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A double-chain approximation for the Ising model is formulated. With the approximation, tran-
sition temperatures for several numbers of nearest-neighbor chains are obtained.

I. INTRODUCTION

Cluster methods have been used, and played an impor-
tant role in the study of critical phenomena for many
years.! Recently, Suzuki has developed the coherent-
anomaly method (CAM),? in which cluster methods have
been used intensively.>® New cluster methods would
also be interesting from such a standpoint.

Here, a double-chain approximation is introduced, in
which the solution of the Ising model on a double chain*
is used. In this approximation, transition temperatures,
for example, are easily obtained for an arbitrary number
of nearest-neighbor chains z. The square lattice and the
cubic lattice correspond to z =2 and 4, respectively.

By use of the solution of the Ising model on a double
chain, a double-chain approximation is formulated in Sec.
II. In Sec. III, some results, including transition temper-
atures for several z are given, and we mention a critical
property applying the CAM to the present approxima-
tion.

II. FORMULATION OF THE APPROXIMATION

The double-chain approximation considered here can
be thought of as a natural extension of the pair approxi-
mation. As a result, a similar formulation is possible.

The free energy per one pair for the double chain in
Fig. 1(a) is denoted by f¥ and the free energy per one
site for the single chain in Fig. 1(b) is denoted by f'!’. In
the figure, J and h represent a ferromagnetic coupling
and an external field, respectively. Effective fields for the
double chain 4 FF and for the single chain HEF should be
determined self-consistently. Both chains are assumed to
obey the periodic boundary condition. As the free energy
is a function of the magnetization m, with partition func-
tions for the double and single chains denoted by Z‘?’ and
zW, respectively,fm and f'! become

(2)

—BfP= lim ——2——2Bh +h*F)m , (1)
N-—
(1)
—Bf "= lim HTN—B(h +H)m 2

where N is the length of the chains and we consider the
N — oo limit. As in the case of the pair approximation,
the free energy per one site is given by
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Bf (m)=2(Bf '~ 287 ") +Bf""
= 2B/ +(1—2Bf" 3)

where z is the number of nearest-neighbor chains.
The Ising model considered here is described by the
following Hamiltonian:

H=—-J 3 S;S;—h3¥S;. 4)
(i,j) i
The sum in the first term is over all nearest-neighbor
spins.
First, we consider the single-chain part. The effective
Hamiltonian for the single chain corresponding to the
Hamiltonian (4) is given by

HV=—-J3S;S; .1 —(h+HF) TS, . (5

This is just the one-dimensional Ising model in a field.
With the notation of v=BJ and B'"=pB(h +HFEF),
A}im [(InZ})/N] becomes

(1)
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FIG. 1. (a) A double chain and (b) a single chain. A coupling
and an external field are denoted by J and h, respectively, and
hEF and HFFare effective fields for the double chain and the sin-
gle chain, respectively.
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where A, is the larger eigenvalue for the 2X2 transfer
matrix. The relation between the magnetization and B'"
is given by

m =sinhBV(sinh?B'" ¢ —*") 172, (7
This can be solved inversely and becomes
BV=arcsinh m (8)
_mHl»2

Next, we consider the double-chain part.4 The
effective Hamiltonian for the double chain is given by

HO_ g 2 (818 1.1+S8:2Si 4 1.2+S01S1.2)
—(h +h") 3 (S;1+S;,) - ©)

Because this is the Ising model on the double chain in a
uniform field, with the maximum eigenvalue for the 4 x4
transfer matrix denoted by 7,, limy_, . (InZ#'/N) be-
comes
J

S exp(—BH?)
_N-Iorlcx; N
With B =B(h +hEF), 5, is given by

=lnn,. (10

nl2rl/3cos(9/3)+%(ez"coshZB +e "Ycosh2v) . (11)
In this expression, r and 6 are given by

r'?=2[(e “cosh2v+e*'cosh2B)*

—3e2sinh2v(cosh2B +cosh2v)]'/? , (12)
and
2 3172
0—arctan =9 —4P")
—q
2 4 312
+1TGH ( 9 q4 ) }, (13)

where ©(x) is the Heaviside’s step function and p and ¢
are expressed by v and B as follows:

p =%[3e*sinh2v(cosh2B +cosh2v) —e ~*cosh2v+e*cosh2B )] ,

(14)
g ==2[—2(e “cosh2v+e**cosh2B)* 4 9e?*sinh2v(e ~*cosh2v+ e *cosh2B)(cosh2B +cosh2v) —27e*sinh*2v] .
The magnetization is given by
1|1 5| or?
=— = 6/3
m 771 l3r 8(2B)COS( /3)
. d(g*+4p?) 3 .
1 3 q9 —al_4p3H)2 q 203inh2B | . 15
SO/ T a2p) AT T g0 | |Taesn 1

Unlike the single-chain case, it seems difficult to solve it
inversely.

