we obtain y = 1.675 and 1.296 for the square (z =2) and
the cubic (z =4) lattices, respectively. These results are
not so bad, although only the first two cluster approxima-
tions are used in a series of approximations. The two ap-
proximations may be thought of as a part of a canonical
series of approximations in the CAM theory.

In conclusion, we have studied the Ising model for an
arbitrary number of nearest-neighbor chains in terms of
the double-chain approximation which can be treated nu-
merically. This approximation is an extension of the pair
approximation, which is equivalent to the Bethe approxi-
mation, and at the same time, an extension of the
single-chain approximation. Transition temperatures and
magnetizations have been obtained, and these values are
closer to the real values than those obtained by the pair
and single-chain approximations. This is a natural conse-
quence because more fluctuations are included in the
present approximation.
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