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We discuss the filling of three-dimensional Euclidean space with tetrahedra having two possible
kinds of vertex atoms and three kinds of edge lengths (interatomic distances) as described by K. Y.
Szeto and J. Villain [Phys. Rev. B 36, 4715 (1987)]. We identify certain periodic structures corre-
sponding to the authors’ third solution with members of the family of tetrahedrally close-packed
(tcp) alloy structures [including Frank-Kasper (FK) phases] and discuss factors limiting the genera-
tion of additional tcp alloy structure types with the procedure described.

In a recent paper, Szeto and Villain' (SV) discuss the
problem of filling three-dimensional space with tetrahe-
dra having two kinds of vertices 4 and B, and three cor-
responding edge lengths d , 4, dpp, and d 45. This prob-
lem was treated as not only geometric but also crystallo-
graphic, with the vertices representing two and only two
kinds of atoms, as in an inorganic compound or metal al-
loy. The geometric treatment was quite ingenious and we
have nothing to add to it. We will be here concerned
with the crystallographic aspects.

Clearly this problem is related to the more general
problem of filling space solely with tetrahedra that are
not excessively distorted (it being well known that filling
Euclidean space with regular tetrahedra is impossible), a
problem already well known in connection with a certain
class of metallic alloys that are said to be tetrahedrally
close packed (tcp);>~* those of that class that are layered
are known as Frank-Kasper (FK) phases.>® The tetrahe-
dra concerned here are those formed by the centers of
every group of four atoms all of which touch the other
three. The distortions in this family are limited, the ratio
of the longest edge of any tetrahedron of the shortest
edge not exceeding about . The number of tetrahedra
that can join at a common edge is either five (‘“minor
bonds”) or six (“major bonds”), and the coordination
numbers (CN’s) possible for the atoms are limited to 12,
14, 15, and 16, each possessing its characteristic coordi-
nation polyhedron (that for CN12 being a somewhat dis-
torted regular icosahedron). The distribution of coordi-
nation types in these alloys is subject to geometrical con-
siderations somewhat related to those of SV.? There are
at least 23 known members of the tcp family, excluding
polytypes (stacking variations). This family of structures
has recently attracted attention in connection with quasi-
crystals. >4 7—?

To avoid confusion with other uses of the letters 4 and
B in discussions of alloy crystal structures, we replace
them in the treatment of SV by S (small) and L (large), re-
spectively; with these changes the parameters of SV’s
treatment become

dess/dSL N yZdLL/dSL . (1)

The SV tetrahedra may be quite irregular—much more
so than in the tcp case—as the restriction placed on x
and y is

0<x<l<y<V3. (2)

Three solutions for x,y, and periodic structures corre-
sponding to them, are presented by SV. The first
(y =V'2) leads to the NaCl structure. This contains reg-
ular tetrahedra LLLL, and very much distorted tetrahe-
dra LLLS in the shape of trigonal pyramids with apex
angle 90°. Eight of the latter pack to form a regular oc-
tahedron centered by an S atom. As is well known, regu-
lar octahedra pack with twice their number of regular
tetrahedra to fill space. This is a feature of cubic closest
packing (fcc or ccp) and also hexagonal closest packing
(hcp), representing two types of stacking of close-packed
plane layers of atoms. It also exists in polytypes,
representing various periodic combinations of these
stacking types, and in random stacking sequences. The
NaCl structure is obtained by placing Na™ ions at the
centers of all octahedra in a ccp packing of C1~ ions. In
principle there should also exist SV structures corre-
sponding to hcp and the polytype and random packings.
However as far as we are aware none are known in na-
ture; in ionic crystals, cation-containing anion octahedra
that share faces violate one of Pauling’s electrostatic
valence rules.' o -

The second SV solution (x =V'4/7, y=v'12/7) yields
a hexagonal structure which was not identified but which
was stated to be “both tetragonal and hexagonal,” an
‘““accidental violation of crystallography” that would be
removed by any perturbation. No violation in fact exists,
as the term ‘“‘tetragonal” implies existence of a fourfold
crystallographic symmetry axis which is not required to
be present merely because of equality of axial lengths and
in fact does not exist even approximately in this struc-
ture, which we find to be (with some differences in actual
interatomic distances) the structure type C32 (e.g., AlB,).
Many representatives of this structure type are found in
naturle with axial ratios (cy/a,) varying between 0.59 and
1.27.1