Using (1), (2), (3), (6), and (10), the free energy is rewrit-
ten as follows:

Bf(m)==<-(—Inn;+2Bm)+(1—z)(—InA,;+B'"'m) .

z
2
(16)

The magnetization can be obtained by solving the follow-
ing equation:

oflm) _y (17)
am
In the case of h =0, (17) becomes
%(2B)+(1—Z)B“’:O . (18)

As noted earlier, it is difficult to express B as a function
of m. The magnetization is obtained by solving (18) nu-
merically. Among solutions, the real magnetization mini-
mizes the free energy (16), which can be proved from a
thermodynamic inequality and (17).

III. RESULTS

Magnetizations for arbitrary z can be obtained from
(16) and (18). As an example magnetizations for z =2
(square lattice) and z =4 (cubic lattice) are shown in Fig.
2.

Transition temperatures can be obtained by solving
(18) directly or more simply by seeking the zero point of
the coefficient of the first-order term in m when the left-
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FIG. 2. Magnetizations for z =2 (square lattice) and z =4
(cubic lattice) in the double-chain approximation.
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hand side of (18) is evaluated in terms of m. The latter
method can be applied when the transition is second or-
der as in the present case. In (18), BV can be evaluated
easily in terms of m using (8), and it is also a simple task
to evaluate B by using (15). The transition temperatures
T, for z=2, 3, 4, and 6 are given in Table I, together
with the exact value for z =2 and a Monte Carlo renor-
malization group result for z=4.° In the table, critical
coefficients of the susceptibility, which will be explained
later, are also shown.

Next, we mention an application of the double-chain
approximation to estimate the susceptibility exponent y
by means of the CAM theory.? In the CAM theory, at
least two cluster approximations are needed to calculate
critical exponents. Here we use the double- and single-
chain approximations to estimate the critical exponent of
the susceptibility.

In a cluster approximation, the susceptibility X,(T)
near the critical point and its critical coefficients X are re-
lated by the following equation:?

T-T,

, E=——— . 19
€ T (19)

c

Xo(T) ~

o ||

Critical coefficients of the susceptibility for z =2, 3, 4,
and 6 in the double-chain approximation are given in
Table I. We need another approximation to apply the
CAM. In the single-chain approximation, the transition
temperature 7., and the critical coefficient X ‘!’ are ob-
tained from the following equation:

ZTJFW exp(2J /ky T =1 20)
B+c

and

f(]): 1 i (21)
2J(2J 7k TV 1)

The critical exponent ¥ is estimated by’

TABLE I. Transition temperatures 7, in the double-chain
approximation for z =2, 3, 4 and 6 and the real values T for
z=2 and 4. Critical coefficients of the susceptibility X in the
double-chain approximation, which are defined by (19), are also
given.

z kT /J kpTE/J* X’
2 257588 226918. .. 0.826 56
3 3.73954 0.40421
4 481577 451153, .. 0.27590
6 6.888 39 0.17300
"Reference 5.

In(X'"'/%)

y—1 , (22)

T[T —TH AT —T2))
where T* is the real transition temperature.® From (22),
we obtain ¥ ~1.675 and 1.296 for the square (z =2) and
the cubic (z =4) lattices, respectively. These results are
not so bad, although only the first two cluster approxima-
tions are used in a series of approximations. The two ap-
proximations may be thought of as a part of a canonical
series of approximations in the CAM theory.

In conclusion, we have studied the Ising model for an
arbitrary number of nearest-neighbor chains in terms of
the double-chain approximation which can be treated nu-
merically. This approximation is an extension of the pair
approximation, which is equivalent to the Bethe approxi-

mation,® and at the same time, an extension of the
single-chain approximation. Transition temperatures and
magnetizations have been obtained, and these values are
closer to the real values than those obtained by the pair
and single-chain approximations. This is a natural conse-
quence because more fluctuations are included in the
present approximation.
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