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Comment on "Time evolution of Bloch electrons in a homogeneous electric field"
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A gauge transformation conn|:cting two approaches to the problem of a Bloch electron in an elec-

tric field is discussed. It is shown that the criticism of the Houston functions in a recent paper by
Krieger and Iafrate [Phys. Rev. B 33, 5494 (1986)] is unfounded.

In a recent Physical Review paper' Krieger and Iafrate
claim to have presented "a new derivation" for the
dynamics of a Bloch electron in a homogeneous electric
field. In particular, the authors of Ref. 1 claim that their
"new treatment avoids all the basic assumptions of the
conventional derivations, " e.g., they avoid the Houston
method and, correspondingly, their work does not assume
that "an expansion of periodic functions is a solution of a
nonperiodic Hamiltonian. "

In this Comment we show that it does not seem to be so
easy to avoid the conventional assumptions in the classical
problem of a Bloch electron in an electric field that has
been around from the beginning of the quantum theory of
solids. It certainly cannot be done as easily as suggested
in Ref. 1 by just changing the representation of the elec-
tric field from the usual scalar potential to a vector poten-
tial. As the authors of Ref. 1 have themselves pointed out
this change of representation is achieved by the well-

known elementary gauge transformation. ' It would be
very surprising if this transformation actually removed all
the difficulties and objections in the monumental problem
of the Bloch electron in an electric field. What we show
in this Comment is that this is not so and that the claim
of the authors of Ref. 1 that their new treatment avoids
all the basic assumptions of the conventional derivations
is not correct.

An important contribution to the understanding of the
dynamics of the Bloch electron in the presence of an elec-
tric field was made by Houston by the introduction of
Houston functions (for simplicity we treat a one-

dimensional problem for a homogeneous and constant
electric field E)

g'„'(x, t}=exp ——I E„(k(t'))dt' P„k(,)(x) . (1)

i A = + V(x) eEx-. a@ p'
c}t 2m

(2)

Here p„k(x) is a Bloch function corresponding to the band
with energy e„(k) and k(t) satisfies the acceleration
theorem k(t) =eE ( e is the electron charge}. The Houston
function (1) has the physical significance of being a solu-
tion in the single-band approximation of the time-
dependent Schrodinger equation for a Bloch electron in an
electric field

In Eq. (2}, V(x) is the periodic potential with period a,
and the electric field is presented by the scalar potential
—eEx. In Ref. 1 the authors prefer to work with func-
tions ttp,'(x, t} which are connected with the Bloch func-
tions (I)„k(,)(x) by a gauge transformation

tt),'(x, t) =exp — eExt —P„k(,)(x) . (3)

P,'(x, t) is a solution of the equation

(p +eEt) + V(x) tt);'(x, t)=s„(k(t))P,'(x, t),
2m

(4)

in which the electric field is represented by the vector po-
tential A (t) = cEt, and —where k (t) satisfies according to
Ref. 1 the relation

IeEt+k—=——G .
N

(t,'(x, t) =u„k(,)(x), (6)

Here I is an integer not exceeding N, the number of unit
cells in the crystal, and G =2trla (the constant of the re-
ciprocal lattice). The reason the functions tt);'(x, t) are pre-
ferred in Ref. 1 over the Houston functions (1) is because
the Hamiltonian of Eq. (4) is translationally invariant (in
the space coordinate). It is clear that this is not the case
with the Hamiltonian of Eq. (2) which is not translation-
ally invariant. From here the authors of Ref. 1 come to
the conclusion that by expanding in Pt(x, t) one can avoid
the difficulties one encounters by using an expansion in
Houston functions as done in the classical work by Hous-
ton. In particular, the authors of Ref. 1 claim that, un-
like Houston's method, in their work they do not assume
that "an expansion of periodic functions is a solution of a
nonperiodic Hamiltonian. *' That this is actually done in
the Houston theory is true, but the authors of Ref. 1 have
not removed this difficulty. As we are going to prove
shortly, the only thing the authors of Ref. 1 have
managed to accomplish is to shift this difficulty from the
space domain to the domain of time, but they have cer-
tainly not removed it. In order to see it let us first point
out that in Eq. (5) k can be chosen without any loss of
generality to be k =(1IA)eEt (the constant can be ab-
sorbed into the vector potential). With this in mind the
functions (3) become
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where u„k(x) is the periodic part of the Bloch function
p„i,(x), u„k(x+a)=u„k(x) .From Eqs. (5) and (6) it fol-
lows that

. 2K
P,'(x, t +T)=exp i— x P,'(x, t),

a

where T =2MfeEa is the period of an oscillating Bloch
electron in the single-band approximation. What this
means is that the functions PI(x, t) are periodic in t with
the period T at all the lattice points x =sa,
s =0,+1,+2, . . . . In Ref. I it was claimed that the
Houston functions are not suitable as an expansion basis
because they are periodic on the boundaries while the
Hamiltonian of Eq. (2) is not translationally invariant in
space. But as we have just shown the functions p,'(x, t)
that were used in Ref. 1 have exactly the same deficiency:
they are periodic in t at all points of the lattice while the

Hamiltonian (4) in the gauge of the vector potential is not
translationally invariant in time. To claim therefore that
the functions P,'(x, t) are preferable over the classical
Houston functions as an expansion basis for the Bloch
electron in an electric field is unfounded.

From what we have shown it follows that the Houston
functions [Eq. (1)j and the functions used in Ref. 1 [Eq.
(3)] are completely equivalent as expansion bases and that
the latter remove no difficulties of the former. It is there-
fore not surprising that the authors of Ref. 1 have arrived
at well-known results. What is unfortunate, however, is
that having mistakingly assumed that their "new treat-
ment" is correct the authors of Ref. 1 criticize a number
of other papers on the subject. ' Since it is shown in
this Comment that the new treatment of Ref. 1 is in-
correct and since the criticism is based on this incorrect
treatment we find this criticism completely unfounded.
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