The third solution (x=v'8/11, y =V'12/11) leads to
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two periodic structures, shown in SV’s Fig. 6(b) but not
identified as structures existing in nature. We find that
the top and bottom structures in that figure correspond
to the structure type C14 (e.g., MgZn,), and that the mid-
dle one corresponds to the structure type C15 (e.g.,
MgCu,). These are the two principal types of Friauf-
Laves structures.'>!3

SV describe in connection with these structures a 44-
face polyhedron with 24 surface atoms, 18 S and 6 L,
composed of packed tetrahedra. Actually there is not
just one but two such 44-face polyhedra, one which
possesses an inversion center and another which
possesses a plane of symmetry perpendicular to its trigo-
nal axis. These polyhedra result from interpenetration of
two CN16 coordination polyhedra joining at a common
six-membered ring of S atoms, and the two kinds of 44-
atom polyhedra are related by a twist of 60°.

If we eliminate the 4 L surface atoms of a CN16 coor-
dination polyhedron, retaining the 12 S surface atoms, we
obtain the Friauf polyhedron, a truncated regular
tetrahedron having four equilateral triangles and four
regular hexagons as faces, defined by Samson!* and used
by him in describing tcp structures as well as alloy struc-
tures with giant unit cells. Two Friauf polyhedra can be
linked together in either of two ways at a common hexag-
onal face: at an inversion center (i) or at a mirror plane
(m). The resulting polyhedra are what one gets if one re-
moves the 6 L surface atoms from the two kinds of SV
44-face polyhedra. Samson has shown how the C14 and
C15 structures can be built up by packing the Friauf po-
lyhedra with an equal number of smaller regular tetrahe-
dra. Both structures can be considered as modes of
stacking of slabs within which the Friauf polyhedra are
linked in the / manner; if the slabs are stacked to create m
linkages, the C 14 structure results; if additional i linkages
are formed, the C15 structure results. An alternation of
the two modes creates a third Friauf-Laves structure
type, C36 (e.g., MgNi,),!* which is also certainly accessi-
ble from the SV treatment, as are alloy structures with
more complicated polytypic stacking arrangements such
as those found by Komura and Kitano!> and random
stacking as demonstrated in SV’s Fig. 6(c).

When two Friauf polyhedra are linked in the i manner
and are capped with small tetrahedra at both ends, a
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rhombohedron with 60° apex angle results which is the
primitive unit cell of the C15 structure. A very similar
rhombohedron, but with apex angle 63.435°, is one of the
two building blocks or “tiles” often used in the discussion
of quasicrystals.?

One may well ask why SV’s procedure does not gen-
erate additional tcp structures. In the Friauf-Laves
structure types there are only two coordination types
present (CN12 and CN16), and every small atom present
belongs to both types of coordination polyhedra; there is
only one kind of S and one kind of L. This is true of only
one other known tcp structure type, namely 415 (e.g.,
B-W, Cr;Si), but this structure is not in accord with' SV’s
hypothesis because there are two different LL distances.
All other known tcp structures have at least three and
often four (CN12, CN14, CN15, CN16) coordination
types, and in many instances there are more than one
atom of the same coordination type that are not
equivalent. Thus, atoms of at least three different sizes,
and often many more, are required. While more tcp
structure types may remain to be discovered, it is exceed-
ingly unlikely that any of them will have simple struc-
tures which, like the Friauf-Laves structures, have only
two sizes of atoms and only three distances.

While the basic assumptions of SV are broad enough to
encompass the NaCl structure (but not the equally simple
CsCl structure, which requires the use of two different
L-L distances differing by factor of V'2), they are too re-
stricted to be of much use with alloys. tcp structures are
not even very well described by packing of spheres of two
or more different sizes. We have found that good fits to
interatomic distances can be obtained if, while each
CN12 atom may have a single bonding radius value, for
the higher coordinations each atom is allowed to have
two different radius values: one for minor bonds and a
somewhat smaller one for major bonds.'

The treatment of SV is ingenious and elegant as a
geometrical exercise and, as far as it goes, as a contribu-
tion to crystallography. Any extension of the treatment
toward description of additional crystal structures will be
very much more difficult, even in the case of tcp alloys
for which a treatment in terms of packing of tetrahedra is
naturally best suited.
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